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Medium- and high-intensity rTMS reduces
psychomotor agitation with distinct
neurobiologic mechanisms
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Abstract

Definitive data are lacking on the mechanism of action and biomarkers of repetitive transcranial magnetic stimulation
(rTMS) for the treatment of depression. Low-intensity rTMS (LI-rTMS) has demonstrated utility in preclinical models of
rTMS treatments but the effects of LI-rTMS in murine models of depression are unknown. We examined the behavioral
and neurobiologic changes in olfactory bulbectomy (OB) mice with medium-intensity rTMS (MI-rTMS) treatment and
fluoxetine hydrochloride. We then compared 10-Hz rTMS sessions for 3 min at intensities (measured at the cortical
surface) of 4 mT (LI-rTMS), 50 mT (medium-intensity rTMS [MI-rTMS]), or 1T (high-intensity rTMS [HI-rTMS]) 5 days per
week over 4 weeks in an OB model of agitated depression. Behavioral effects were assessed with forced swim test;
neurobiologic effects were assessed with brain levels of 5-hydroxytryptamine, brain-derived neurotrophic factor
(BDNF), and neurogenesis. Peripheral metabolomic changes induced by OB and rTMS were monitored through
enzyme-linked immunosorbent assay and ultrapressure liquid chromatography-driven targeted metabolomics
evaluated with ingenuity pathway analysis (IPA). MI-rTMS and HI-rTMS attenuated psychomotor agitation but only MI-
rTMS increased BDNF and neurogenesis levels. HI-rTMS normalized the plasma concentration of a-amino-n-butyric
acid and 3-methylhistidine. IPA revealed significant changes in glutamine processing and glutamate signaling in the
OB model and following MI-ITMS and HI-rTMS treatment. The present findings suggest that MI-rTMS and HI-rTMS
induce differential neurobiologic changes in a mouse model of agitated depression. Further, a-amino-n-butyric acid
and 3-methylhistidine may have utility as biomarkers to objectively monitor the response to rTMS treatment of
depression.

Introduction elucidating mechanisms of action and contributes to

Repetitive transcranial magnetic stimulation (rTMS) has
been used clinically since 2008 for treatment-resistant
major depressive disorder. The virtually infinite parameter
space of dosing rTMS (e.g., coil geometry, coil position,
focality, intensity, frequency, session length, session
number, and brain state) magnifies the challenges of
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diverse clinical outcomes. Notwithstanding their limita-
tions, animal and preclinical models are key tools in
refining the mechanistic understanding and optimal sti-
mulus dosing approach for rTMS in major depressive
disorder. In many rodent models, the focality of human
rTMS cannot be appropriately reproduced because even
the smallest animal coil stimulates a large portion of the
brain'. However, coils that achieve focality but at a lower
intensity enable the mechanistic study of low-intensity
rTMS (LI-r'TMS). Low-intensity rTMS may modulate
cortical excitability in the frontal cortex of humans,
thereby addressing clinical psychiatric symptoms.
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Furthermore, preclinical LI-rTMS protocols may model
the perifocal effects of standard clinical rTMS*™.

The present study examined a mouse olfactory bul-
bectomy (OB) model to investigate differential effects of
rTMS stimulation intensities on depression-related
behaviors and neurobiologic characteristics. The OB
model was selected because removal of the olfactory bulbs
results in modulation of downstream connections with
such limbic structures as hippocampus, amygdala, habe-
nular nuclei, and raphe dorsalis, inducing reproducible
behavioral changes that are associated with depression®”.
In addition, aspects of these behavioral changes, including
hyperactivity or psychomotor agitation in the forced swim
test (FST)*'°, anhedonia'''?, neurocognitive impair-
ment'?, and anxiety'* reflect the symptoms of agitated
depression in humans, which often shows poor respon-
siveness to pharmacologic treatment'”™'®. We investi-
gated brain markers of plasticity (i.e., brain-derived
neurotrophic factor [BDNF] and hippocampal neurogen-
esis), brain serotonin, and plasma metabolites in an
attempt to better understand how the cellular and mole-
cular effects of rTMS intensity relate to behavioral
outcomes.

The study design was motivated by an unmet need for
preclinical dose-finding studies of rTMS for treatment-
refractory phenotypes and special clinical populations.
First, we examined the behavioral and neurobiologic
changes in OB mice with medium-intensity rTMS (MI-
rTMS) treatment and fluoxetine hydrochloride. We then
compared the same outcomes following three different
intensities of rTMS to gain insight into relevant neuro-
biologic mechanisms among variable intensities. Finally,
we extended our results by analyzing serum samples for
potential biomarkers of depression-like behavior in the
OB model and recovery induced by rTMS. We hypothe-
sized that high-intensity rTMS would have the greatest
behavioral and neurobiologic impact on an OB model of
an agitated, treatment-refractory depression.

Materials and methods
Study overview

To examine behavioral (FST) and frontal cortex 5-
hydroxytryptamine (5HT) changes, we first compared
mice treated with rTMS, fluoxetine, and their respective
controls. These five groups included mice undergoing a
sham surgery and receiving sham rTMS (# =11), mice
undergoing OB and sham rTMS (# = 9), mice undergoing
OB and MI-r'TMS (# =11), mice undergoing OB treated
with fluoxetine (n =9), and mice undergoing OB treated
with a vehicle (n=9). 5HT changes were measured in
subsets of these mice. In a second set of experiments,
mice undergoing a sham surgery and sham rTMS (n =
11), OB mice treated with sham rTMS (z = 12), OB mice
treated with LI-rTMS (# = 16), OB mice treated with MI-

Page 2 of 13

Table 1 Overview of experiment 1 and 2 sample sizes
Experiment 1 FST S5HT
SHAM/SHAM n=11 n=>5
OB/SHAM n=9 n=3
OB/MI-ITMS n=11 n=>5
OB/Flu n=9 n=4
OB/Veh n=9 n=4
Experiment 2 FST BDNF  Neurogenesis  Metabolomics
SHAM/SHAM n=11 n=>5 n=4 n=4
OB/SHAM n=12 n=38 n=4 n=9
OB/LI-ITMS n=16 n=7 n=7 n=11
OB/MI-ITMS n=13 n=8 n=>5 n=10
OB/HI-ITMS n=15 n=7 n==6 n=9

BDNF brain-derived neurotrophic factor, 5HT 5-hydroxytryptamine, Flu fluox-
etine, FST forced swim test, HI-rTMS high-intensity repetitive transcranial
magnetic stimulation, LI-rTMS low-intensity repetitive transcranial magnetic
stimulation, MI-rTMS medium-intensity repetitive transcranial magnetic stimula-
tion, OB olfactory bulbectomy, Veh vehicle

rTMS (n =13), and OB mice treated with HI-r'TMS (z =
15) had FST testing. Frontal cortex and hippocampal
BDNF, hippocampal neurogenesis, and plasma metabo-
lomic studies were conducted in subsets of these treated
mice. Table 1 provides an overview of sample sizes. All
post-mortem tests and video analyses were blinded.

Study animals

C57BL/6] mice (male sex, aged 8 weeks at start of
experiment) were group-housed and maintained under a
standard 24-h light-dark cycle (e.g., lights on 0600 and
lights off 1800) with ad libitum access to food and water.
Each cage contained up to five animals. Mice with
aggressive behaviors after OB were moved to separate
housing. Housing and bullying were taken into account in
statistical analyses. All procedures were approved by the
University of Western Australia animal ethics committee
(RA03/100/1298) and conformed to US National Insti-
tutes of Health guidelines. Experimental design and
timeline are shown in Fig. 1a.

Olfactory bulbectomy

OB was performed according to several previously
established surgical protocols'*'*~*!, Briefly, mice were
anesthetized with intraperitoneal injection of ketamine
(75 mcg/kg; Troy Laboratories Pty Ltd, USA) and mede-
tomidine (1 mg/kg; Troy Laboratories Pty Ltd, USA). A
midline incision was made in the skin overlying the skull,
and the skin was retracted to reveal the bregma and skull
overlying the anterior cranial fossa. Bilateral burr holes
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Fig. 1 Overview of experimental design. a Study design showing timeline and control groups. Study design showing timeline and control groups.
Mice received olfactory bulbectomy (OB) or a sham procedure (surgery with olfactory bulbs left intact). Following a 2-week recovery, Mice that had
OB underwent 3-min sessions of 10-Hz LI-rTMS (b—d), MI-rTMS (e—g), or HI-'TMS (h—j) 5 days per week over 4 weeks, or received fluoxetine daily
(18 mg/kg in cookie dough). Treatment lasted 4 weeks, and some animals received an injection of EdU at the midpoint. Mice underwent behavioral
testing before OB, before treatment, and after treatment. Mice were killed humanely at 24 h after the last treatment, and post-mortem serum samples
were collected immediately. Brains were prepared for enzyme-linked immunosorbent assay (ELISA) or EdU histologic evaluation. Behavioral effects
were assessed with the forced swim test. Neurobiologic effects were assessed with brain levels of 5-hydroxytryptamine, brain-derived neurotrophic
factor, and neurogenesis. Peripheral metabolomic changes induced by OB and rTMS were monitored using ELISA and targeted metabolomics driven
by ultrapressure liquid chromatography that was evaluated with ingenuity pathway analysis. D day; EJU 5-ethynyl-2’-deoxyuridine (Thermo Fisher
Scientific), rTMS repetitive transcranial magnetic stimulation. Measured magnetic field intensity profiles (in dB/dT and mT) at 2 mm beneath the coil
surface (equivalent to cortical surface) for coils used to deliver d low-intensity (LI-r'TMS), g medium-intensity (MI-rTMS), and j high-intensity (HI-rTMS).
Additional information about magnetic field intensity parameters is provided in supplementary information

2mm in diameter were drilled in the skull 4 mm rostral
and 2mm lateral to bregma. The olfactory bulbs were
aspirated, and small pieces of hemostatic sponge were
used to stop the bleeding before the skin was sutured.
Animals receiving a sham operation were treated identi-
cally, but the olfactory bulbs were left intact. Following
surgery, animals were returned to their home cage. All
animals had a 2-week recovery before starting fluoxetine
hydrochloride or rTMS treatment. During the second
week, all mice were handled daily for 10 min to habituate
the animals to the handling associated with rTMS
treatment.

Repetitive transcranial magnetic stimulation

rTMS was delivered daily on weekdays for 3 minutes, to
deliver 1800 pulses per session, for 4 weeks (Fig. 1la—j).
Detailed specifications of the custom coils and stimulators
have been published previously”>*® and parameters are
described briefly herein. For LI-r'TMS, a custom-design
copper coil (diameter, 8 mm) was connected to a modified
E-cell (Global Energy Medicine, Australia). Magnetic field
intensity at the coil base was ~12 mT??, and at the cortical
surface was 4 mT. For MI-rTMS, a custom-designed air
core copper coil (diameter, 8 mm) was controlled by a
waveform generator (335141B; Agilent Technologies,
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USA) connected to a bipolar programmable power supply
(BOP 100-4 M; Kepco Inc, USA). Magnetic field intensity
at the coil base was approximately 90 mT>* and at the
cortical surface was 50 mT. For HI-rTMS, a commercially
available rat coil (Cool-40 Rat Coil; MagVenture A/S,
Denmark) with a 40-mm diameter was used, powered by a
MagPro R30 stimulator (MagVenture A/S, Denmark) set
to 20% of capable output (Magnetic field intensity coil
surface: 1.2 T; cortical surface: 1.0 T). The peak magnetic
field adjacent to the coil was measured with a Hall-effect
probe (SS94A2D; Honeywell International Inc, USA).
Sham-treated animals were handled as if receiving treat-
ment, but the stimulator was not turned on. During
treatment, the coil was placed in an anterior position
between the ears, overlying the anterior cranial fossa to
reliably target the frontal cortex bilaterally (Fig. 1b, e, h).
Magnetic field measurements (in dB/dT and mT) for each
coil are shown in Fig. 1. A discussion of the magnetic field
intensities used in relation to human rTMS parameters is
provided in supplemental information (Supplemental
Text and Table 1).

Fluoxetine treatment

Fluoxetine (Sigma-Aldrich) 18 mg/kg was administered
daily for 28 consecutive days, delivered in portioned balls
of cookie dough**. Mice were monitored individually to
ensure they had eaten the full quantity. Control mice
(called vehicle group) received the same handling and
were given a ball of cookie dough without fluoxetine.

Ingenuity pathway analysis

Metabolites identified by targeted metabolomics were
uploaded into ingenuity pathway analysis (IPA; Qiagen,
Redwood City, CA) for stratification and categorization of
direct and indirect network interactions using IPA’s
functional analysis algorithm and curated IPA ingenuity
knowledge base (IPAIKB). IPA is a web-based software
application that allows for the analysis, integration, and
interpretation of omics datasets by utilizing known
molecular and genetic pathways and established rela-
tionships with cellular processes and metabolites. We
utilized this integrative database in order to identify
pathways and processes affected by bulbectomy and
multiple rTMS parameters. Prior to entry into IPA, each
dataset of identified metabolites was sorted by Chemical
Abstract Service (CAS) number. A metabolomics analysis
was carried out using default IPA settings, excluding
pathways specific to cancer cell lines. To minimize the
incidence of false positive results, expression value
threshold filters were set to a 1.25 fold-change ratio
between bulbectomized and sham-operated animals with
a minimum corrected confidence value of P<0.05. The
threshold filter for analysis of rTMS treatment was set at
1.5 fold-change ratio between treated and untreated
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groups. Using these criteria, IPA was able to generate a
reference dataset consisting of all significant and non-
significant metabolites identified in sham-treated animals
and animals treated with various intensities of rTMS, as
well as a focus set of metabolites consisting of those
present in significantly different levels than the reference
dataset. Biological functions, disease states, and canonical
pathways associated with our reference and focus set of
metabolites were generated by IPA. The IPA functional
analysis generated statistical significances derived from
the association of our focus metabolite datasets with
molecules already established with biological processes
and canonical pathways using a right-tailed Fisher’s exact
test, where P <0.05 was considered significant.

Data analysis

Statistical analysis and graphing were carried out using
GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA).
Behavioral measures, brain 5SHT and BDNF levels, and the
number of proliferating cells were analyzed using
ANOVA or MANOVA with Sidak post hoc or Dunnett’s
T. For forced swim test data, we analyzed treatment
effects within-subjects, expressed as the difference
between post-surgery and post-treatment scores. All data
met the homogeneity of error variance assumption, except
for BDNF frontal cortex data, which were log transformed
and then met assumptions.

The intensity-dependent effects of rTMS on plasma
metabolites were analyzed by one-way ANOVA with
Tukey’s post-hoc analysis. IPA was carried out by aver-
aging the metabolite concentrations under each treatment
parameter and comparing these mean values to the
average metabolite concentration of the relevant control
group in order to calculate the fold-change in metabolite
concentration. We also investigated possible correlations
between FST performance and BDNF levels, neurogenesis
and metabolite levels. The threshold for statistical sig-
nificance for all experiments was set at P <0.05 except
where corrected P-values were used and these cases are
indicated in the text.

Power calculations from the first set of behavioral (FST)
data including MI-rTMS and fluoxetine demonstrated
that n = 4 (per group) would provide 0.8 power to detect a
15% differences (P < 0.05) in a one-way ANOVA with four
pairwise comparisons, with two-sided equality.

All animals underwent behavioral testing and were then
randomly allocated to a particular type of post-mortem
test. We assumed that the post-mortem tests would be
less variable than behavioral tests, so animals were allo-
cated to various tests to ensure that each group size was a
minimum of # = 4. The variation in group size was due to
our efforts to reconcile randomizing animals from dif-
ferent surgery sessions, technical and timing requirements
of experiments, a small number of experimental failures,
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and attempting to keep group size within experiments as
similar as possible. Only one group (OB-Sham for 5HT
ELISA) was smaller than 4, but that dataset had low
variability, and a subsequent power analysis confirmed
that the sample size provided 0.9 power.

Supplemental Information

The Supplemental Appendix describes an estimate of
motor thresholds for each rTMS intensity, 5-ethynyl-2'-
deoxyuridine (EdU; Thermo Fisher Scientific) labeling of
newly born cells, behavioral analysis, and brain and serum
collection. The Supplemental Appendix also summarizes
serotonin and BDNF enzyme-linked immunosorbent
assays, analysis of neurogenesis, and metabolomics.

Results
Tolerability

rTMS at all intensities was well tolerated by the mice
and there was no sign that the animals felt any sensations
during the stimulation and no seizures, freezing, or
avoidance behaviors were noted for any of the intensities
applied. Furthermore, there were no signs of ongoing pain
or discomfort following the stimulation as determined by

) . 25
the facial grimace score™.

Reduction of hyperactivity in the FST by MI-fTMS but not
fluoxetine is independent of serotonin levels

As previously reported®'’, the FST revealed a sig-
nificant and reliable decrease in immobility after OB
surgery, providing an opportunity to compare the efficacy
of rTMS and fluoxetine in restoring normal activity levels.
Activity in the FST was not significantly different between
groups at baseline (pre-intervention; Fig. 2a) but sig-
nificantly differed in the change induced by treatment
over time (analysis of variance [ANOVA], significant
time x group interaction with Greenhouse-Geisser cor-
rection for sphericity violation, F(7.06, 164.91) = 3.702 (P
= 0.001)). Follow-up tests for simple effects of time within
each group showed a significant decrease in immobility
time in the FST from pre-surgery to post-surgery in all
groups (P-values < 0.05) except for sham/sham (P = 0.42),
confirming that OB-induced hyperactivity consistent with
a phenotype of agitated depression (Fig. 2b).

To compare the efficacy of MI-rTMS and fluoxetine in
reducing OB-induced hyperactivity, we performed further
follow-up analyses (Dunnett test), examining rTMS and
fluoxetine groups compared with their respective controls
and with sham/sham. The MI-rTMS group showed sig-
nificantly greater improvements between the post-surgery
to post-treatment time points in the FST than both OB/
sham (Dunnett test, P=0.03) and sham/sham (Dunnett
test, P = 0.02) (Fig. 2b). However, no significant difference
was found between post-surgery and post-treatment for
fluoxetine or vehicle groups (Dunnett test, P> 0.05) (Fig.
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Fig. 2 MI-rTMS and flu effects in mice with OB. a Time (in seconds)
spent immobile at baseline (pre-surgery) for all groups, confirming
that there were no differences between animals at the start of the
experiment. b Time spent immobile, expressed as a percentage of
pre-surgery values of mice with intact olfactory bulbs (sham/sham)
and mice with OB treated with MI-rTMS or Flu. For all groups, OB
resulted in a significant decrease in the time spent immobile,
representing hyperactivity. Behavior was significantly improved by

4 weeks of treatment with MI-rTMS but not Flu. # indicates that post-
surgery levels are significantly different than for untreated animals. *
indicates significant differences between post-surgery and post-
treatment within a group. ¢ Concentration of 5HT in the frontal cortex
of sham/sham mice and mice following OB surgery treated with MI-
rTMS or Flu. OB alone had no effect on 5HT levels. * indicates that only
Flu increased 5HT levels following the OB procedure. Error bars
represent standard error of the mean. 5HT 5-hydroxytryptamine, Flu
fluoxetine hydrochloride, MI-rTMS medium-intensity repetitive
transcranial magnetic stimulation, OB olfactory bulbectomy, Veh
vehicle (i.e., control)
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2b). We then investigated whether the behavioral changes
were accompanied by a change in 5-hydroxytryptamine
(5HT) levels in the frontal cortex at the end of treatment.
A significant difference was observed in frontal cortex
5HT levels between groups (ANOVA, F[4, 38] =4.113; P
= 0.007) (Fig. 2c). Post hoc tests showed that MI-rTMS
did not significantly affect 5HT, but the OB/fluoxetine
group had significantly increased frontal cortex 5HT
levels compared with both vehicle-treated control (Sidak,
P=0.03) and sham/sham (P =0.004) (Fig. 2c). Interest-
ingly, the two control groups (OB/vehicle and sham/
sham) were not significantly different from each other,
suggesting that OB itself did not alter baseline 5HT
concentration (P = 0.86).

Intensity of rTMS differentially reduces hyperactivity in the
FST

We then delivered rTMS at different intensities to
determine optimal conditions for reducing hyperactive
behavior in the FST. We first confirmed that there were
no pre-existing differences in the FST behavior prior to
intervention (Fig. 3a). A significant change was observed
in immobility time in the FST over time and across groups
(ANOVA, F[2, 144] =54.64; P<0.001), indicating that
surgery increased activity (agitation) in the FST. All rTMS
groups showed some recovery, but only the MI-rTMS (P
=0.005) and HI-rTMS (P =0.02) groups improved sig-
nificantly between post-surgery and post-treatment (Fig.
3b). Confirming our results from the first experiment,
none of the rTMS groups showed any change in 5HT
levels in the frontal cortex (ANOVA with groups OB-
sham, LI-rTMS, MI-rTMS, and HI-rTMS (F[3, 25] =
1.106; P =0.37) (data not shown)).

Brain-derived neurotrophic factor

Our initial experiment ruled out a role for 5HT in the
effects of MI-r'TMS and in the rescue of OB-induced
behavior. Therefore, we investigated frontal cortical and
hippocampal BDNF levels, as well as hippocampal neu-
rogenesis, as possible mechanisms underlying behavioral
change in the cohorts of different rTMS intensity.

ANOVA showed a significant main effect of rTMS
treatment on BDNF concentrations in the frontal cortex
(ANOVA, F[4, 29]=3.368; P=0.02) and the hippo-
campus (F[4, 29] =2.983; P =0.04). We followed up by
first comparing all groups to the sham/sham group. In the
frontal cortex, only the MI-rTMS group had significantly
higher BDNF levels than the sham/sham group (Dunnett
test, P=0.048) (Fig. 3c). In the hippocampus, BDNF
levels were increased to a similar level in the MI-rTMS,
HI-rTMS, and OB-sham groups compared with the
sham/sham group, although this increase was significant
only for MI-rTMS (Dunnett test, P=0.04) (Fig. 3d). No
significant differences in BDNF levels were observed
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between any rTMS-treated group and the OB-sham group
(Dunnett test, P> 0.05).

Hippocampal neurogenesis

In a separate cohort, we analyzed cell genesis by
injecting EAU at the midpoint of rTMS treatment. The
mice were killed humanely 2 weeks later. We compared
the density of newly born neurons (EdU and neuron-
specific protein [NeuN] double-labeled cells) following
the different rTMS intensities (Fig. 3e—g). A significant
difference was detected between groups (ANOVA, F[1,
24] =2.989; P=0.04), but only MI-rTMS had a sig-
nificantly higher number of newly born neurons (Fig. 3e,
f, h, i) compared with the sham/sham group (Dunnett
test, P=0.02). Further follow-up analyses showed that
hippocampal neurogenesis in MI-rTMS was also sig-
nificantly greater than OB-sham (Dunnett test, P=
0.02), but no other groups were significantly different to
the OB-sham group (Dunnett test, P > 0.05) (Fig. 3e, f, h,
i). The percentage of newly born neurons positive for
NeuN was not significantly different between groups
(data not shown).

Plasma metabolomics

The metabolic effects of OB and the different intensities
of rTMS treatment were examined using targeted meta-
bolomics driven by ultrahigh performance liquid chro-
matography. In total, 6 of the 42 examined metabolites
were found to be significantly altered in the plasma of OB
mice compared with their sham-treated counterparts. OB
decreased the concentration of three bioactive amines—y-
aminobutyric acid (GABA) (P=0.049), AABA (P=
0.001), and their molecular precursor glutamine (P <
0.001)—as well as B-alanine (P = 0.048) and sarcosine (P
=0.04). Only 3-methylhistidine was significantly
increased by OB (P <0.001) (Fig. 4a). After the OB pro-
cedure and rTMS treatment at different intensities, 7 of
42 examined metabolites were determined to significantly
interact with rTMS (Supplemental Table 2). However,
post hoc analysis revealed that only AABA and 3-
methylhistidine were affected by any specific rTMS
treatment, being significantly upregulated (P = 0.004) and
downregulated, respectively, by HI-rTMS (P = 0.03) (Fig.
4b). Interestingly, these two metabolites were also sig-
nificantly altered by OB, and HI-rTMS had the effect of
restoring normal levels. All rTMS intensities produced
different changes in the plasma metabolic profile, and
post hoc analysis revealed that 5 of the 7 metabolites were
affected differentially by different stimulation intensities
(Fig. 4b).

IPA revealed that the top 4 canonical pathways affected
by OB included glutamate-dependent acid resistance (P
=0.006), glutamine degradation (P =0.009), glutamine
biosynthesis (P =0.02), and GABA receptor signaling (P
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Fig. 3 Comparison of rTMS intensities. a Time (in seconds) spent immobile at baseline (pre-surgery) for all groups, confirming that there were no
differences between animals at the start of the experiment. b Time spent immobile in the forced swim test as a percentage of the pre-surgery value
for each animal. OB surgery significantly reduced the time spent immobile compared with pre-surgery values, indicating hyperactivity. Behavior was
partially rescued by MI-ITMS treatment. # indicates that post-surgery levels are significantly different from untreated animals. * shows significant
differences between post-surgery and post-treatment within a group. ¢, d BDNF concentration in the frontal cortex (c) and hippocampus (d). Only
MI-rTMS resulted in increased BDNF levels compared with sham/sham treatment in both frontal cortex and hippocampus, but no significant
differences were observed between any groups compared with OB/sham. * indicates a significant difference compared with sham/sham. e-g
Immunohistochemistry showing EdU single-labeled and EdU-NeuN double-labeled cells in the granular and subgranular layers of the dentate gyrus.
e, f Low power view of the hippocampus in sham (e) and MI-rTMS (f)-treated mice showing increased Edu labeling following MI-rTMS. confocal
microscopy of MI-rTMS-treated animal confirming co-localization of NeuN (gi), EJU (gii), labels merged (giii), with a 3d rotated view showing co-
localization of red and green staining within the hippocampal neurons (giii). h, i Number of EdU-positive cells (h) and Edu-NeuN double-labeled cells
(i) in hippocampus following OB surgery and rTMS treatment. A significant increase was found in the number of newly born neurons following MI-
rTMS compared with OB/sham and sham/sham mice. * shows a significant difference compared with sham/sham and OB/sham. Error bars represent
standard error of the mean. Scale bars are 500 um (e) and 50 um (g). BDNF brain-derived neurotrophic factor, EdU 5-ethynyl-2’-deoxyuridine (Thermo
Fisher Scientific), HI-FTMS high-intensity repetitive transcranial magnetic stimulation, LI-rTMS light-intensity repetitive transcranial magnetic
stimulation, MI-rTMS medium-intensity repetitive transcranial magnetic stimulation, NeuN neuron-specific protein, OB olfactory bulbectomy, rTMS
repetitive transcranial magnetic stimulation
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Fig. 4 Metabolomics of OB surgery and rTMS exposure. a The OB surgery decreased AABA, glutamine, B-alanine, GABA, and sarcosine levels. OB
surgery increased 3-methylhistidine. b After the OB procedure, rTMS exposure appeared to interact with 7 metabolites, but post hoc analyses showed
that only AABA was significantly upregulated and 3-methylhistidine was significantly downregulated with HI-r'TMS. However, 5 metabolites—AABA,
3-methylhistidine, 5HT, ornithine, and alanine—were differentially affected by different stimulation intensities. Units are uM. AABA a-aminobutyric
acid, 5HT 5-hydrotryptophan, GABA y-aminobutyric acid, HI-rTMS high-intensity repetitive transcranial magnetic stimulation, LI-rTMS low-intensity
repetitive transcranial magnetic stimulation, MI-rTMS medium-intensity repetitive transcranial magnetic stimulation, OB olfactory bulbectomy, rTMS
repetitive transcranial magnetic stimulation. *P<0.05

=0.02). Glutamate receptor signaling was also sig- peripheral metabolites. For example, LI-r'TMS altered
nificantly affected by OB (P = 0.02) (Supplemental Fig. 1). metabolites associated with glutamate-dependent acid

The IPA results were suggestive that various rTMS  resistance (P =0.006), inducible nitric oxide synthase
stimulation parameters had differential effects on signaling (P=0.009), the antiproliferative role of the
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somatostatin II receptor (P =0.01), inhibition of angio-
genesis by thrombospondin-1 (P=0.01), and neuronal
nitric oxide synthase signaling in neurons (P =0.01)
(Supplemental Fig. 2A). MI-rTMS significantly affected
some of the same canonical pathways, such as glutamate-
dependent acid resistance (P < 0.001) and neuronal nitric
oxide synthase signaling in neurons (P < 0.001), but also
affected arginine biosynthesis (P <0.001), the citrulline
metabolism superpathway (P < 0.001), and aspartate bio-
synthesis (P < 0.001) (Supplemental Fig. 2B). LI-r'TMS and
MI-rTMS also modulated canonical pathways associated
with glutamate degradation and GABA receptor signaling
(Supplemental Figs. 2A and 2B). Similar to other rTMS
stimulation paradigms, HI-rTMS significantly altered
glutamate-dependent acid resistance (P =0.006) and
GABA receptor signaling (P=0.02) (Supplemental Fig.
2C). It also upregulated canonical pathways involved in
glutamate degradation (P =0.02), albeit by altering a dif-
ferent branch of the catabolic pathway. HI-rTMS also
significantly altered canonical pathways associated with
histamine biosynthesis (P=0.006) and ceramide degra-
dation (P=0.02). Notably, glutamate-dependent acid
resistance, glutamate degradation, and GABA receptor
signaling pathways were downregulated by OB and
upregulated by all rTMS intensities.

Correlations

When all animals were included in the analysis, FST
performance post treatment showed a significant negative
correlation with BDNF levels (Frontal cortex: Pearson’s
correlation —0.365; P=0.034; Hippocampus: Pearson’s
correlation —0.359; P=0.037) and a significant positive
correlation AABA (Pearson Correlation 0.474; P = 0.029),
but these correlations were not observed within any
individual treatment group. When groups were analyzed
separately, only animals in the Sham-OB group showed a
positive correlation with 3-methyl histidine (Pearson’s
correlation 0.694; P = 0.038).

Discussion

To our knowledge, this is the first study to suggest that
MI-rTMS and HI-rTMS improved hyperactivity in mice
with OB, while fluoxetine did not. These findings suggest
that OB may be a valid murine model of an agitated,
treatment-resistant depression. MI-rTMS-treated mice had
increased BDNF levels in the frontal cortex and hippo-
campus, as well as increased neurogenesis in the hippo-
campus. None of the rTMS-treated groups had increased
serotonin levels. Plasma metabolites such as AABA and 3-
methylhistidine, which are involved in glutamate and
GABA metabolic signaling pathways, may have utility for
further translational research of biomarkers for rTMS.

Similar to the OB model used in the present study, some
forms of depression in humans are associated with an
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agitated phenotype marked by increased stress reactivity
and psychomotor agitation, increased nocturnal activity,
and impaired concentration'®, Previous studies of OB in
mice have consistently revealed a phenotype of psycho-
motor agitation’** and we show for the first time that
this behavior is resistant to treatment with fluoxetine,
similar to clinical human populations with treatment-
resistant  depression'>'®?®,  Previous studies have
demonstrated that development of the agitated phenotype
is influenced by strain and the time post-surgery””*®,
Future efforts should include a comprehensive battery of
behavioral tests examining locomotion, activity, and
anxiety, as well as circadian rhythm and hedonic beha-
viors, in response to OB and anti-depressant treatment, to
further characterize the phenotype and validity of the
model.

Although many studies have investigated the role of
rTMS frequency on brain excitability and function, less
focus has been given to the role of intensity, perhaps
because the mechanisms activated by rTMS have always
been assumed to involve traditional forms of synaptic
plasticity such as long-term potentiation and long-term
depression, which require action potential firing®. How-
ever, recent work in humans and in animal models has
shown that LI-rTMS and MI-rTMS (subthreshold) can
have a notable effect on the brain®***>*!, In our study,
both MI-rTMS and HI-rTMS reduced EST hyperactivity
in the OB model despite being sub- and at-threshold,
respectively, and causing different neurobiologic out-
comes and recruiting different mechanisms of action, as
described. These results contrast with previous studies
showing that rTMS induced hyperactivity in the open
field in intact, normal rats®? although extensive differ-
ences in stimulation parameters, coil geometry, model,
and species preclude a useful comparison between these
two studies. Nonetheless, reports of rTMS modulating
activity in preclinical studies suggest that it will be
important to elucidate whether the improvement in FST
following MI and HI-rTMS was due to rescue of the OB-
induced psychomotor agitation, or a more general effect
due to increased psychomotor inhibition.

Our experiments do not allow us to determine which
intensity (LI, MI, or HI) provides better outcomes in our
model because the behavioral response was similar for
both intensities. However, we speculate that MI-rTMS
may provide longer lasting anti-depressant effects than
HI-rTMS due to the increase in neurogenesis observed
only at medium intensity. The lack of effect on neuro-
genesis of HI-rTMS suggests a transient anti-depressant
effect, and is consistent with the occurrence of relapse in
human patients once treatment has ceased. It will be
important to carry out longitudinal studies to determine
when anti-depressant effects are first observed and how
long they persist. It would also be interesting to test a two-
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step treatment protocol: initial delivery of HI-rTMS might
provide rapid benefits, which could then be followed with
MI-rTMS to integrate these benefits into long-term
structural changes through increases in neurogenesis.

Our work confirms previous suggestions that MI-rTMS
upregulates BDNF following OB, in various limbic
structures including the frontal cortex and hippo-
campus'>?®, but the involvement of the protein in the
behavioral phenotype is still unknown, just as the rela-
tionship of BDNF to depression in humans is still under
debate® 3, The present data argue against the possibility
that increased BDNF level could be a simple consequence
of increased locomotor activity following OB*' ™7,
because MI-r'TMS reduced hyperactivity while increasing
BDNF concentration. Rather, BDNF upregulation may be
a beneficial response to MI-rTMS with increased neuro-
plasticity'®. The increase in BDNF induced by MI-rTMS
may have been sufficient to drive neurogenesis in the
hippocampus: Likely, BDNF levels and neurogenesis are
linked in our study because hippocampal BDNF levels
have been causally linked with neurogenesis in mouse
models of learning, enrichment, and anxiety®”~**. Inter-
estingly, MI-rTMS increased the number of newly gen-
erated cells detected 3 weeks after the EAU injection but
did not selectively increase the proportion of these cells
that differentiated into neurons. Future work could
examine whether MI-rTMS increases proliferation or
simply increases the survival of newly born cells, because
this result has implications for understanding the inte-
gration of newly born cells into the hippocampal net-
work***, It will also be interesting to investigate possible
cognitive changes following OB and MI-rTMS treatment,
because increased neurogenesis is associated with changes
in learning and memory™.

Our negative neurobiologic outcomes for HI-rTMS
contrast with previous studies that showed increases in
both BDNF***” and neurogenesis*® following rTMS using
a human coil. The different cellular responses to stimu-
lation at similar intensities may be due to differences in
the focality of the coils. We used a commercial rat coil
(MagVenture) that not only delivers a broader field than
our small animal coils (Fig. 1) but also differs in shape
from the conventional human coils (such as figure-of-
eight coils or large circular coils) used in previous stu-
dies*®. We also did not observe an increase in brain BDNF
levels following LI-r'TMS, consistent with previous work
showing that very low-intensity stimulation may be brain
region specific: LI-r'TMS upregulates BDNF in the visual
cortex, midbrain, and cerebellum but not in the retina®®
°2, and the lack of upregulation of BDNF in the hippo-
campus is consistent with our previous study showing no
change in hippocampal dendritic spines following LI-
rTMS®3. Nonetheless, we cannot rule out a localized
upregulation in the dentate gyrus with these intensities,
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which was not detected in our dissection of the whole
hippocampus. Overall, our findings highlight that the
range of mechanisms called into play by different rTMS
intensities has implications for outcomes in different
brain regions that may receive different field strengths
simply as a result of being at a distance from the focal
point of stimulation®®.

Our serum analysis identified several metabolites that
were altered in response to OB and in response to 1 or more
r'TMS frequencies. However, the concentrations of only 2
metabolites, AABA and 3-methylhistidine, were increased
and decreased, respectively, by OB and restored to baseline
levels by HI-rTMS treatment but not by LI-rTMS or MI-
rTMS. This finding further highlights that MI-rTMS and
HI-rTMS have specific effects on the different brain and
peripheral markers of agitated depression modeled in our
study, even though they may eventuate in similar behavioral
outcomes. Interestingly, AABA has been identified as a
potential biomarker for treatment-resistant depression in
humans®®, consistent with the clinical population treated
with rTMS>®>8. Therefore, evidence from animal and
human studies suggests that AABA and 3-methylhistidine
may serve as biomarkers in humans for phenotyping
depression. Further longitudinal work could determine if
ABBA and 3-methylhistidine have utility for monitoring
treatment response to rTMS or precision medicine
approaches to brain stimulation interventions®®~>®,

Our IPA identified glutamate degradation, glutamate-
dependent acid resistance, GABA receptor signaling, and
4-aminobutryate degradation as systems that were both
downregulated following OB surgery and upregulated by
HI-rTMS and, to a lesser extent, MI-rTMS. Consistent
with our findings, changes in GABAergic and glutama-
tergic processes in the brain have been reported following
OB**™® and in the brain and blood of depressed
patients63. Furthermore, rTMS in rodents and in humans
can selectively alter GABA and glutamate levels in the
brain and blood®*®°. This result adds to clinical evidence
that behaviors associated with depression may be medi-
ated by GABAergic and glutamatergic systems®~"°,

The present findings and prior work suggest that sig-
nificant changes occur in glutamate and other amino
acids in the blood of depressed patients’®. However, the
implications of this outcome are uncertain because per-
ipheral measures do not necessarily reflect brain activ-
ity’"”*. A possible explanation is that activation of the
hypothalamic-pituitary-adrenal axis and the autonomic
nervous system impacts peripheral metabolite levels in the
blood”®~"®. For example, in rats, activation of the sym-
pathetic nervous system increases the activity of gluta-
mate pyruvate transaminase and glutamateoxaloacetate
transaminase in the blood. These enzymes accelerate the
conversion of glutamate to 2-ketoglutarate, resulting in a
net decrease in plasma glutamate levels. Prior work
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demonstrates that corticotrophin-releasing hormone and
adrenaline reduce blood glutamate concentrations in
rats’’. This explanation is compatible with our pathway
analysis, implicating glutamate and GABA pathways in
OB and in MI-rTMS and HI-rTMS-induced recovery.

In summary, our work suggests that the OB murine
model may have utility as a model for agitative, treatment-
resistant depression. Future studies with exhaustive
behavioral testing could assist with the validation of this
model. Variations in rTMS intensity appear to alter brain
and metabolomic effects in the OB mouse model of agi-
tated depression. Further work in this area could assist
with the optimization of clinical rTMS delivery. Periph-
eral metabolomic markers might have utility as bio-
markers for the diagnosis of specific forms of depression
and in monitoring or modifying rTMS treatment. Further
translational studies are warranted.
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