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Abstract: Optical coherence elastography (OCE), a functional extension of optical coherence 
tomography (OCT), can be used to characterize the mechanical properties of biological tissue. 
A handheld fiber-optic OCE instrument will allow the clinician to conveniently interrogate 
the localized mechanical properties of in vivo tissue, leading to better informed clinical 
decision making. During handheld OCE characterization, the handheld probe is used to 
compress the sample and the displacement of the sample is quantified by analyzing the OCT 
signals acquired. However, the motion within the sample inevitably varies in time due to 
varying hand motion. Moreover, the motion speed depends on spatial location due to the 
sample deformation. Hence, there is a need for a robust motion tracking method for manual 
OCE measurement. In this study, we investigate a temporally and spatially adaptive Doppler 
analysis method. The method described here strategically chooses the time interval (δt) 
between signals involved in Doppler analysis to track the motion speed v(z,t) that varies 
temporally and spatially in a deformed sample volume under manual compression. Enabled 
by temporally and spatially adaptive Doppler analysis, we report the first demonstration of 
real-time manual OCE characterization of in vivo tissue to the best of our knowledge. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.4500) Optical coherence tomography; (280.4788) Optical sensing and sensors; (170.6935) Tissue 
characterization. 
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1. Introduction 

Optical coherence tomography (OCT) allows structural and functional imaging of biological 
tissue with high resolution and high speed [1]. The imaging capability of OCT can be 
integrated into handheld instruments using fiber optic components [2–4]. A compact, 
lightweight handheld OCT probe allows a clinician to interrogate tissue characteristics at 
different anatomical locations [5, 6]. Therefore, handheld OCT imaging instrument is 
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palpation of the tissue with great convenience and flexibility. Moreover, fiber optic OCE 
instruments can be integrated into a needle device, further delivering the capability of 
mechanical characterization to tissue that is deeply embedded. However, the major challenge 
for manual OCE characterization of tissue is the unpredictable and unstable motion within the 
tissue. The deformation of the sample under the known pattern of mechanical excitation can 
be reliably tracked by analyzing OCT signal. In conventional compression OCE 
measurement, the sample has a well-defined geometry and undergoes quasi-static 
compression. Alternatively, the mechanical excitation can be impulse or sinusoidal function 
[22, 23]. In previous studies of 1D or 3D OCE for the mapping of mechanical properties, an 
actuator was often used to deform the sample. However, the need to use an actuator for 
mechanical loading limits the development of a light-weight and compact OCE probe. For a 
handheld, manually actuated OCE instrument, it is challenging to impose mechanical 
excitations that are quasi-static, impulse or sinusoidal. The manual loading process often 
generates a motion speed that varies with time. The quality of in vivo OCE signal is also 
affected by involuntary motion from the subject and from the user who holds the probe. In 
addition, the sample deforms under compression, implying spatial variation of motion 
characteristics. Our software approach of adaptive Doppler analysis enables 1D OCE 
measurement based on a manual loading process, and allows the acquisition of high quality in 
vivo OCE signal from a handheld probe. 

Motion tracking in OCE can be achieved through Doppler analysis or speckle 
decorrelation analysis. Speckle analysis has a smaller dynamic range and is more appropriate 
to track motion with larger magnitude [24, 25]. In this study, Doppler analysis is used to 
quantify the axial motion speed and displacement. A simple and effective method for 
temporally and spatially adaptive Doppler analysis is investigated here. The adaptive Doppler 
analysis method strategically chooses the time interval (δt) between signals involved in 
Doppler analysis, to track the motion speed v(z,t) that varies temporally in a manual 
compression process and spatially in a deformed sample volume. The method is validated in 
an OCE system with a handheld single fiber probe and real-time signal processing software 
based on graphic processing units (GPU). To achieve robust motion tracking, we calculate 
high density (HD) Doppler phase shift that is most unlikely to have phase wrapping artifact 
and average the HD Doppler signal to estimate the speed of axial motion from which we 
derive a time interval to achieve a large yet artifact free Doppler phase shift. The premise of 
this method is that (1) directional motion affects larger scale characteristics of the Doppler 
signal and can be estimated through averaging; (2) noise characteristics in estimated Doppler 
phase shift are independent of the time interval δt while the signal due to directional motion 
does. Enabled by high signal acquisition and processing speed, we perform an online 
estimation of the motion speed, select an optimal δt adaptively, and perform robust motion 
tracking for OCE measurement. 

The manuscript describes the first handheld fiber optic instrument that allows in vivo real-
time OCE characterization, to the best of our knowledge. The manuscript is organized as 
follows. First, we introduce the principle of the adaptive Doppler analysis method. 
Afterwards, the imaging system and data acquisition are described. We then show results 
obtained from phantom experiments and in vivo tissue characterization, to demonstrate the 
effectiveness of the adaptive Doppler analysis for motion tracking in a dynamic manual 
loading process. 

It is worth mentioning that we do not intend to extract quantitative mechanical properties 
of the sample through OCE measurement in this study. Instead, we acquired one dimensional 
data to reveal depth resolved sample displacement. By observing the variation of the 
displacement, particularly the slope, mechanical contrast of the sample can be revealed. The 
spatial variation of stress, 3D nature of displacement, as well as viscoelastic behavior of the 
sample are not considered. Moreover, OCE is referred to the application of OCT technology 
for mechanical characterization. In this manuscript, OCE signal indicates depth resolved 
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displacement of the sample under compression, although the strain (derivative of 
displacement) is more directed related to the mechanical properties of the sample. 

2. Principle for adaptive Doppler analysis 

In OCE characterization, the loaded sample deforms and has displacement dependent on 
spatial location (δL(z)). With local displacement δL(z) extracted by analyzing OCT signal, 
localized axial strain, the spatial derivative of the displacement (Eq. (1)), is calculated as the 
surrogate of sample stiffness. For sampled discrete OCT image, local strain can be estimated 
either through finite difference approach or least square estimation. 

 ( ) ( )d
z L z

dz
ε δ=     (1) 

It is worth mentioning that the motion within a deformed sample under axial compression 
is generally 3D with axial and lateral components. However, Doppler phase analysis is only 
sensitive to axial motion. Therefore, motion in transverse plane is not considered in this 
study, as in most previous OCE studies based on Doppler analysis. Furthermore, our 
measurement geometry has cylindrical symmetry, and the light beam propagates along the 
axis of cylindrical symmetry. Hence the lateral displacement of an isotropic sample seen by 
the incident light beam is expected to be minimum. 

To obtain 1D depth resolved OCE signal (δL(z)), Doppler phase shifts between OCT A-
scans are calculated. Consider the OCT signal with complex value at the kth pixel at depth kδz 
of an A-scan (mth A-scan) and that at the kth pixel of another A-scan ((m + Δk,m)th A-scan). 
Here δz indicates the depth sampling interval by individual pixels in an A-scan. A non-zero 
Doppler phase shift (δφk,m = δφ(kδz,mT0)) is expected because of axial displacement at depth z 
= kδz within the time interval δt = Δk,mT0, where T0 indicates the time interval between the 
acquisitions of adjacent A-scans. δφk,m is linearly related to the speed of axial motion vk,m 
(assuming a constant axial motion within the observation time: vk,m = v(kδz,mT0) at depth kδz 
within time interval from mT0 to (m + Δk,m)T0, as shown in Eq. (2) where λ0 is the central 
wavelength of the light source [26]. 

 , , , 0
,

0 0

4 4k m k m k m
k m

v t v Tδ
δφ π π

λ λ
Δ

= =  (2) 

The Doppler phase shift δφk,m is calculated using Eq. (3) [27], where Ik,m = I(kδz,mT0) 
indicates the complex OCT signal at the kth pixel of an A-scan obtained at time mT0; Ik,m + Δ(k,m) 
= I (kδz,(m + Δk,m)T0) indicates the complex OCT signal at the kth pixel of an A-scan obtained 
at time (m + Δk,m)T0; atan(·) indicates to take the arctangent; Im(·), Re(·) and (·)* indicate to 
take the imaginary part, the real part and the complex conjugate of a complex value. 

 
( )
( )

,

,

*
, ,

, *
, ,

Im
ˆ tan

Re

k m

k m

k m k m

k m

k m k m

I I
a

I I
δφ

+Δ

+Δ

 
 =
 
 

 (3) 

The relationship between the estimated Doppler phase shift δ ,k̂ mφ  and the actual phase 

shift δφk,m due to directional motion is shown in Eq. (4), where nk,m is the random phase noise 
deriving from various noise sources in OCT measurement (shot noise, thermal noise, excess 
noise, speckle noise, etc). On the other hand, Nk,m is an integer and is non-zero when 

|δφk,m|>π/2: Nk,m = . 
( ), , 2k m k msign

πδφ δφ

π

+
 Here     indicates to take the integer part of a real 

number. In other words, for |δφk,m|>π/2, δ ,k̂ mφ  fails to provide an unbiased estimation of δφk,m, 

which is known as the phase wrapping artifact. Phase wrapping artifact arises, because the 
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arctangent (atan) function used to calculate the phase shift in Eq. (3) does not have the ability 
to differentiate an arbitrary phase shift δφk,m and δφk,m + Nk,mπ [28,29]. Clearly, Nk,m depends 
on time (t = mT0) and spatial location (z = kδz). 

 , , , ,k̂ m k m k m k mN nδφ δφ π= − +  (4) 

With the Doppler phase obtained using Eq. (3), we will be able to estimate the speed of 

axial motion: ,k mv  = 0

0 ,
,

ˆ
4 k m

k mT

λ δ
π

φ
Δ

 for the kth pixel in the mth A-scan, and further estimate 

the depth resolved displacement (δ  kL  = δ L (kδz)) over the entire compression process: δ

 ( ), 0
1

M

k k m

m

L v T
=

=   where M indicates the total number of A-scans acquired during the sample 

compression process. δ  kL  can thus be expressed using Eq. (5). 

 0 0
, ,

1 1, ,

ˆ
4 4

M M

k k k m k m
m mk m k m

L L N n
λ λδ δ

π= =

   
= − +      Δ Δ   

   (5) 

On the right hand side (RHS) of Eq. (5), the first term represents the actual displacement; 
the second term represents the phase wrapping artifact and the third term denotes the 
contribution from random phase noise. To improve the sensitivity, SNR and dynamic range 

for OCE characterization, it is desirable to have a smaller variance (Var(δ  kL -δLk)) for the 
estimated displacement. It is assumed that nk,m (m = 1, 2, 3, …, M) is Gaussian, and 
independent in different A-scans. The variance of nk,m is shown in Eq. (6), where SNR is the 
signal to noise ratio of the OCT signal and β is a constant [30–32]. With the above 
assumption and with Nk,m≡0, the variance in displacement tracking is given by Eq. (7). 

 ( ),

1
k mVar n

SNR
β=  (6) 

 ( ) ( )
2

0
,

1 ,4

M

k k m
m k m

Var L Var n
λδ

π=

 
=   Δ 
  (7) 

In Eq. (7), λ0 depends on the OCT system used for the imaging study; M depends on the 
time period of the sample loading process; Var(nk,m) is determined by the OCT system as well 
as the optical characteristics of the sample. Hence Δk,m is the only parameter that can be varied 
to improve the displacement tracking, and noise in displacement tracking for a given 
compression process can be reduced with a larger value of Δk,m. 

On the other hand, for unbiased displacement tracking, it requires Nk,m≡0. Therefore, the 
time interval between A-scans used for Doppler phase calculation (δt = Δk,mT0) has to be 
sufficiently small, such that |δφk,m| = |4πvk,mΔk,mT0/λ0|≤ π/2. To prevention phase wrapping 
artifact in Doppler analysis, the following condition has to be satisfied. 

 0
,

, 08k m
k mv T

λ
Δ ≤  (8) 

Equation (8) implies the optimal choice of Δk,m depends on the speed of the motion (vk,m). 
For a handheld OCE instrument used to exert manual compression, the motion speed within 
the sample depends on the depth because the sample is axially deformed. The motion speed 
also varies as time due to the non-constant compression speed. Therefore, vk,m = v(kδz,mT0) 
and there is a need to have a time interval adaptive to the spatial location and time (δt(z,t) = 
Δ(kδz,mT0)T0 = Δk,mT0 where Δk,m is an integer) for Doppler analysis. In other words, different 
values are chosen for Δk,m at different depth (z = kδz) and at different time (t = mT0) (Fig. 2(a) 
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part of a rational number. With the estimated motion speed, the Doppler phase shift 

accumulated within a time interval δt is thus 
,

0

4
k mvπ
λ


δt. As discussed above, it requires |

,

0

4
k iv

tπ δ
λ


 |≤ 

2

π
 to prevent phase wrapping from happening. For discrete OCT signal, δt = 

δtk,m = Δk,mT0 where the integer Δk,m can be obtained by (9) with W>1. W is a coefficient that 
we introduce to scale the magnitude of phase shift δφk,m with regard to π/2, to make sure that 
δφk,m is large enough while free of phase wrapping artifact. Δk,m is assigned to have a value of 
1, if the result obtained by Eq. (9) is smaller than 1. Moreover, to calculate phase shift using 
A-scans within the same frame of OCT data, it requires Δk,m to be smaller than M0/2. If the 
value calculated using Eq. (9) is larger than M0/2, Δk,m = M0/2. 

 

( )( )0

0

0
,

, 11
ˆ2

k m M

k j i Mj

M

W

π

δϕ + −=

 
 Δ =  
  

 (9) 

Notably, we choose the value of W to be larger than 1, such that the method is robust 
against phase wrapping when phase noise exists. As validated in previous studies including 
our recent work [30–32], the level of phase noise in the OCT imaging system is inversely 
proportional to the signal to noise ratio (SNR) of amplitude OCT signal. Consider a shot noise 
limited OCT system with noise level determined by the power of reference light. For such an 
OCT system, the phase noise is small for a sample that generates large amplitude OCT signal 
and the value of W can be close to 1. In comparison, the phase noise is large for a sample that 
generates small amplitude OCT signal and the value of W has to be sufficiently larger than 1. 
In this study, other than specifically mentioned, W = 2 for the calculation of adaptive time 
interval for Doppler analysis. 

Using adaptively determined time interval for Doppler analysis (δtk,m = Δk,mT0 with Δk,m 

obtained from Eq. (9)), Doppler phase shift (δ φ k,m) between A-scan pairs Ik,m and Ik,m+Δ(k,m) is 

calculated according to Eq. (3). δ φ k,m is then converted to the incremental displacement (δlk,m 

= (λ0


k,mδφ )/(4πΔk,m)). Therefore, the displacement accumulated over the entire compression 

process with M A-scans acquired is calculated for a specific depth (kth pixel) during the entire 

compression process: δLk = ( ),1

M

k mm
lδ

= . By calculating the displacement within the entire 

compression process, M Doppler phases are averaged and the value of M is several orders of 
magnitude larger than 1. Therefore, the displacements obtained are orders of magnitude larger 
than the wavelength of the light source (Figs. 6, 8, 9–11). With depth resolved displacement, 
we then estimate the depth resolved strain of the loaded sample to evaluate its stiffness. 

In summary, we have implemented the adaptive Doppler analysis illustrated in Fig. 3 in 
real-time through GPU accelerated parallel computation. The software acquires spectral 
interferograms frame by frame, performs fast Fourier transform on the spectral 
interferograms, calculates the HD Doppler phase shift to estimate the speed of axial motion, 
adaptively determines the optimal time interval for each frame of OCT data to perform 
Doppler analysis, and tracks depth resolved displacement for sample mechanical 
characterization. 
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with vmotor = 0.1mm/s) are free of phase wrapping artifact for the same δt. Figure 5(a) suggests 
that the selection of time interval for Doppler analysis has to be adaptive to the mechanical 
excitation, i.e., the translation speed of the compressor during OCE characterization. In 

addition, the phase calculated using Eq. (3) also fluctuates randomly due to noise. Using  jδφ  

(δt) obtained, we assessed the random noise of the estimated Doppler phase σφ(δt) = 

 ( )  ( )0
2

1
0

1
 

1

M

jj
t t

M
δφ δ δφ δ−Δ

=
 − − Δ −  , for phase obtained with different time intervals (δt 

= ΔT0). σφ(δt) are shown in Fig. 5(b) as blue (vmotor = 0.2mm/s) and red (vmotor = 0.1mm/s) 
curves. A peak can be observed in the blue signal in Fig. 5(b), because Doppler signal varies 
drastically when phase wrapping appears (blue signal in Fig. 5(a)). Other than the peak due to 
phase wrapping, the noise in Doppler phase estimation remains approximately constant for 
different values of δt. This is because random phase variation in OCT signal originates from 
factors (noise in OCT measurement and random environmental perturbations) that can be 
considered as temporally independent and identically distributed random variables, as 
indicated by Eq. (6). Therefore, the results of Doppler analysis are expected to have a similar 
level of noise, despite different time interval of δt. According to Eq. (7), a larger value of Δk,m 
is desirable to achieve a reduced error in displacement tracking, because the phase noise does 
not increase with time (Fig. 5(b)) while the phase shift due to directional motion increases 
with time (Fig. 5(a)). 

In addition, the displacement within the sample under OCE characterization varies as 
spatial location due to the sample deformation under compression. The deformation is 
quantified as axial strain (Eq. (1)) to reveal the mechanical properties of the sample. 
Therefore, Doppler analysis also has to be adaptive to the spatial location. To demonstrate 
this, one frame of OCT data acquired in the above described experiment (vmotor = 0.2mm/s) 
was analyzed. We calculated Doppler phase shift between pixels at depth z = 1mm, as well as 
Doppler phase shift at a smaller depth (z = 0.5mm). The mean Doppler phase shifts for 
different δt are shown in Fig. 5(c) as blue (z = 1mm) and red (z = 0.5mm) curves. Similar to 
results shown in Fig. 5(a), the Doppler phase shift in Fig. 5(c) initially increases linearly with 
δt. For Doppler phase shift calculated for a larger depth (blue curve in Fig. 5(c) corresponding 
to z = 1mm), phase wrapping artifact arises when δφ approaches and exceeds π/2. In 
comparison, data obtained from a smaller depth (red curve in Fig. 5(c) with z = 0.5mm) are 
not affected by phase wrapping artifact for the same range of time interval. Therefore, it is 
necessary to select time interval adaptive to spatial location for Doppler analysis for robust 
Doppler analysis. Using the same set of OCT data obtained with vmotor = 0.2mm/s, we also 
evaluated the random noise for Doppler phase shift for different depths. The results are shown 
in Fig. 5(d) as blue (z = 1mm) and red (z = 0.5mm) curves. Despite a peak observed in the 
blue curve due to the phase wrapping, the Doppler signals show a constant noise level for 
different values of δt. 
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5. Conclusion and discussion 

In summary, we developed and validated a Doppler analysis method that is adaptive to time 
and spatial location, for robust manual OCE characterization based on a handheld instrument. 
Enabled by this adaptive Doppler tracking strategy, real-time, manual mechanical 
characterization of in vivo tissue was demonstrated for the first time to the best of our 
knowledge. 

It is worth mentioning that our goal is to reveal local mechanical contrast of the tissue 
(Fig. 11(b), Fig. 12(c) and 12(f)). Absolute measurement of tissue mechanical properties in 
vivo is a much more challenging task. Quantification of tissue mechanical property requires to 
know the 3D spatial distribution of the stress and the strain. In addition, the measurement 
boundary condition determined by the probe as well as the sample structure/heterogeneity has 
to be known. Moreover, for biological tissue that is generally viscoelastic, the force and 
displacement generated in the compression process depends not only on the intrinsic 
properties of the tissue but also on the dynamic loading process. However, quantitative 
measurement of tissue mechanical properties is beyond the scope of this study. Doppler 
analysis only tracks motion in axial direction. Therefore, we simply used the slope of axial 
displacement to represent the magnitude of sample deformation. We also assumed the stress 
to have a uniform spatial distribution. Hence the displacement has a linear dependency on the 
depth within a mechanically homogeneous volume from which OCT signal is acquired. This 
is validated by our experimental data (Fig. 9). Currently, we neglect the viscoelastic behavior 
of the sample. Without force/stress quantification, the strain was used as a surrogate for the 
stiffness of the sample. Despite the above simplifications, our measurement has the capability 
to reveal local mechanical heterogeneity, as shown in Fig. 11(b), Fig. 12(c) and Fig. 12(f). 

To improve the dynamic range of Doppler tracking, previous effort has been focused on 
tracking fast motion, through unwrapping algorithm or exciting the sample with a crawling 
wave [34]. However, when the Ascan acquisition rate was high and the manual compression 
speed was slow, it is essential to track small Doppler phase shift that might be overwhelmed 
by random phase noise. Therefore, our method improves the dynamic range of motion 
tracking mainly by using a longer time window (Δk,m>1) to track slow motion. Consider the 
smallest measurable motion speed (vmin) to be equivalent to the noise magnitude in speed 
estimation. With Eqs. (6) and (7), we can estimate the minimal speed for the compression 
process, and vmin takes its smallest value when Δk,m takes its largest value (Δk,m = M0/2). 

Assuming constant SNR, we have: 0

0 02minv
M T SNR

λ β
π

= . On the other hand, a smaller Δk,m 

is selected for a greater motion speed until phase wrapping artifact arises. When the Doppler 

analysis is performed with Δk,m = 1 and is just free of phase wrapping (|δ  ,k mφ | = π/2), the 

maximum trackable motion speed is 0

08maxv
T

λ
= . The dynamic range (DR

max

min

v

v
= ) in Doppler 

motion tracking (axial speed) is thus 
( )0 / 2

2

MSNR
DR

π
β

= . Compared to non-adaptive 

Doppler tracking (DR = 
2

SNR π
β

), the adaptive Doppler analysis achieves a M0/2 fold 

improvement in the dynamic range for motion tracking, where M0 is the number of A-scans in 
a frame of OCT data acquired. In our experiments, M0 = 1024, suggesting a 512 fold 
improvement in linear dynamic range for motion tracking. With our camera running at its 
highest data acquisition rate (92kHz), a central wavelength of the light source of 1.3μm, β in 
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Eq. (6) to be 3 [32], minv  is approximately 0.003mm/s and maxv  is approximately 120mm/s, 

which provides a sufficient dynamic range to track manual compression process. 
The adaptive motion tracking method described here uses a longer time window (Δk,m>1) 

to observe the change of signal by calculating the Doppler phase shift. This allows more 
accurate quantification of the motion but also reduces the temporal resolution of the 
measurement. However, with the assumption of quasi-static compression on elastic sample, 
we only consider the final accumulated displacement within the sample. Therefore, the 
compromised temporal resolution does not affect the characterization of local mechanical 
heterogeneity. 

The potential benefit of using non-adjacent Ascans for Doppler analysis was noted by 
Adie et al [35]. However, in [35], there lacked detailed discussion and experimental 
validation for adaptive Doppler analysis. The authors of [35] either varied the data acquisition 
rate to track motion within the sample at different excitation frequencies, or chose sampling 
interval to be 1 or 2 depending on the known excitation frequency. The study described in this 
manuscript offers a practical solution for robust OCE characterization through a simple 
handheld device. 

Compared to Eq. (3) that extracts Doppler phase using two-quadrant arctangent, the 
maximum phase free of phase wrapping artifact can be doubled by using four-quadrant 
arctangent function. Two-quadrant arctangent function was adopted in this study to simplify 
algorithm implementation for the analysis of noisy signal. Consider a complex OCT signal 
I(t). To obtain Doppler phase shift δφ within a time interval δt, Z(t) = I(t + δt)I*(t) = X + jY is 

calculated and δφ is estimated using the inverse of the tangent function: δ φ = tan−1(Y/X). The 

inverse of the tangent function can be obtained using either two-quadrant arctangent 
atan(Y/X), or four-quadrant arctangent (atan2(Y,X)) that calculates atan(Y/X) and uses the 
signs of both arguments to determine the quadrant of the resultant phase. Four-quadrant 
arctangent function is based on two-quadrant arctangent and hence has similar noise 
characteristics. When X is small and Y is significantly larger, the absolute value of atan(Y/X) 
is close to π/2 and can be overwhelmed by noise, because the small value (X) in the 
denominator effectively amplifies the noise. Therefore, when atan is used to extract δφ, two 
Ascans are chosen to generate a Doppler phase shift (absolute value) that is sufficiently 
smaller than π/2 to prevent phase wrapping artifact as well as amplified noise. When atan2 is 
used to achieve improved performance of Doppler analysis, the desirable Doppler phase shift 
(absolute value) has to be sufficiently larger than π/2 to prevent amplified noise and has to be 
sufficiently smaller than π to prevent phase wrapping artifact. Therefore, with Doppler phase 
shift calculated using four-quadrant arctangent function, the choice of time interval between 
Ascans depends on the noise of the amplitude OCT signal and is a non-trivial task. 
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