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Abstract

Phasic dopamine responses are thought to encode a prediction-error signal consistent with model-

free reinforcement learning theories. However, a number of recent findings highlight the influence 

of model-based computations on dopamine responses, and suggest that dopamine prediction errors 

reflect more dimensions of an expected outcome than scalar reward value. Here, we review a 

selection of these recent results and discuss the implications and complications of model-based 

predictions for computational theories of dopamine and learning.

Introduction

The striking correspondence between the phasic responses of midbrain dopamine neurons 

and the temporal-difference reward prediction error posited by reinforcement-learning 

theory is by now well established [1–5]. According to this theory, dopamine neurons 

broadcast a prediction error – the difference between the learned predictive value of the 

current state, signaled by cues or features of the environment, and the sum of the current 

reward and the value of the next state. Central to the normative grounding of temporal-

difference reinforcement learning (TDRL) is the definition of ‘value’ as the expected sum of 

future (possibly discounted) rewards [6], from whence the learning rule can be derived 

directly. The algorithm also provides a simple way to learn such values using prediction 

errors, which is thought to be implemented in the brain through dopamine-modulated 

plasticity in corticostriatal synapses [7,8] (Figure 1, left). This theory provides a 

parsimonious account of a number of features of dopamine responses in a range of learning 

tasks [9–12].

Are model-free dopamine prediction errors a red herring?

A core tenet of TDRL is that it is ‘model-free’: learned state values are aggregate, scalar 

representations of total future expected reward, in some common currency [1,13]. That is, 
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the value of a state is a quantitative summary of future reward amount, irrespective of either 

the specific form of the expected reward (e.g., water, food, a combination of the two), or the 

sequence of future states through which it will be obtained (e.g., will water be presented 

before or after food). Critically, model-free TDRL assigns these summed values to 

temporally-defined states; accordingly, the algorithm binds together predictions about the 

amount of reward and the expected time of delivery (Figure 1). In many studies, dopamine 

signals appear to reflect such temporally-precise, unitary value expectations, which also 

correlate with conditioned responding and choice preferences [14,15]. However, little work 

has tested this strong hypothesis directly, by, for instance, having a single cue predict several 

rewards of different types within a single trial, or by testing the effects of changes in type of 

reward on dopamine signaling, while keeping the reward value constant.

Another important feature of model-free learning (including TDRL) is that it posits that 

scalar state values are accrued solely through experiencing the relationship between the 

current state and the (possibly rewarded) state that follows [6,16]. That is, state values are 

learned through experience and ‘cached’ for future use. This is in contrast to model-based 

decision making [17], where values are computed anew each time a state is encountered by 

mentally simulating possibly distant futures using a learned internal ‘world model’, which 

captures the sequences of transitions between non-adjacent states and their associated 

rewards (but see below for some more nuanced distinctions).

Although phasic dopamine signals have predominantly been interpreted as model-free 

temporal difference prediction errors, a growing number of studies leveraging complex 

behavioral tasks, alongside novel optogenetic and imaging techniques, are revealing an 

increasingly detailed picture of dopamine reward prediction errors during learning, and the 

multiple dimensions of reward prediction on which they are based. Intriguingly, several of 

these studies have demonstrated a significant degree of heterogeneity in dopaminergic 

responses during learning, suggesting greater complexity in these signals than previously 

appreciated. Below we review evidence from these recent studies, asking what is the nature 

of dopamine signals? Do they reflect an aggregate (scalar) error, or a vector-based signal that 

includes not only the magnitude of deviation from predictions, but also the identity of the 

deviation (did I get more food than expected, or water instead of food)? And how might 

these signals be incorporated into learning algorithms implemented throughout the brain?

Temporal representation and dopamine

One notable property of dopamine prediction errors is that they are temporally precise: if an 

expected reward is omitted, the phasic decrease in dopamine neuron activity appears just 

after the time the reward would have occurred [2]. It is this phenomenon that inspired the 

TDRL algorithm, which models such temporally precise predictions by postulating 

sequences of time-point states that are triggered by a stimulus (known as the ‘complete serial 

compound,’ CSC stimulus representation, or ‘tapped delay line’; Figure 1), each of which 

separately accrues value through experience [6]. However, when a reward is delivered 

unexpectedly early, dopamine neurons do not display a phasic decrease in activity at the 

original expected time of reward, as would be implied by the CSC, in which a prediction 

error updates the value of the current, and not subsequent, timepoint states [18,19]. Reset 
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mechanisms, in which reward delivery terminates the CSC representation, have been 

proposed to address this [19], but other challenges suggest that the CSC is perhaps not as 

viable an explanation for learned timing. Specifically, prediction errors are only slightly 

enhanced to temporally variable rewards, suggesting that under some conditions reward 

predictions may have low temporal precision [20], and multiple studies in humans (first 

inspired by [21]) have shown that a not-fully-predicted reward (or reward omission) affects 

choice of its related cue on the very next trial, suggesting that the CSC include only a single 

time-point, which then leaves unexplained how the timing of reward (relative to stimulus 

onset) is learned.

An alternative is to allow task states to persist for learned durations (formally, a ‘semi-

Markov’ framework), with reward predictions tied to a temporally-evolving belief about the 

current latent state. Learning values for latent states, rather than cues, incorporates a rich 

world model, and suggests that prediction error signaling is ‘gated’ by inference about when 

one state has transitioned to another [19,22]. Recent work has directly demonstrated that 

dopamine reward prediction errors are consistent with this framework [23]. Here, when a 

cue predicted reward delivery with an unknown (but capped) delay, the passage of time since 

cue onset made reward delivery more likely, eliciting smaller dopamine prediction errors to 

later rewards. In contrast, when reward delivery was probabilistic, as time passed it became 

more likely that the trial would not be rewarded, and indeed dopamine responses increased 

with reward delay. Consistent with this theory, other studies have shown that dopamine 

activity reflects evolving temporal predictions, suggesting at the very least that inference 

about the timing of events (for e.g., the hazard rate) influences the computation of dopamine 

reward prediction errors [20,24–26]. More broadly, optogenetic manipulation of midbrain 

dopamine activity is sufficient to bidirectionally change judgments on a temporal 

categorization task [25], directly implicating dopamine signaling in timing processes. It also 

appears that the generation of prediction errors due to mistimed reward delivery is neurally 

separable from computing prediction errors due to an unexpected amount of reward, as 

ventral striatum lesions abolish the former (so a mistimed reward does not elicit a prediction 

error signal) while leaving prediction errors due to reward magnitude intact. This finding 

argues against the time-bound representation of value in the CSC representation, suggesting 

instead a semi-Markov model in which the duration of states and the amount of reward 

associated with each state are separately learned, and the ventral striatum plays a key role in 

learning or representing the former, but not necessarily the latter [22].

In general, it is often implicitly assumed that states correspond directly to percepts of cues in 

the environment [27,28]. However, apart from the challenges that timing poses to such an 

account, even straightforward neural representations of the environment are an interpretation 

of the external reality through, at minimum, a relevance filter [29,30]. It is therefore natural 

to extend TDRL models by allowing expected value to be calculated with respect to inferred 

states that capture the learned structure of a task [17,31–34]. The mapping between 

observations (such as cues and rewards) and underlying task states may be probabilistic (as 

in ‘partially observable environments’) or ambiguous (for example in the case of conflicting 

or mixed cues) [19,35–37], making state inference itself a non-trivial process. However, it is 

important to keep in mind that both model-free and model-based values can be learned/

computed for states that do not correspond directly to observable cues—prediction errors 
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based on inferred states are not, in of themselves, a departure from model-free TDRL, since 

at the time the errors are generated, they may still be based on cached values attached to the 

hidden states through direct experience.

Not all dopaminergic predictions are learned through direct experience

Indeed, a central aspect of TDRL that makes it model free is that, in the algorithm, values 

for state are learned (and cached) through direct experience with the state. Recent work 

suggests, however, that phasic dopamine may reflect values that have been learned 

indirectly. Of particular relevance is a sensory preconditioning experiment showing that 

reward predictions that are ascribed to a cue solely through its relationship to another neutral 

cue are reflected in dopamine neuron firing. Here, two neutral cues (A and B) were first 

presented in sequence multiple times (A→B), and then one of the cues, B, was paired with 

food in a separate training session. Behaviorally, this later training is known to endow cue A 

with reward-predictive value. Importantly, the authors showed that after B→food training, 

the presentation of cue A elicited a phasic increase in dopamine, which was correlated with 

activity elicited by presentation of cue B. This suggests that the expectation that A would 

lead to reward, presumably computed through model-based forward simulation of A→B and 

B→food, was available to dopamine neurons [38].

Notably, TDRL has no mechanism by which value can transfer between predictive cues 

retrospectively. Attempts have been made to explain these results by enhancing TDRL to 

operate not only on the current state, but on states that are inferred to be related to the 

current state—a departure from pure model-free reinforcement learning—as in ‘mediated 

learning,’ [39,40] or the Kalman TD model [32,41]. These explanations suggest that during 

the pairing of B with food, a neural representation of A is activated by association to B, and 

therefore also associated with the food. However, if the orbitofrontal cortex—an area 

associated with model-based computing of values—is inactivated at test, responding to A is 

abolished, while responding to B is intact [42]. Given that OFC has been repeatedly shown 

to be unnecessary for conditioned responding to cues directly paired with reward (for 

example, cue B in this experiment), this result strongly suggests that the value of A is 

computed in OFC at the time of the test and not during the B→food training. That dopamine 

prediction errors may reflect this computed-on-the-fly value is also consistent with 

accumulating evidence from fMRI showing that prediction error signals include model-

based information and that model-based decisions are sensitive to striatal dopamine [43–45].

We note that even if model-based values are used to compute prediction errors, the error 

itself may still influence only model-free learning, for instance of a behavioral policy [46]. 

Indeed, it is possible that at test A invokes a model-based representation of the inferred B, 

the cached value of which is available to dopamine neurons. Under this scenario, the 

prediction error signaled to A arises from the cached value of B not A [47]. It is also 

important to note that adding inferred states and access to model-based values does not (yet) 

require that dopamine convey a prediction error signal that is used for learning the model 

itself. However, optogenetic silencing in a related task shows that dopamine transients are in 

fact required for the initial formation of associations between cues A and B, even though no 
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rewards were present, and therefore learning in that phase could not have been driven by 

scalar prediction errors [48].

Multiple dimensions of prediction in dopamine responses

Another fundamental property of TDRL is that it learns aggregate, scalar predictions of the 

sum of future rewards predicated on occupying the current state—a ‘common currency’ 

value that sums over apples, oranges, sex and sleep. As alluded to above, and complicating 

the mapping between dopamine and TDRL even further, it appears that dopamine neurons 

respond to deviations from predictions in dimensions other than scalar value [49]. In 

particular, prediction errors have been recorded for an unexpected change in the flavor of 

reward pellets, even though there was no change in their subjective value [50]. Such “state 

prediction errors,” that is, prediction errors due to an unexpected state (“I got chocolate milk 

rather than vanilla”), suggest that the identity of the outcome is a component of reward 

prediction in dopamine circuits, at odds with the model-free framework that explicitly 

ignores specific identities and compares values in common currency. Information about 

outcome identity may reflect inputs from the orbitofrontal cortex [51] which track multiple 

specific features of outcomes beyond reward amount [52,53].

Model-based learning with dopamine prediction errors

All told, current findings suggest that dopamine neurons have access to model-based 

representations of expected rewards that reflect learned properties beyond a scalar 

representation of value (Figure 1, right). However, the convergence of TDRL to a useful 

value representation stems from the alignment between the computational goal of the agent 

(to maximize total reward through value-guided action) and the single dimension along 

which reward predictions are represented (i.e. scalar value). Unless used judiciously, a 

generalized prediction error signal [54] that responds to any mismatch along multiple 

dimensions of an outcome (e.g., the color of a reward, or the oddly shaped plate it was 

served in) might erroneously perturb value representations upon which choices are 

putatively based, biasing the animal away from the normative goal (for example, towards 

preferring low-quality food served in ever-changing plates, rather than high-quality food 

served in more mundane dinnerware). Such biases have indeed been identified in the 

influence of novelty and information on both dopamine reward prediction errors and value-

guided choice [55,56], but it is unclear how widespread they are.

Indeed, to be truly useful for learning a world model, ‘model-based prediction errors’ must 

be computed for every aspect of the model in parallel—a multidimensional (i.e., vector) 

prediction error that signals not only that there is a mismatch between expectation and 

reality, but exactly what dimension of prediction was misaligned [34,57,58]. Do dopamine 

neurons signal such model-based prediction errors? If so, ideally, these would be broadcast 

in parallel so that the correct component of the model might be updated via its respective 

prediction error [19,22] (Figure 1, right). This would allow a segregation of learning across 

different dimensions of reward prediction such as value, state identity, or time, supported by 

separable neural populations. Such segregation might account for the distinct pattern of 

prediction-error signaling in dopamine terminals across striatal subregions [59,60], and 
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might be a more prominent feature of dopamine activity than previously detected, in part due 

to a sampling bias whereby experiments investigating dopamine signaling have almost 

exclusively manipulated reward value, not other state dimensions.

Moreover, because much of what we know about dopamine activity is derived from the 

analysis of activity of individual neurons or localized dopamine release or from techniques 

that average these signals over large populations, we may be missing more complex 

spatiotemporal and network interactions that can only be uncovered by treating these 

neurons as ensembles with unique input and output relationships. For example, target 

regions that receive, and learn from, dopamine prediction error signals might locally 

separate the incoming signal into distinct components, allowing the relevant dimensions of 

prediction to be flexibly decoded, depending on the current task and internal goals. For 

example, cholinergic signaling in the striatum is known to powerfully modulate dopamine 

release [61,62], implying local circuit control over the influence of dopamine signals 

according to the current state of the task [63,64]. However, exactly how a truly multiplexed 

prediction error could be separated into its orthogonal components is not trivial, to say the 

least.

So what is the role of dopamine in learning?

One thing that these recent studies make clear is that a better understanding of the 

computational role of dopamine entails a broader consideration of what it means for a 

reinforcement learning algorithm to be ‘model-based’ [34]. Model-based prediction in RL 

has been most strongly identified with the use of models for forward planning, enabling 

values to be computed on the fly (as opposed to cached) in order to flexibly support goal-

directed behavior [65]. But models may also be exploited to enable learning over hidden 

states, for example in algorithms that combine inference with TDRL [36,66]. Indeed, the 

necessity to represent states through time, either by a CSC or other, more complex state 

representation [67,68], can be thought of as a model of the past—and now unobservable—

state of the environment. Overall, the dopaminergic signatures of model-based prediction we 

have highlighted draw attention to the question of what is being learned about—while a 

relatively straightforward stimulus representation may be evident to an experimenter, such a 

representation may not form the basis of learning for a behaving animal in more complex 

tasks [66].

The suggestion that dopamine signals a multidimensional model-based prediction-error 

signal departs considerably from the claim (and supporting evidence) that all dopamine 

neurons broadcast a single, scalar quantity across vast areas of the brain. But, it is hard to see 

how lumping together all model-based prediction errors into one aggregate signal would be 

useful for downstream learning, unless we modify what we think the prediction error does 

downstream. One possibility is that the dopamine prediction-error signal enhances learning 

in target areas indiscriminately, without signaling the direction of learning—similar to a 

salience signal, in the service of learning rather than action—and information about what 

exact prediction was violated is available from other sources. Indeed, sensory and 

associative areas that have a detailed representation of the current state (including all cue and 

reward properties deemed relevant to the task) may be in the best position to know exactly in 
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what ways this state is unexpected. Unfortunately, this re-envisioning of the role of phasic 

dopamine signals would not explain why some prediction errors, namely those to reward 

omission, are signaled by pauses in firing. Multiplexing of model-free scalar prediction 

errors and model-based multidimensional prediction errors may be the answer – but only 

future experiments directly testing for the existence of several of these errors at once, will 

tell. In any case, what is becoming clear is that phasic dopamine signals, until recently a 

beacon of computationally-interpretable brain activity, may not be as simple as we once 

hoped they were.
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Highlights

• Recent work shows that dopamine reward prediction error signals reflect 

model-based information.

• These model-based predictions rely on complex internal representations of 

multiple dimensions of the expected outcome, including reward identity, 

delay, variability.

• We review recent work establishing the role of dopamine in model-based 

learning, with a focus on computational implications for how dopamine 

signals influence learning in the brain.
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Figure 1. 
Multiple dimensions of prediction in dopamine prediction errors. Consider a simple task in 

which a brief presentation of a light cue is repeatedly followed by a drop of vanilla milk 

after some fixed delay (middle). What would happen on a trial in which the light is followed 

by a drop of equally-preferred chocolate milk after a shorter delay? Model-free TDRL with 

a complete serial compound stimulus representation proposes that the cue triggers a discrete 

sequence of activity that represents sequential time points after the presentation of the cue 

(left; a number of neurons are depicted horizontally; their activity at different timepoints is 

portrayed vertically). At each timepoint, summation of this weighted representation 

produces a scalar estimate of future value (V), which dopamine neurons (DA) compare to 

obtained reward to compute a prediction error signal. The prediction error is then broadcast 

widely (red) and used to modify the weights for neurons that were recently active (circles on 

arrows). When an unexpectedly early, chocolate-flavored reward is delivered, the prediction 

error signals the difference in time-discounted value, and modifies the weights for the part of 

the representation that is active when the prediction error is signaled. In contrast, we propose 

that dopamine neurons have access to (and maybe aid in learning) dimensions of prediction 

other than scalar value, and these are used for computation and signaling of prediction errors 

(right). For example, after the presentation of the cue, multiple features of the predicted next 

event (in this case, a liquid reward) may be represented by (perhaps overlapping) 

populations of neurons through time (color gradient), including the predicted amount (for 

example, one drop), the delay to reward delivery (it will arrive after several seconds) and the 

flavor of the reward (vanilla milk). At the time of reward delivery, violations of the 

prediction along any of these dimensions may elicit a phasic response from dopamine 

neurons, though different neurons may be specialized for prediction errors corresponding to 

different dimensions. In this case, at the early presentation of a drop of chocolate milk, 

prediction errors are elicited for the timing of reward delivery as well as for flavor (red) but 

no prediction error arises for amount (black).
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