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Acute GVHD - clinical presentation and risk factors

Allogeneic hematopoietic cell transplantation (allo-HCT) is a well-established treatment for 

hematological diseases incurable by conventional treatments1. More than one million 

hematopoietic cell transplants have been performed, of which 40% were allogeneic2. The 

most common life-threatening complication is graft-versus-host disease (GVHD). GVHD 

occurs when immune competent T cells in the donated tissue (the graft) recognize the 

recipient (the host) as foreign (nonself). The resulting immune response activates donor T 

cells to gain cytolytic capacity then attack the recipient to eliminate foreign antigen(s)-

bearing cells. The two main clinical presentations are acute GVHD and chronic GVHD. 

Typical acute GVHD signs include a maculopapular rash (skin), hyperbilirubinemia with 

jaundice due to small bile duct damage leading to cholestasis (liver), nausea, vomiting and 

anorexia [upper gastrointestinal tract (GI)], and watery or bloody diarrhea and crampy 

abdominal pain (lower GI) (Suppl. text, Suppl. Table 1 in Suppl. Appendix; Figure 1). Acute 

GVHD diagnosis relies on clinical, laboratory, and biopsy assessment of target organs. 

Acute GVHD severity is graded clinically by tabulating the extent of involvement of the 

three main target organs: skin (the most frequent and often the earliest clinical manifestation 

of acute GVHD), gastrointestinal tract (second most common), and liver3,4. Overall grades 

are grade I (mild), II (moderate), III (severe), and IV (very severe). Amongst all allogeneic 

hematopoietic cell transplant patients, 30-50% develop acute GVHD (grade I-IV) and 14% 

experience severe acute GVHD (grade III-IV)5. Risk factors are summarized in Table 2 

(Suppl. Appendix) and include degree of HLA mismatch, unrelated donors, female donors 

for male recipients, peripheral blood stem cell grafts and conditioning regimen intensity6–8.

Donor T-cell recognition that induces acute GVHD can be directed against host MHC and/or 

minor histocompatibility antigen (miH) disparities. HLA class I molecules (A, B, and C) are 

expressed at variable levels by all cells whereas MHC class II molecules (DR, DQ, and DP) 

are mainly expressed by hematopoietic cells, especially antigen-presenting cells (APCs) 
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such as host B-cells, dendritic cells (DC), macrophages and monocytes. Recent data indicate 

that recognition of a mismatch in the polymorphic MHC class I chain-related gene A or 

MICA is connected to higher GVHD risk9. The role for miH is supported by genome-wide 

analysis of single nucleotide polymorphisms (SNPs) resulting in amino acid coding 

differences between recipients and donors10; each 1% increase in genome-wide recipient 

mismatching is associated with a 20% increase in the hazard of severe acute GVHD10. MiH 

mismatches and allo-hematopoietic cell transplant are connected to GVHD11. Although 

high-resolution HLA typing with next generation sequencing will likely detect more HLA 

gene mismatches, it is unclear whether such information will lead to improved allo- 

hematopoietic cell transplant outcomes, since not all mismatches may be recognized by the 

donor T cells. Additionally, SNPs for chemokines, cytokines, costimulatory molecules and 

micro-RNAs (miRs) are also associated with acute GVHD risk (Suppl text). Although acute 

GVHD risk can be increased by mismatches and closer matching may reduce the risk, 

mismatched antigens present in normal tissue may be shared with malignant cells; thus, 

some mismatches may be important for graft-versus-leukemia (GVL) responses and greater 

matching could increase relapse risk.

Tissue damage and early events of acute GVHD investigated in the mouse 

model

Our understanding of acute GVHD biology is mostly based on murine studies, albeit limited 

by the physiological and immune system differences of mice and humans, transplant 

procedures12, and microbiome13. Nonetheless, GVHD mouse models have been the basis for 

much of our understanding of GVHD biology. The earliest acute GVHD pathophysiological 

events are neoangiogenesis14,15 and intestinal tract infiltration by innate myeloid cells such 

as neutrophil granulocytes (neutrophils)16–19 and monocytes20,21, first-wave immune 

responders to tissue injury and foreign pathogens. Recipient neutrophils impact GVHD 

through their activation and reactive oxygen species (ROS) production in the GI tract17. The 

impact of neutrophils on acute GVHD is further supported by observations that a high 

density of neutrophil infiltration correlated with an unfavorable outcomes18, increased 

intestinal permeability after allo-hematopoietic cell transplant19 and conversely, defective 

neutrophil ROS production in chronic granulomatous disease patients resulted in low acute 

GVHD rates22. However, tissue protective effects can be conferred by neutrophils and 

monocytes dependent upon the specific cell subset involved, time point related to allo-

hematopoietic cell transplant and the tissue and environment context (Suppl. text, Suppl. 

Appendix).

In the early acute GVHD phase, inflammatory triggers can drive both the innate and 

adaptive immune responses. These triggers can be divided into sterile damage associated 

molecular patterns (DAMPS) and pathogen-associated molecular patterns (PAMPS). The 

DAMPS comprise molecules released into the extracellular space only when tissue damage 

occurs that cause immune activation23. GVHD can be enhanced by extracellular adenosine 

triphosphate (ATP) activating the purinergic P2X7 receptor24 and P2Y2 receptor20. ATP is 

metabolized by the ectonucleotidase CD39, expressed by endothelial and immune cells, into 

adenosine monophosphate and then into anti-inflammatory adenosine (by CD73, expressed 
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in acute GVHD organs such as colon, liver, and lung; endothelial cells; leukocytes)25. 

Consequently, the lack of CD73 enhances GVHD but also GVL effects26,27. ATP and uric 

acid can cause activation of the Nlrp3 inflammasome, a myeloid expressed multiprotein 

oligomer containing caspase-1 or -11, leading to pro-IL-1β cleavage into its bioactive form, 

enhancing GVHD28. Other DAMPs include heparan sulfate, high mobility group box 1 

protein (HMGB1), sialic acid-binding immunoglobulin-type lectins (siglecs), mitochondrial 

components, IL-33 or the small leucine-rich repeat proteoglycan, biglycan29–36 (Figure 2). 

Like myeloid cells, tissue and inflammatory context are important for the net DAMP effects. 

This was particularly evident for IL-33 that has anti-inflammatory properties when given 

before tissue damage due to expansion of IL-33 receptor [suppressor of tumorigenicity 

(ST2)] expressing suppressor CD4+CD25+FoxP3+ regulatory T cells (Treg)34. Conversely, 

IL-33 administration during evolving GVHD promotes interferon (IFN)-γ producing T cell 

expansion and acute GVHD34, while blockade of the IL-33/ST2-axis can reduce acute 

GVHD34,35.

Although the role of sterile DAMPS in GVHD was discovered in the last decade, the role of 

bacteria and the resulting PAMPS such as lipopolysaccharide (LPS) in GVHD has been 

studied since the 1970s with the first seminal studies in mice37. Direct effects of bacterial 

components that engage immune system pattern recognition receptors (PRRs) such as Toll-

like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NOD-

like receptors; NLRs) can activate APCs, promoting acute GVHD. Novel technologies such 

as bacterial genome sequencing permit better understanding of which bacteria in the GI tract 

decline with antibiotics diminishing acute GVHD and conversely, which bacteria have a 

protective role for acute GVHD38,39 as well as relapse- and progression-free survival40. 

GVHD itself induces dysbiosis in mice41. Increased GVHD-related mortality that can occur 

in mice and in patients due to antibiotic treatment39 is likely due to the loss of GI 

homeostasis that heavily depends on microbiota-derived metabolites. Intestinal bacteria-

secreted butyrate functions as a histone deacetylase (HDAC) inhibitor, and potently reduces 

GVHD by inhibiting indoleamine-2,3-dioxygenase (IDO)-dependent innate immune and 

allo-stimulating APC functions in a STAT-3-dependent manner42. IDO expession itself is 

upregulated on intestinal parenchymal cells and APCs in mice43 as a result of IFN-γ 
produced by alloreactive T- cells44. IDO causes local depletion of the essential amino acid 

tryptophan through a stress response mechanism, resulting in T-cell metabolic starvation and 

apoptosis at sites of high IDO expression (e.g. colon)43. Fungi and viruses also are 

connected to GVHD severity, e.g. α-Mannan derived from fungi induces Th17-mediated 

pulmonary GVHD in mice45. Cumulatively, DAMPS and PAMPS lead to rapid intracellular 

biochemical cascades that induce caspase-1 cleavage of inactive cytokines stored 

intracellularly (e.g. IL-1β; IL-18) and the transcription of genes that encode for cytokines, 

chemokines and their receptors. Overall, the early events of acute GVHD set the stage for 

later T-cell priming and expansion.
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T-cell activation, co-stimulation, survival and metabolism in mouse models 

of aGVHD

A key event for the development of acute GVHD is the interaction of T cells expressing a 

suitable T-cell receptor (TCR) with APCs that express host MHC or miH peptides. Recent 

reports from mouse acute GVHD models also point to the role of non-hematopoietic cells in 

the antigen presentation process46,47. T cells are the main effectors causing target tissue cell 

death that can be mediated by the expression of the TNF family member, FAS-ligand, and 

release of intracellular granule contents including the serine protease, granzyme B, and pore-

forming cytolytic protein, perforin48,49. Where MHC class I only is mismatched, donor 

CD8+ T cells alone are sufficient to induce GVHD. For miH disparities, CD8+ T cells 

require cognate (direct) interactions with GVHD target tissues miH50, a situation 

particularly relevant in human allo-hematopoietic cell transplant recipients due to frequent 

miH mismatches. CD4+ T cells can cause GVHD by cognate interactions with MHC class II 

alone or with miH peptides or can damage tissues without cognate interactions by releasing 

cytotoxic cytokines, such as TNF-α, that induce apoptosis in epithelial cells51. In contrast to 

T cells, NK cells reduce GVHD via the elimination of recipient-type APC based on killer-

cell immunoglobulin-like receptor (KIR)-mismatches52 and elaboration of TGFβ that can 

suppress T-cell activation53.

Besides the TCR activation, T cells need co-stimulation, a second T-cell signal required to 

lower the TCR activation threshold, amplify and sustain cytokine production, inhibit 

apoptosis, and support T-effector metabolism. The role of multiple costimulatory pathways 

has been studied in acute GVHD including positive regulatory axes [CD2854,55, ICOS 

(CD278)56], TNFR-superfamily receptors [CD40L(CD154), OX40(CD134), 

4-1BB(CD137)] and negative regulatory pathways [CTLA-4(CD152)55, PD-1(CD279)/PD-

L1(CD274)57,58 and B7-H359(CD276)], amongst others (Suppl. text, Suppl. Appendix). The 

third signal for the T-cell activation and survival is cytokine-mediated. Multiple cytokines 

(Suppl. text, Suppl. Appendix) were found to play a role in the pathogenesis of GVHD such 

as IL-1β and T-helper 1 (Th1) cytokines (IFN-γ, IL-2, and TNF). The differentiation stage 

(naive, effector/memory) of T cells is decisive for their ability to cause acute GVHD. In 

acute GVHD mouse models, memory CD4+ T cells cause less or almost no acute GVHD but 

mediate GVL effects60,61. Naïve T cells migrate to lymph nodes, via L-selectin (CD62L) 

and the chemokine CCR7, where priming takes place, e.g. via interaction with donor-derived 

CD11b−CD103+ DCs that have migrated to mesenteric lymph nodes from the colon, 

imprinting donor T cells to express gut-homing integrin receptors62.

T-cell differentiation and proliferation during GVHD require multiple energy sources to 

keep pace with the high metabolic demands. Aerobic glycolysis is essential for optimal 

GVHD Teff responses63–65. In some studies, Teffs also have been shown to utilize oxidative 

phosphorylation and fatty acid oxidation63,65,66, supplying vital energy needs not 

accomplished by glycolysis alone. Targeting metabolic pathways and subverting T-cell 

energy utilization by inhibition of glycolysis, fatty acid oxidation and oxidative 

phosphorylation, and/or glutaminolysis or via essential or conditionally essential amino acid 

deprivation (e.g. tryptophan or L-arginine, respectively) may reduce the frequency of rapidly 
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proliferating T cells responsible for acute GVHD. This field of investigation builds upon 

early studies demonstrating that blockade of the nutrient sensor, mammalian target of 

rapamycin (mTOR), ameliorates acute GVHD67 and CD28 costimulation regulates 

glycolysis68 along with more recent studies showing that the negative regulator, PD-1, 

suppresses glycolysis and promotes lipolysis and fatty acid oxidation69. The specific 

nutrients and magnitude of energy needed during GVHD likely depends upon the T-cell 

subset, proliferation rate, intensity of inflammatory response, and local tissue environment. 

As metabolism drives cell cycle and proliferation, other novel targets are cyclin-dependent 

kinases (CDK) that affect cell cycle regulation. For instance the CDK-inhibitor roscovitine 

prevents alloreactive T-cell expansion and protects against acute GVHD in mice70. The role 

of the three signals for T-cell activation and differentiation, key cytokines, and metabolic 

demands derived from murine acute GVHD studies provide pathophysiology-based targets 

for exploration in humans.

Biomarkers for aGVHD severity - studies in patients

To predict the risk of GVHD and the response to immunosuppressive therapy, multiple 

biomarkers have been investigated in allo-hematopoietic cell transplant patients (Suppl. text, 

Table 3, Suppl. Appendix). The serum level of the soluble form of ST2 was reported to be an 

important biomarker for therapy-resistance in patients developing acute GVHD71. Based on 

this observation an early-biomarker algorithm was studied for its predictive value for lethal 

acute GVHD72. A 4-biomarker panel [ST2, TNFR1, IL-2Rα chain(CD25), regenerating 

islet-derived protein-3 alpha(REG3α)], released from injured tissue or activated Teffs, was 

used to predict increased acute GVHD-related death. By modeling 6-month non-relapse 

mortality in an independent test set and validation set, a 2-biomarker model using ST2 and 

REG3α concentrations identified patients with a cumulative incidence of 6-month 

nonrelapse mortality of 28% in the high-risk and 7% in the low-risk group72.

Micro-RNAs (miRs) are potent regulators of multiple pro-inflammatory target genes and are 

readily measurable in patient serum. Multiple miRs in sera were strongly connected to acute 

GVHD risk73, in particular miR-155 and miR146a74. In initial studies, the presence of a 

miR-146a polymorphism (rs2910164) in the donor or the allo- hematopoietic cell transplant 

recipient was connected to higher rates of grade III and IV acute GVHD75,76, a finding 

requiring confirmation in larger patient cohorts. These and possibly other yet to be 

discovered biomarker panels hold promise to better predict the risk of acute GVHD and 

acute GVHD-related mortality, which could lead to a more individualized GVHD-

prophylaxis approach.

Classical acute GVHD preventive and therapeutic strategies that have been 

tested in the clinic

Acute GVHD prophylaxis with the calcineurin inhibitor cyclosporin A and methotrexate, a 

folate antagonist, is used in the majority of allo-hematopoietic cell transplant recipients 

based on a sequential, prospective randomized trial showing cyclosporine A and 

methotrexate was superior to cyclosporine A alone77 (Suppl. text, Suppl. Appendix). 

Randomized, multicenter phase-III trials of the pan-T-cell-depleting reagent, rabbit anti-
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thymocyte globulin (ATG-F), showed decreased acute GVHD and chronic GVHD incidence 

without increased relapse or non-relapse mortality when added to standard prophylaxis78,79. 

The mode of action of the most frequently applied classical immunosuppressive medications 

is summarized in Figure 3A. The cyclosporine A and FK506, inhibit GVHD by preventing 

nuclear factor of activated T cells (NFAT) activation thereby reducing IL-2 transcription and 

Teff activation, albeit with a concurrent reduction in anti-inflammatory Treg that are IL-2-

dependent. In contrast to calcineurin inhibitors, rapamycin is more potent in suppressing 

expansion of conventional T cells compared to Treg, most likely due to their greater 

dependence on the mTOR/protein kinase-B-pathway compared to Tregs80. More recently, 

post-transplant cyclophosphamide has been used to deplete conventional T cells while 

relatively preserving Tregs81, resulting in a relatively low incidence of GVHD even in 

haploidentical transplant recipients82.

Cell-based approaches to prevent acute GVHD include the manipulation of the donor graft. 

Ex vivo T-cell depletion accomplished by positive selection of CD34+ cells or negative 

selection against T cells and B cells was reported83. A promising strategy is the enrichment 

of T-cell receptor gamma/delta T cells to prevent relapse84. T-cell-depletion specifically for 

naive T cells alone showed a reduced chronic GVHD incidence85. Adoptive transfer of Treg 

or donor lymphocytes cultured with IL-10-treated host APCs that enriches for IL-10 and 

TGFβ producing Tregulatory type 1 (Tr1) has been investigated. Clinically, prophylactic 

Treg transfer was associated with low acute GVHD rates and adequate immune 

reconstitution86,87. Tr1 enhanced immune reconstitution in 5/12 patients when given at 1-2 

months after allo-hematopoietic cell transplant88. Besides Treg and Tr1, mesenchymal 

stroma cells were tested in the clinic for their ability to reduce GVHD severity. Different 

clinical studies showed either impressive responses or, in a randomized clinical trial, failed 

to show improvement of GVHD-related mortality89,90 which may be due to mesenchymal 

stem cell preparation, transfer time point, GVHD severity or organ involvement.

Despite prophylaxis acute GVHD still evolves and is treated first with glucocorticoids based 

on randomized controlled trials91. Acute GVHD patients that are glucocorticoid refractory 

have a dismal long-term prognosis with only 5-30% overall survival. A summary of acute 

GVHD drug therapies is listed in the supplementary appendix. Currently only two 

randomized phase-III trials in glucocorticoid-refractory acute GVHD have been reported 

using gavilimomab (murine anti-CD147; ABX-CBL)92 or inolimomab (murine anti-

CD25)93. The first trial reported an 18-month overall survival after treatment initiation that 

was less favorable in the gavilimomab arm compared to the ATG arm (35% versus 45%)92. 

In the second trial, inolimomab was compared to ATG with the primary objective to evaluate 

1-year overall survival93. The primary end point was not reached and there was no 

significant difference in overall survival93. As both antibodies had been promising in early 

phase clinical studies but failed to show improvement in phase-III trials, it is important that 

promising agents used to treat glucocorticoid-resistant acute GVHD identified in phase I/II 

or phase II trials are tested in randomized phase-III trials in the future. As such, no proven 

second-line therapy has been uniformly adopted or approved for glucocorticoid-resistant 

acute GVHD.
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Novel acute GVHD preventive and therapeutic strategies being tested

Since T-cell migration to GVHD organs is needed to cause acute GVHD and is initiated by 

chemokine gradients produced within these target organs as a result of tissue injury or innate 

cell infiltration, chemotaxis should be considered a central event in acute GVHD 

pathogenesis. In support of this contention, a clinical phase-II trial reported that CCR5 

inhibition prevents GVHD of liver and gut before day 10094. The phase-II trial used 

reduced-intensity conditioning which may be relevant to the successful outcome because the 

CCR5 migratory signals appear less important in the context of myeloablative radiation in 

mouse acute GVHD models. For example, CCR5 inhibition was protective against GVHD in 

a non-irradiated GVHD mouse model but GVHD onset was earlier and severity worsened 

when CCR5-deficient T cells were transferred into heavily irradiated GVHD model95. In a 

different approach to inhibit migration, the sphingosphine-1-phosphate receptor antagonist, 

FTY720, has been shown to reduce murine acute GVHD by trapping T cells in lymphoid 

organs or reducing DC migration96 and is currently in clinical trials to prevent acute GVHD.

The fundamental role of IL-22 has been explored. IL-22 is produced by innate lymphoid 

cells type-3 (ILC3) that are depleted by GVHD, resulting in cypt apoptosis, ILC3 depletion 

and epithelial integrity loss97–99. Exogenous IL-22 can enhance the regeneration of intestinal 

stem cells (ISC) that express IL-22 receptors97–99. In a clinical trial 

(NCT02406651,ClinicalTrials.gov), IL-22 IgG2-Fc(F-652) is being given to patients with 

grade II-IV acute GVHD of the lower intestinal tract. Another recent approach to protect the 

intestinal tract involves the direct transfer of microbial species as acute GVHD therapy. In a 

small pioneer study, the first successful and safe application of related fecal microbiota 

transplants via nasoduodenal tubes in patients suffering from glucocorticoid-resistant acute 

GVHD was reported100. Three of four patients responded by 28 days after the first fecal 

transplant, allowing reduction of the glucocorticoid dose by 69%100. While encouraging, 

fecal transplantation is still to be considered a highly experimental treatment approach and 

needs validation in carefully designed prospective clinical trials. Other approaches currently 

being explored to prevent or treat GVHD in patients are blockade of T-cell co-

stimulation101, α-GalCer, a glycolipid that expands and activates natural killer T cells and 

subsequently expands Treg in patients102, anti-inflammatory antibodies, proteins or drugs 

targeting signaling by IL-6103, IL-23104, or multiple cytokine signaling pathways using 

HDAC inhibitors105, proteosomal inhibition106, or the anti-inflammatory protease inhibitor, 

alpha-1-antitrypsin107. Additionally, Janus-activated kinase (JAK)-1/2 inhibitors have shown 

promising results in preclinical studies108,109 as well as in retrospective clinical analyses110 

and are currently being tested in prospective randomized studies.

Promising novel strategies against acute GVHD tested in preclinical models 

but not yet in GVHD trials

In contrast to the approaches that have already reached clinical application, preclinical 

strategies being tested have continued to focus on targeting the signalling of multiple 

cytokine receptors, pro-inflammatory pathways and intestinal stem cells. Novel targets 

include kinase inhibitors that block the protein serine/threonine kinase ROCK1111, Aurora 
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kinase A112, MEK113, and others (Supplemental appendix and Figure 3B). Strategies being 

investigated to improve Treg efficacy by in vivo Treg expansion in mouse models include 

TNFRSF25 (DR3) stimulation using a fusion protein to ligate the receptor114, agonistic DR3 

antibody115 and agonistic TNFR2 antibody116.

Administration of R-spondin-1(R-Spo1), a WNT agonist, to mice reduced GVHD by 

protecting intestinal stem cells from conditioning injury117 and stimulating them to 

differentiate into secretory cells thereby inhibiting GVHD-associated microbiome changes. 

The protective effect of R-Spo1 was connected to the microbial microflora in the intestinal 

tract and partly abrogated when mice received broad-spectrum antibiotics. While bacterial 

components can activate innate immune cells like neutrophils and monocytes, bacteria are 

also critical for intestinal tissue homeostasis. Indeed, transfer of selected strains of Clostridia 
known to produce the short chain fatty acid butyrate results in increased Treg frequencies in 

the GI tract118. Butyrate given via the GI tract may be proven to be effective in the absence 

of Clostridia transfer, albeit repetitive administration would likely be needed during the 

period of acute GVHD risk. Since Treg can potently suppress acute GVHD,119,120 these data 

link intestinal metabolism to GVHD. Transfer of innate lymphoid cells type 2 (ILC-2) into 

mice both prevented and treated acute GVHD by stimulating the expansion of anti-

inflammatory regulatory cell populations121. While still in pre-clinical testing, these 

approaches may be more effective than classical broadly immunosuppressive strategies 

compared to targeting of individual cytokine or chemokine signals or preferentially targeting 

the GI tract.

Although pharmacological strategies to overcome acute GVHD inflammation are typically 

short-lived unless a state of deep tolerance is acquired during drug therapy, the transfer of a 

tolerogenic cell population that persists in the body, could ideally lead to the achievement of 

long-term tolerance. First steps towards this strategy were made when Treg adoptively 

transferred into mice reduced acute GVHD119,120.

Summary and outlook

Acute GVHD remains a major life-threatening allo-hematopoietic cell transplant 

complication leading to high mortality and rendering patients that survive often profoundly 

immune deficient for several years. Acute GVHD clinical diagnosis, pathophysiology, 

standard as well as experimental prevention and treatment procedures and novel biomarkers 

to tailor GVHD-treatment are important developments that hold promise to lead to reduced 

acute GVHD rates. Major pathophysiologic pathways that drive acute GVHD include tissue 

damage due to the conditioning regimen or infection, recognition of non-self-MHC/miH and 

altered repair/tissue protective mechanisms including microbiome changes that cause a 

decline in protective microbial-derived metabolites.

Therapeutic directions that are particularly promising to pursue based on early clinical trial 

data include costimulatory pathway blockade, anti-IL-6R mAb103, HDAC-inhibitors105, 

kinase108,109- and proteasome-inhibitors106, the anti-inflammatory protease-inhibitor 

alpha-1-antitrypsin107, CTLA-4 antagonism101, CCR5 blockade94 and adoptive Treg 
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transfer86,87. These and other novel strategies being developed have to be tested in 

prospective phase-III trials to become standard therapy for acute GVHD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clinical features of aGVHD
Representative pictures for clinical aGVHD in early and advanced stages of the skin and 

intestinal tract are shown (A-D). Histologic aspects of skin (E), hepatic (F, G) and intestinal 

(H, I) lesions in GVHD. E. AGVHD of the skin, the black arrows indicate apoptotic cells in 

the basal layer of the epidermis. F. Damage to small interlobular bile ducts characterized by 

epithelial irregularities and rare apoptosis. Moderate inflammation of the adjacent portal area 

(hematoxylin & eosin, medium magnification). G. Infiltration of bile duct epithelium by 

CD3+ lymphocytes (anti-CD3 immunolabeling, high magnification). H. Mucosal surface 

denudation and partial crypt destruction in intestinal GVHD (hematoxylin & eosin, low 

magnification). I. Scattered apoptotic bodies in regenerating crypts in close association with 

exploding crypts containing karyorrhectic nuclear debris (hematoxylin & eosin, high 

magnification). Histological images were provided by Dr. Technau, Dept of Dermatology, 

Univ of Freiburg (skin), and Prof Schmitt-Gräff, Dept of Pathology, Univ. of Freiburg (liver, 

intestines).
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Figure 2. Schematic overview of the early events of GVHD
A: DAMPs (e.g. uric acid, ATP, heparan sulfate, HMGB-1 or IL-33) that are released from 

the dying cells or disrupted extracellular matrix and activate the respective receptors, e.g. 

ATP activates P2X7 and P2Y2, uric acid activates the Nlrp3 inflammasome. PAMPS derived 

from invading bacteria activate innate immune cells including donor derived CD103+ 

dendritic cells, inflammatory monocytes and neutrophils. A fraction of these cells migrates 

from the damaged intestinal epithelium towards the draining mesenteric lymph nodes where 
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donor T-cells are activated. ATP: Adenosine triphosphate, HMGB-1: High mobility group 

box 1 protein, ROS: reactive oxygen species, DAMPs: danger associated molecular patterns, 

PAMPs: pathogen associated molecular patterns.

B: Anti-inflammatory events and repair mechanism. Cells in the GVHD target organs 

attempt to counterbalance inflammation via the release of tolerogenic soluble factors, 

upregulation of anti-inflammatory surface receptors and repair mechanisms. Activation 

signals and chemotactic signals for Treg and Tr1 cells are provided in the lymph nodes. 

KGF: keratinocyte growth factor.
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Figure 3. Classical and novel approaches to target T-cell and dendritic cell activation
A: Sketch showing the mode of action of multiple immunosuppressive strategies that are 

currently applied in the clinic for prevention and therapy of aGVHD. mTOR: mammalian 

target of rapamycin, MTX: methotrexate, MMF: mycophenolate mofetil

B: Kinases that have been subject to targeted therapy approaches in aGVHD are shown. 

Blockade of the kinases ROCK-1, Aurora A, CDK2, MEK-1/2, JAK1-3 and PI3K was 

shown to reduce aGVHD in mouse models. The different signaling pathways in which these 

kinases have a non-redundant function are displayed. Tc: T cell, TCR: T-cell receptor
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