Skip to main content
. 2018 Jun 29;12:411. doi: 10.3389/fnins.2018.00411

Table 1.

Average number of features selected (α = 0.05) and number of corresponding groups and relevant groups on linear artificial datasets (500 variables, 50 groups, 5 relevant groups, and 100 samples) for each method.

CER CERr eFDR mProbes
feat gps rel. gps feat gps rel. gps feat gps rel. gps feat gps rel. gps
K = 1 RF 7.15 1.55 1.55 47.75 20.35 3.70 11.85 1.85 1.75 1.75 0.2 0.2
avg 18.50 2.20 2.20 14.85 1.40 1.30 21.45 2.70 2.60 16.00 1.75 1.75
5 0.30 0.30 7.75 0.45 0.45 7.5 0.40 0.40 7.40 0.35 0.35
max 14.90 1.60 1.60 28.35 3.10 2.55 17.45 1.75 1.65 11 1.10 1.10
K=p RF 7.05 1.45 1.45 61.10 23.80 3.80 11.20 2.05 1.75 11.05 1.65 1.65
avg 19.80 2.75 2.75 25.90 2.65 2.15 22.55 3.15 3.05 20.45 2.70 2.70
16.35 1.40 1.40 23.55 2.20 2.15 17.35 1.55 1.55 22.75 2.00 2.00
max 12.50 1.65 1.65 35.90 4.00 2.90 14.50 1.80 1.75 12.95 1.75 1.75

RF means Random Forests without any aggregation function. Bold text and underlined text are for best number of relevant groups over all aggregation functions and over all selection methods respectively.