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Abstract
The number of patients with nonalcoholic fatty liver 
diseases (NAFLD) including nonalcoholic steatohepatitis 
(NASH), has been increasing. NASH causes cirrhosis 
and hepatocellular carcinoma (HCC) and is one 
of the most serious health problems in the world. 
The mechanism through which NASH progresses is 
still largely unknown. Activation of caspases, Bcl-2 
family proteins, and c-Jun N-terminal kinase-induced 
hepatocyte apoptosis plays a role in the activation of 
NAFLD/NASH. Apoptotic hepatocytes stimulate immune 
cells and hepatic stellate cells toward the progression 
of fibrosis in the liver through the production of 
inflammasomes and cytokines. Abnormalities in 
glucose and lipid metabolism as well as microbiota 
accelerate these processes. The production of reactive 
oxygen species, oxidative stress, and endoplasmic 
reticulum stress is also involved. Cell death, including 
apoptosis, seems very important in the progression 
of NAFLD and NASH. Recently, inhibitors of apoptosis 
have been developed as drugs for the treatment of 
NASH and may prevent cirrhosis and HCC. Increased 
hepatocyte apoptosis may distinguish NASH from 
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NAFLD, and the improvement of apoptosis could play 
a role in controlling the development of NASH. In this 
review, the association between apoptosis and NAFLD/
NASH are discussed. This review could provide their 
knowledge, which plays a role in seeing the patients 
with NAFLD/NASH in daily clinical practice.

Key words: Apoptosis; Autophagy; c-Jun N-terminal 
kinase; Nonalcoholic fatty liver diseases; Nonalcoholic 
steatohepatitis
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Core tip: Nonalcoholic fatty liver diseases (NAFLD), 
including nonalcoholic steatohepatitis (NASH), are 
one of the most serious health issues. We searched 
articles written in English and listed on PubMed for the 
role of apoptosis in NASH. There are close association 
between apoptosis and NAFLD/NASH. Several inhibitors 
of apoptosis have been suggested as potential 
treatments for NASH, and some are now being tested 
in clinical trials. Therefore, we should focus on the role 
of apoptosis in the progression of NAFLD/NASH.
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INTRODUCTION
The term nonalcoholic fatty liver disease (NAFLD) 
includes nonalcoholic fatty liver (NAFL) and nonalcoholic 
steatohepatitis (NASH). The mechanism by which NASH 
progresses is still largely unknown. Liver biopsy is an 
important procedure for the diagnosis of NASH, with 
a typical case of NASH having hepatocellular steatosis 
and ballooning, mixed acute and chronic lobular 
inflammation, and zone 3 perisinusoidal and pericellular 
fibrosis[1]. These findings have also been observed 
in the liver of patients with alcoholic steatohepatitis. 
NAFLD cirrhosis and NAFLD-hepatocellular carcinoma 
(HCC) are the second leading cause of liver transplants 
in the USA[2]. Accordingly, there is increasing evidence 
that HCC can develop in the NASH[2].

In the liver of patients with alcoholic hepatitis, 
infiltrating polymorphonuclear leukocytes and apoptotic 
bodies derived from hepatocytes are observed[3]. A 
combination of environmental factors, host genetics, 
and gut microbiota can lead to an excess accumulation 
of fat in the hepatocytes, which can result in lipotoxicity 
and trigger hepatocyte cell death, liver inflammation, 
fibrosis, and pathological angiogenesis, resulting in 
NASH, cirrhosis, and HCC[4]. In this topical review, 
we will discuss apoptosis, which is involved in the 

development of NASH.

APOPTOSIS AND THE ACTIVATION OF 
CASPASES IN THE PROGRESSION OF 
NASH
Feldstein et al[5] observed that terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL)-positive 
hepatocytes were significantly increased in the livers of 
NASH patients, compared to those from patients with 
alcoholic hepatitis or simple steatosis. Caspases have 
apoptotic functions as well as non-apoptotic functions. 
During apoptosis, the caspase cascade shapes the im-
munogenic properties of apoptosis[6]. Feldstein et al[5] 
found that active caspases 3 and 7 as well as the strong 
expression of Fas receptors in NASH specimens were 
strongly correlated with hepatocyte apoptosis and 
the progression of NASH. Caspase 3 activation and 
hepatocyte apoptosis are prominent features of different 
experimental models of NAFLD as well as human NAFLD 
and have been shown to be correlated with disease 
severity[5]. 

Caspase 3 is known to cleave several cellular 
substrates including cytokeratin-18 (CK-18), which 
is the major intermediate fragment protein in the 
liver[7]. Caspase 3 generated CK-18 fragments are 
an independent predictor of NASH in patients with 
suspected NAFLD[7,8]. Traffic-related air pollution has 
been shown to be associated with CK-18, a marker of 
hepatocellular apoptosis, in an overweight and obese 
pediatric population[9]. Mallory-Denk bodies (MDBs) 
are characteristic of both alcoholic and NASH and 
discriminate between the relatively benign simple 
steatosis and the more aggressive NASH. It has been 
shown that in genetically susceptible mice overexpressing 
CK-8, consumption of a high-fat diet (HFD) triggered 
hepatocellular injury, ballooning, apoptosis, inflammation, 
and MDB development[10].

Inhibition of hepatic apoptosis by pharmacological 
pan-caspase inhibitor VX-166 may reduce the deve-
lopment of fibrosis in mice with NASH[11,12]. Increases in 
active caspase 2, active caspase 3, and apoptosis were 
observed in the livers of patients with NASH[13]. Ballooned 
hepatocytes in NASH downregulate caspase 9, a pivotal 
caspase that executes the mitochondrial apoptosis 
pathway[14]. In rodents, a lack of caspase 8 expression 
in hepatocytes was shown to reduce the methionine-
choline-deficient (MCD)-dependent increases in 
apoptosis, decreased the expression of pro-inflammatory 
cytokines, and reduced hepatic infiltration[15]. Caspase 8 
may thus be critical for the pathogenesis of NASH.

Caspase 2 is an initiator caspase in lipid-induced 
cytotoxicity (lipoapoptosis), which plays a role in the 
pathogenesis of NASH[16]. Caspase 2 plays a role in 
lipid-induced hepatocyte apoptosis and is related to the 
production of apoptosis-associated fibrogenic factors[17]. 
Additionally, liver free coenzyme A content was shown 
to be reduced in mice with NASH. Decreased hepatic 
free coenzyme A content was associated with increased 
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caspase 2 activity and correlated with more severe liver 
cell apoptosis, inflammation, and fibrosis[18].

It has been reported that Fas, Fas ligand (FasL), and 
caspase 8 mRNA activation are important contributing 
factors to NAFLD[19]. Another study showed that children 
with NASH had significantly higher levels of soluble Fas 
and soluble FasL than those in the “not NASH” group[20]. 
Fas apoptosis inhibitory molecule (FAIM), a ubiquitously 
expressed antiapoptotic protein, functions as a mediator 
of Akt signaling[21]. Loss of FAIM leads to spontaneous 
obesity and hepatic steatosis[21].

Hepatic cell apoptosis is associated with miR-34a/
Sirtuin 1 (SIRT1)/p53 signaling in NASH[22]. p53 and 
its transcriptional target, miR34a, have been shown to 
be involved in the pathogenesis of fatty liver. The p53 
inhibitor, pifithrin-α-p-nitro, was shown to attenuate 
steatosis, associated oxidative stress, and apoptosis 
in murine models of NAFLD[23]. The DNA damage 
checkpoint protein Ataxia telangiectasia mutated 
pathway plays a role in the response to hepatic fat 
accumulation and promotes hepatocellular apoptosis 
and fibrosis in mice models of NAFLD[24]. Massive 
hepatic progenitor cell expansion, especially in children 
with NASH, is associated with the degree of liver injury, 
hepatocyte apoptosis, and cell-cycle arrest[25]. 

Increased vimentin fragment levels are known to 
indicate the existence of substantial hepatocellular 
apoptosis in the progression of NASH[26]. Levels of the 
augmenter of liver regeneration (ALR) protein were 
lower in liver tissues from patients with advanced 
alcoholic liver disease and nonalcoholic steatohepatitis 
than in liver tissues from controls[27]. Levels of steatosis 
and apoptosis were reduced in mice with a liver-specific 
deletion of ALR[27]. Impairment of the formation of a 
newly discovered ubiquitin ligase complex called linear 
ubiquitin chain assembly complex, has been shown 
to result in insufficient NF-κB activation and may thus 
be one of the molecular mechanisms underlying the 
enhanced apoptotic response of hepatocytes in NASH 
mouse models[28].

IgM-free apoptosis inhibitor of macrophage serum 
levels appear to be a sensitive diagnostic marker 
for NASH-HCC[29]. Activation of apoptosis signal-
regulating kinase 1 (ASK1) in hepatocytes is a key step 
in the progression of nonalcoholic steatohepatitis[30]. 
Additionally, tumor necrosis factor alpha-induced protein 
3 directly interacts with and deubiquitinates ASK1 in 
hepatocytes[30].

Thus, the activation of caspases and other molecules 
that are involved in apoptosis are frequently observed 
in the livers of NASH patients and may be related to the 
progression of NAFLD and NASH. 

BCL-2 FAMILY MEMBERS AND 
MITOCHONDRIA IN THE PROGRESSION 
OF NASH
Liver injury in NASH patients is associated with apoptosis 

and NF-κB activation even though anti-apoptotic 
B-cell lymphoma 2 (Bcl-2) is strongly expressed[31,32]. 
These changes are caspase-dependent. They are also 
associated with mitochondrial membrane depolarization 
and the release of cytochrome c, which activate the 
mitochondrial apoptosis pathways including activation 
of the proteins Bcl-2-associated X (Bax) and Bcl-
2-interacting mediator of cell death (Bim)[33]. The 
upregulation of Bax and Bcl-2 expression may also be 
play an important role in apoptosis in NAFLD[19], although 
it has been reported that NASH patients had significantly 
lower levels of anti-apoptotic protein Bcl-2[34]. The degree 
of apoptosis was inversely correlated with the level of 
Bcl-2[34]. 

Activation of endoplasmic reticulum (ER) stress-
associated c-Jun N-terminal kinase (JNK) promotes 
apoptosis by modifying the expression and function of 
pro-apoptotic members of the Bcl-2 family such as Bcl-2 
homology 3 (BH3) only protein Bim and p53-upregulated 
modulator of apoptosis (PUMA)[35]. PUMA promotes the 
activation of Bax and thus mitochondrial outer membrane 
permeabilization, which leads to the relocation of these 
pro-apoptotic mediators into cytosol[35]. Cazanave et al[36] 
reported that miR-296-5p levels were inversely related 
to the BH3-only protein PUMA mRNA levels in human 
liver specimens, and that miR-296-5p regulates PUMA 
expression during hepatic lipoapoptosis.

Transglutaminase 2 (TG2), which is induced in the 
nuclei of ethanol-treated hepatocytes, crosslinks and 
inactivates the transcription factor, SpI, which results 
in hepatic apoptosis[37]. In NASH patients, nuclear 
TG2 and crosslinked SpI formation were elevated. 
Additionally, activation of apoptosis inducing factor 
and a release of cytochrome c were observed[37]. 
Hypoxia, oxidative stress, and lipoapoptosis could all 
influence the expression of mitochondrial-encoded 
NADH dehydrogenase (MT-ND3) in hepatocytes and 
MT-ND3 may play a role in the progression of hepatic 
steatosis[38]. Hepatocyte-specific c-Met deletion in 
hepatocytes was shown to trigger NASH progression. 
Increased apoptosis was a prominent feature in 
c-MetΔ(hepa) livers[39]. Intermittent high glucose levels 
under lipotoxicity could contribute to the development 
of NAFLD by increasing oxidative stress and hepatocyte 
apoptosis via changes in mitochondrial permeability and 
subsequent mitochondrial dysfunction[40].

Bid promotes liver fibrosis coupled with a reduction 
of inflammation in experimental NASH models. In these 
models, hepatocyte apoptosis triggered hepatic stellate 
cell activation as well as liver fibrosis[41]. Increased 
expression of hepatocellular carcinoma down-regulated 
mitochondrial carrier protein (HDMCP) was identified in 
NASH animal models and HFFA-72h cultured L02 cells. 
The miR-146-HDMCP-downstream effector pathway 
is involved in NASH[42]. Collectively, previous studies 
have demonstrated that apoptosis resulting from 
mitochondrial injury is associated with the progression 
of NAFLD and NASH.
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killer T (NKT)-cell-mediated responses[52]. Macrophage 
scavenger receptors), which play a role in the 
activation of signal transduction pathways that regulate 
inflammation, apoptotic cell clearance, chemoattraction 
and angiogenesis, are involved in both the early and 
advanced stages of NASH[53].

Wobser et al[54] has demonstrated that human hepatic 
stellate cells (HSCs) that were incubated with conditioned 
medium (CM) from steatotic hepatocytes and had 
fibrogenic activation and were resistant to apoptosis, 
which is important in the progression of fibrosis in chronic 
liver diseases[54]. Myeloperoxidase (MPO), a highly 
oxidative enzyme secreted by leukocytes, contributes to 
the activation of HSCs and is a part of a proapoptotic and 
profibrotic pathway of progression in NASH[55]. Thus, in 
patients with NAFLD and NASH, apoptotic hepatocytes 
stimulate immune cells and HSCs, which contributes to 
the progression of fibrosis in the liver.

PRO-INFLAMMATORY CYTOKINES AND 
CHEMOKINES 
Feeding tumor necrosis factor (TNF) receptors 1 and 2 
double-knock out mice (TNFRDKO mice) with an MCD-
diet for 8 weeks attenuated liver steatosis and fibrosis 
and also suppressed hepatic induction of TNF-α, vascular 
cell adhesion molecule 1, and intracellular adhesion 
molecule 1, compared to wild-type control mice[6]. 
These results suggest that blocking the signaling of TNF 
receptors 1 and 2 is a promising therapeutic target for 
patients with NASH[56]. The TNF receptor 1-signaling 
pathway plays a role in aggravating a state of “simple 
steatosis” towards a phenotype with “NASH”[57]. 
Cyclooxygenase (COX)-2 may promote hepatocellular 
apoptosis by interacting with TNF-α and IL6 in rats with 
NASH[58]. COX-2 is highly expressed in NASH.

Lipoapoptotic supernatants stimulated monocyte 
migration to a similar magnitude as monocyte che-
moattractant protein, CCL2 (MCP-1)[59]. The release 
of pannexin1-dependent pathophysiological eATP in 
lipoapoptosis can stimulate the migration of human 
monocytes in NASH[59]. In cultured Kupffer cells, 
cholesterol induced the expression of chemotactic and 
inflammatory cytokines (CCL2 and CXCL2, and IL1β, 
TNF and oncostatin M, respectively) and rendered 
hepatocytes more susceptible to apoptosis[60]. Lipids, 
which stimulate DR5, have been shown to induce the 
release of hepatocyte extracellular vesicles, which 
contain TRAILs. Lipids also induced the expression of 
IL1β and IL6 messenger RNAs in bone marrow-derived 
macrophages in mice[61]. The C-X-C motif chemokine 
10 (CXCL10), which is known to be a pro-inflammation 
chemokine, was recently shown to play a pivotal role 
in the pathogenesis of NASH. By binding to its specific 
receptor CXCR3, CXCL10 recruits activated CXCR3+ T 
lymphocytes and macrophages to the parenchyma and 
promotes inflammation, apoptosis, and fibrosis[62].

The dsRNA receptor Nod-like receptor X1 and NLRP3 

ACTIVATION OF JNK AND APOPTOSIS 
IN NASH
Monounsaturated and saturated fatty acids have been 
shown to induce cellular steatosis, apoptosis, and JNK 
activation in hepatocytes[33]. Steatotic hepatocytes from 
a murine NAFLD model were sensitive to TNF-α-induced 
apoptosis via the ASK1–JNK signaling pathway[43]. Free 
fatty acids (FFA)-induced ER stress is associated with 
JNK activation, which has been well documented in 
human steatosis[35]. Mixed lineage kinase 3 (MLK) 3 is 
one of the mitogen-activated protein kinases (MAP3K) 
that mediate JNK activation in the liver. MLK3 is involved 
in human NASH through JNK activation[44].

The interplay of p-JNK with mitochondrial Sab 
(Sh3bp5) leads to impaired respiration, production 
of reactive oxygen species (ROS), sustained JNK 
activation, apoptosis in condition of lipotoxicity, and 
ultimately contributes to the pathogenesis of NASH[45]. 
Dramatically reduced expression of cellular repressor 
of E1A-stimulated genes (CREG) and hyperactivated 
JNK1 signaling has been observed in the livers of NAFLD 
patients[46]. CREG is a robust suppressor of hepatic 
steatosis and metabolic disorders through its direct 
interaction with ASK1 and the subsequent inactivation of 
ASK1-JNK1 signaling[46]. Thus, JNK signaling pathways 
play an important role in the apoptosis of NAFLD and 
NASH.

APOPTOSIS, AND IMMUNE CELLS AND 
HEPATIC STELLATE CELLS
The complement cascade to clear apoptotic cells and 
promote liver regeneration is also involved in the 
progression of NAFLD and NASH[47]. Distant major 
histocompatibility complex class I-related chains A and 
B (MIC A/B) have been identified as ligands for the 
NK cell receptor G2D (NKG2D) in humans. Compared 
to controls, patients with NASH dysplayed increases 
in NKG2D and MIC A/B mRNA, tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL)-death receptor 
5 (DR5), CD95/Fas mRNA, and hepatocyte apoptosis[48]. 
These increases suggest that MIC A/B levels also affect 
the progression of NASH. TRAIL-producing natural 
killer (NK) cells actively promote a pro-inflammatory 
environment in the early stages of fatty liver disease, 
which suggests that this cell compartment may 
contribute to the progression of NASH[49].

Proliferation of hepatic macrophages, and the 
subsequent production of pro-inflammatory cytokines, 
initiate inflammatory cascades, orchestrate the activities 
of transcription factors involved in lipid metabolism/
translocation, and modulate programmed cell death[50]. 
The macrophage activation marker-soluble CD163 was 
independently associated with the apoptosis marker 
CK-18 in Australian and Italian NAFLD patients[51]. 
Furthermore, down-modulation of NF-κB1 stimulates 
the progression of NASH in mice by promoting natural 
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inflammasomes may be important in the development 
of NASH[63]. The function of receptor interacting protein 
kinase-3 (RIP3)-dependent “necroptosis” in NASH and 
NASH-induced fibrosis is currently unknown[64]. RIP3-
dependent necroptosis controls NASH-induced liver 
fibrosis[64]. The absence of RIP3, a key mediator of 
necroptosis, exacerbates HFD-induced liver injury. This 
exacerbation is associated with increased inflammation 
and hepatocyte apoptosis as well as early fibrotic 
responses. These findings indicate that shifts in the 
mode of hepatocellular death can influence disease 
progression. Therefore, they may have therapeutic 
implications because manipulation of hepatocyte cell 
death pathways is currently considered to be a target 
for treatment of nonalcoholic fatty liver disease[65]. Thus, 
inflammasomes and cytokines induce apoptosis and 
respond to hepatocyte apoptosis in NAFLD and NASH.

OXIDATIVE STRESS
It has also been reported that oxidized phosphati-
dylcholine is localized in apoptotic hepatocytes in the 
livers of patients with the steatotic disorders, which 
indicates that oxidized phosphatidylcholine is formed 
in oxidatively damaged hepatocytes[66]. Transforming 
growth factor β (TGFβ) may regulate p53/p66Shc 
signaling in both the progression of human NASH 
and ROS levels and apoptosis[67]. NAFLD patients with 
reticuloendothelial system (RES) iron have increased 
TUNEL staining and cellular oxidative stress[68]. RES iron 
has been shown to be associated with NASH as well as 
more-severe histologic features[68]. 

TGFβ signaling activates Smad- and TGFβ-
activated kinase 1-dependent signaling and plays a 
role in regulating cell survival, proliferation, fibrosis, 
and tumorigenesis. In hepatocytes, TGFβ signaling 
contributes to hepatocyte death and lipid accumulation 
through Smad signaling and ROS production, leading to 
the development of NASH[69]. NOX isoforms, including 
NOX1, NOX2 and NOX4, and NOX-derived ROS 
have all been implicated in regulating HSC activation 
and hepatocyte apoptosis. Both HSC activation 
and hepatocyte apoptosis are essential steps for 
the initiation of liver fibrosis and its progression[70]. 
Mainstream cigarette smoke has been shown to be 
associated with the degree of oxidative stress and 
hepatocellular apoptosis in NASH mice[71].

Oxidative stress is central to the pathogenesis of 
NASH. ROS are characterized by oxidative stress. 
ROS are generated in several cellular sites and their 
production is influenced by multi-organ interactions. 
For fatty liver diseases, mitochondrial dysfunction 
is the main source of ROS and is closely related to 
endoplasmic reticulum stress. Both are caused by 
lipotoxicity and together these three factors form a cycle 
of progressive organelle damage that results in sterile 
inflammation and apoptosis[72].

ER STRESS
FFAs can increase ER stress, leading to nuclear NF-κB 
activation and TG2 induction through the pancreatic 
ER kinase (PERK)-dependent pathways[37,73]. CCAAT/
enhancer-binding protein homologous protein (CHOP) 
deficiency has been found to attenuate apoptosis, 
inflammation, fibrosis, and tumorigenesis in mice who 
are exposed to fat-loading conditions. This finding 
indicates CHOP promotes hepatocarcinogenesis in 
NASH[74]. The overexpression of hypoxia-inducible factor 
1α (HIF-1α) has also been shown to blunt upregulation 
of the ER stress markers, CHOP and chaperone 
immunoglobulin heavy chain binding protein (GRP78/
Bip), while knocking down HIF-1α increases the level of 
CHOP. These finding indicate that hepatocyte lipotoxicity 
is associated with decreased HIF-1α expression[75].

MiR-615-3p regulates lipoapoptosis by inhibiting 
CHOP and may be associated with the pathogenesis of 
NASH[76]. After exposure to saturated FFA, CHOP has 
been shown to induce hepatocyte cell apoptosis and 
inflammatory responses by activating NF-κB through 
a pathway involving the expression of IL1 receptor 
associated kinase 2. This activation results in the 
direct secretion of the cytokines IL8 and TNFα from 
hepatocytes[77]. Glucagon-like peptide-1 was found to 
protect against NAFLD by inactivating the ER stress-
associated apoptosis pathway[78]. 

Loss of the unfolded protein response of regulator 
X-box binding protein 1 enhances injury in both in vivo 
and in vitro models of fatty liver injury[79]. Hepatocytes 
in a lipotoxic state ultimately undergo apoptosis 
through the upregulation of proteins involved in various 
pathways including PERK, CHOP, JNK, BIM, PUMA, and 
eventually, caspases[80].

AUTOPHAGY
Expression of microtubule associated protein 1 light chain 
3α (LC3)-II, a hallmark of autophagic flux, was founded 
to be markedly increased in liver specimens from 
patients with NASH. JNK1 promotes palmitic acid-induced 
lipoapoptosis, whereas JNK2 activates pro-survival 
autophagy and inhibits palmitic acid lipotoxicity[81]. 
Palmitate may induce autophagy by activating the PKCα 
pathway in hepatocytes. Autophagy plays a protective 
role in palmitate-induced apoptosis in hepatocytes[82]. 
Tumor protein p53 binding protein 2 (ASPP2) is a pro-
apoptotic member of the p53 binding protein family that 
inhibits autophagy[83]. Xie et al[83] reported that ASPP2 
may participate in the lipid metabolism of non-alcoholic 
steatohepatitis. Mitochondrial uncoupling protein 2 
(UCP2) also plays a role in the development of NASH[84]. 
Increasing UCP2 expression in hepatoma cells may 
contribute to cell autophagy and may inhibit apoptosis 
as result of fatty acid injury[84]. Cellular degradation of 
Kelch-like ECH-associated protein 1 through the progress 
of sequestrosome (SQSTM)1/p62-dependent autophagy 
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activates JNK, upregulates expression of Bim and PUMA, 
and contributes to hepatocyte apoptosis induced by 
saturated FFAs[85]. Parkin-mediated mitophagy may 
mitigate hepatocyte apoptosis, improve mitochondrial 
quality, and suppress steatosis (lipid accumulation) in 
animal models of alcoholic fatty liver disease[86]. In rats 
treated with ethanol-enhanced hepatic mitophagy was 
associated with Parkin mitochondrial translocation, which 
was triggered by oxidative mitochondrial DNA damage[86]. 
Rubicon is overexpressed and plays a pathogenic role 
in NAFLD by accelerating hepatocellular lipoapoptosis 
and lipid accumulation and inhibiting autophagy[87]. 
Sirtuin 3 (SIRT3) is a nicotinamide adenine dinucleotide-
dependent deacetylase that is primarily located inside the 
mitochondria[88]. SIRT3 negatively regulates autophagy, 
thereby enhancing the susceptibility of hepatocytes to 
SFA-induced cytotoxicity[88].

Thus, ROS production, oxidative stress, and ER 
stress are all known to induce apoptosis. Autophagy 
modifies the progression of NAFLD and NASH and may 
have a protective role in hepatocyte apoptosis.

GLUCOSE METABOLISM AND 
APOPTOSIS
Hepatic insulin signaling is impaired in NASH patients, 
where downregulation of insulin-sensitive targets is 
associated with increased apoptosis and fibrogenesis[89]. 
Hyperinsulinemia has been shown to alter nuclear 
transcriptional regulators of cholesterol homeostasis. 
This leads hepatic accumulation of free cholesterol, 
hepatic injury, and apoptosis in NASH patients[90].

Fibroblast growth factor (FGF)-21 is highly expressed 
in the liver and regulates glucose and lipid metabolism 
in rodents. Concentration of FGF-21 were found to be 
significantly and independently correlated with hepatic 
fat content and markers of hepatic apoptosis in obese 
youth[91]. Another study found that FGF-21 mRNA 
expression in the human liver increased with steatosis 
grade and that its serum level is significantly elevated in 
adult NAFLD patients[92]. 

Intrahepatic expression of dipeptidyl peptidase-4 
(DPP4) and circulating DPP4 (cDPP4) levels and its 
enzymatic activity are all increased in NAFLD[93]. 
Circulating DPP4 activity correlates with measures of 
hepatocyte apoptosis and fibrosis in NAFLD in patients 
with type 2 diabetes mellitus and/or obesity[93]. 
Senescence marker protein-30 is involved in both 
glucose metabolism disorder and NAFLD[94]. 

TRAIL receptor signaling was also found to be 
involved in the pathogenesis of NASH in mice with a 
genetic deletion of the TRAIL receptor[95]. Furthermore, 
patients with NASH had significantly reduced plasma 
TRAIL concentrations compared to controls, patients 
with simple steatosis, or obese individuals[96]. TRAIL 
protects against insulin resistance, NAFLD, and vascular 
inflammation. Increasing TRAIL levels may be an 
attractive therapeutic strategy for reducing symptoms 

of diabetes as well as liver and vascular injuries, which 
are commonly observed in individuals with NAFLD[96].

LIPID METABOLISM AND APOPTOSIS
The serine/threonine kinases, glycogen synthase 
kinase GSK-3α and GSK-3β, can participate in pro-
apoptotic signaling during FFA-induced lipoapoptosis[35]. 
More specifically, saturated fatty acids strongly induce 
hepatocyte apoptosis[97]. Saturated fatty acids up-
regulate the inflammasome in hepatocytes and lead to 
sensitization to LPS-induced inflammasome activation 
and inflammatory injury[98,99]. Saturated fatty acids 
also induce hepatocyte apoptosis and the activation 
of caspase 8, which triggers the release of dangerous 
molecules[98].

Resistance to lipoapoptosis is, in part, due to an 
autocrine hedgehog signaling pathway[14]. Farnesoid X 
receptor is a member of the nuclear receptor superfamily 
that plays a crucial role in bile acid, cholesterol, lipid, 
and glucose metabolism as well as apoptosis[100]. It is 
also involved in the pathogenesis of NASH. The cellular 
inhibitor of apoptosis proteins 1 and 2 (cIAP-1 and 
cIAP-2) are potent inhibitors of death receptor-mediated 
apoptosis. Proteasomal degradation of cIAPs by FFA 
contributes to hepatocyte lipoapoptosis[101]. Palmitate-
induced lipoapoptosis is dependent on calcium-stimulated 
mitochondrial activation, which induces oxidative stress 
and hepatic cell lipotoxicity[102].

Free cholesterol accumulates in NASH patients but 
not in simple steatosis. Mitochondrial free cholesterol 
deposition causes hepatocyte apoptosis and necrosis 
by activating JNK1[103]. High-mobility-group-box 1 and 
toll-like receptor 4 are both involved in this activation 
mechanism[103]. Cholesterol markedly promoted the 
apoptosis of steatosis HepG2 cells in vitro, likely through 
the up-regulation of expression of Bax and caspase 
3[104]. Palmitate activation by fatty acid transport 
protein 4 triggers hepatocellular apoptosis via altered 
phospholipid composition and steatosis by acylation into 
complex lipids[105]. These complex lipids are involved in 
the development of NAFLD[105]. E2F transcription factors 
are known regulators of the cell cycle, proliferation, 
apoptosis, and differentiation. E2F1 regulates lipid 
synthesis and glycolysis and thus contributes to the 
development of NAFLD[106]. 

Androgen-dependent proapoptotic polycystic ovarian 
syndrome (PCOS) may directly contribute to NAFLD 
progression in PCOS patients[107]. A recent study gave a 
complementary fast food (FF) diet to a NASH mouse model, 
thus mimicking features of the metabolic syndrome. 
The study found that miR-21 levels increased in both 
the liver and muscle and expression of peroxisome 
proliferator-activated receptor α, a key miR-21 target, 
was decreased[108]. In a typical model of NASH-associated 
liver damage, miR-21 ablation results in a progressive 
decrease in steatosis, inflammation and lipoapoptosis, 
with a subsequent impairment of fibrosis[108].
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MICROBIOTA AND APOPTOSIS
Intestinal endotoxin [lipopolysaccharide (LPS)] augments 
liver injury in MCD mice[109]. In a recent study, a group 
of male C57BL/6 mice were fed with a MCD diet for 17 
days, injected with LPS intraperitoneally, and sacrificed 
6 h after LPS injection. The study found that LPS 
upregulated TNF-α production, which induce hepatocyte 
apoptosis[110]. Palmitate and lysophosphatidylcholine 
(LPC) induced upregulation of the p53-upregulated 
modulator of apoptosis and cell-surface expression of 
the death receptor TNF-related apoptosis-inducing ligand 
receptor 2[111]. In part, microbiota may be involved in 
the progression of NAFLD and NASH through hepatocyte 
apoptosis.

CONCLUSION
Cell death, including apoptosis, seems important in the 

progression of NAFLD and NASH (Figure 1). Recently, 
several inhibitors of apoptosis have been suggested as 
potential treatments for NASH (Table 1)[112-124]. Clinical 
trials for the treatment of NASH are currently being 
conducted[125] and some are targeting apoptosis in 
NASH patients. Increased hepatocyte apoptosis may 
distinguish NASH from NAFLD[126]. Repair responses 
may play an important role in controlling the disease 
severities of NASH[126]. We reviewed published articles 
related to this topic and discussed the importance of 
apoptosis in NAFLD and NASH. 
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