Skip to main content
. 2018 Jul 6;13(7):e0199277. doi: 10.1371/journal.pone.0199277

Table 3. Models and corresponding tuning parameters.

Model Tuning parameters
Random Forests Number of Randomly Selected Predictors
Quadratic Discriminant Analysis No tuning parameters
GLM binomial distribution family No tuning parameters
Linear Discriminant Analysis Number of Discriminant Functions
Partial Least Squares Number of Components
Penalized Logistic Regression L2 penalty and complexity parameter
Nearest Shrunken Centroids Shrinkage threshold
Mixture Discriminant Analysis Number of subclasses per class
Neural Network Number of hidden units, weight decay
Flexible Discriminant Analysis Product degree and number of terms
Support Vector Machines with Radial Basis Function Kernel Sigma, cost, weight
k-Nearest Neighbors Maximum number of neighbors, distance, kernel
Naive Bayes Laplace correction, distribution type