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Abstract. Glioblastoma multiforme (GBM) is one of the most 
aggressive brain tumors. GBM represents >50% of primary 
tumors of the nervous system and ~20% of intracranial 
neoplasms. Standard treatment involves surgery, radiation 
and chemotherapy. However, the prognosis of GBM is usually 
poor, with a median survival of 15 months. Resistance of GBM 
to treatment can be explained by the presence of cancer stem 
cells (CSCs) among the GBM cell population. At present, there 
are no effective therapeutic strategies for the elimination of 
CSCs. The present review examined the nature of human GBM 
therapeutic resistance and attempted to systematize and put 
forward novel approaches for a personalized therapy of GBM 
that not only destroys tumor tissue, but also regulates cellular 
signaling and the morphogenetic properties of CSCs. The 
CSCs are considered to be an informationally accessible living 
system, and the CSC proteome should be used as a target for 
therapy directed at suppressing clonal selection mechanisms 
and CSC generation, destroying CSC hierarchy, and disrupting 
the interaction of CSCs with their microenvironment and 
extracellular matrix. These objectives can be achieved through 
the use of biomedical cellular products.
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1. Introduction

Glioblastoma multiforme (GBM) is one of the most aggressive 
brain tumors. This tumor represents >50% of primary tumors 
of the nervous system and ~20% of intracranial neoplasms (1). 
The average incidence rate of GBM is 3.19 cases/100,000 
individuals, and the median age of diagnosis is 64 years. 
The incidence of GBM is higher in men and individuals of 
the Caucasian race and non‑Hispanic ethnicity. Standard 
treatments involve surgery, radiation, and chemotherapy; 
however, prognosis is generally poor with a median survival 
of 15 months (2). GBM resistance to treatment (3‑5) can be 
explained by the presence of cancer stem cells (CSCs) among 
the GBM cell population.

CSCs are immortalized cells that are at the top of the GBM 
cellular population hierarchy, possessing the highest level of 
proliferation among all GBM cells (6). The patient's immune 
system does not detect CSCs, leaving them intact. They actively 
interact with the common pool of tumor cells recruited from 
the blood by non‑tumor cells and pathologically altered extra-
cellular matrix (7‑8). Certain basic theories of carcinogenesis 
consider the appearance of CSCs as a result of pathological 
transformation of neural stem cells in the brain (9). However, 
unlike normal stem cells, CSCs have a much higher content of 
proteins associated with proliferation, migration, DNA repair, 
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radiation and chemotherapy resistance, survival, invasion and 
aggression (10,11).

At present, there are no effective therapeutic strategies for 
the elimination of CSCs. As such, this calls for systematic 
analysis of GBM treatment resistance mechanisms and devel-
opment of novel methods for treatment directed not only at 
the total eradication of tumor cells, but also at the regulation 
of signaling and morphogenetic properties of CSCs. One 
of the most promising strategies is the implementation of 
post‑genome technologies for personalized medication and 
use of new biomedical cellular agents. Thus, a comparative 
study of our own experimental results and previous published 
data was conducted in order to formulate a proteome‑based 
regulation of CSCs in the complex treatment of GBM.

2. Current state of knowledge and possible solutions

Gliomas represent the largest group of primary brain tumors. 
According to the World Health Organization classification (4), 
gliomas with a high potential of successful treatment through 
surgery and up to 5‑year survival rate are assigned a lower 
grade of malignancy (Grade I‑II). A higher grade of malig-
nancy (Grade III‑IV) is typically assigned to gliomas with 
invasive growth, high resistance to radiation and chemotherapy, 
and a median survival of 1‑3 years. GBM is classified as an 
astrocytoma with the highest grade of malignancy (Grade IV).

Advances in molecular medicine have allowed to distin-
guish between primary and secondary forms of GBM (12). The 
first type of tumor develops spontaneously, while the second 
results from the transformation of a glioma with a lower grade 
of malignancy. Molecular and genetic abnormalities serve a 
key role in this process (13). Apart from epidermal growth 
factor receptor (EGFR), phosphatase and tensin homolog gene 
(PTEN), β‑catenin, SMO, PTCH, NF1 and NF2 gene muta-
tions are also typical in GBM. Various prognostic markers 
have been identified in GBM, and these include the methyla-
tion status of the gene promoter for O6‑methylguanine‑DNA 
methyltransferase (MGMT), isocitrate dehydrogenase 
enzyme 1/2 (IDH1/2) mutation, EGFR overexpression and 
amplification, glioma‑CpG island methylator phenotype, 
tumor protein (TP53) mutation and genetic losses of chromo-
somes (14).

Primary GBMs exhibit EGFR overexpression, phosphatase 
and tensin homolog gene (PTEN) mutations, loss of hetero-
zygosity (LOH) 10q and p16 deletions, in addition to, less 
frequently, mouse doubleminute 2 (MDM2) amplification, 
high frequency of telomerase reverse transcriptase (hTERT) 
promoter mutations and absence of IDH1 mutation. The 
secondary GBM hallmarks include mutations of TP53, IDH1 
and α‑thalassemia/mental retardation syndrome X‑linked. 
Additionally, secondary GBMs exhibit LOH 10q. GBM with 
oligodendroglial component occurs in younger patients and 
often contains TP53 mutations, IDH1 mutation and lack of 
EGFR amplification (14). These patients have been reported to 
exhibit longer survival as compared to other GBM patients, as 
well as to possess a lower frequency of PTEN deletions, and 
genetic heterogeneity. Primary GBM is characterized by gene 
methylation that is 50% lower than that in healthy brain tissue, 
which is caused by mutation in DNA methyltransferase genes. 
The hypomethylation level in secondary GBMs is higher in 

comparison with that in the primary mode. Furthermore, the 
primary types involve H3K18Ac histone modification, while 
secondary and relapsing types of GBM have an H4K20triMe 
modification.

The distinction between primary and secondary GBMs 
allows for treatment of this disease as a progressive biological 
process. A breakthrough in this respect was the distinction of 
the classic, pro‑neural, neural and mesenchymal subtypes of 
GBM due to the application of integrated genome analysis (12). 
The classic type involves amplification of 7 chromosomes and 
loss of 10 chromosomes, epidermal growth factor receptor 
gene mutation accompanied by quadruplicated expression, 
CDKN2A mutation or aberration of RB‑pathway components 
(including RB1, CDK4 and CCDN2), no mutation of TP53, 
enrichment of Notch‑pathway (NOTCH3, JAG1 and LFNG) 
and SHH‑pathway genes (SMO, GAS1 and GLI2) (12). The 
pro‑neural type of GBM is characterized by IDH1 mutations, 
and a high expression level of platelet‑derived growth factor 
receptor (PDGFR) A and OLIG2, in addition to high expression 
level of the genes SOX, DCX, DLL3, ASCL1 and TCF4 fami-
lies. Furthermore, markers of the neural type of GBM include 
NEFL, GABRA1, SYT1 and SLC12A5. Finally, the indicators 
of mesenchymal GBM include a low level of NF1 expression, 
PTEN mutation, appearance of YKL40 and MET markers; 
high level of CD44 and MERTK proteins and tumor necrosis 
factor and nuclear factor‑κB‑pathway protein expression also 
indicate the neural type of GBM. The mesenchymal subtype 
of GBM is particularly aggressive and radiation‑resistant.

While oncogenetic research sheds light on specific aspects 
of carcinogenesis, it does not help to identify key targets 
for effective suppression of GBM proliferation and invasive 
growth, to overcome radiation and chemotherapy resistance, 
or to determine why there is a quick relapse of glioblastoma 
subsequent to surgery. Significant immunohistochemical 
differences in the cellular composition of primary GBM and 
following relapse remain to be understood. These properties of 
glioblastoma are considered to be associated with CSCs.

Advances in experimental medicine and cytometric tech-
nologies have advanced our interpretation of CSCs within the 
context of existing views on the nature of neoplastic processes. 
CSCs have been reported to trigger tumor growth even when 
small numbers are implanted into the animal brain (14,15). 
The production of specific ATP‑binding cassette transporters 
(ABCG2 and ABCA3), whose function is to eliminate chem-
ical substances within the cells, renders them non‑responsive 
to chemotherapy. The ability to restore damaged DNA is 
provided by the CSC production of MGMT factor which, in 
combination with ATM, Rad17, Chk2 and Chk1 activation, 
helps a cell with an irradiation‑damaged genome to progress 
through the crucial stages of the cell cycle and to proliferate.

The cellular heterogeneity of CSCs explains, in part, the 
cellular heterogeneity of GBM. The immunocytochemical 
properties of CSCs include clusters of cellular surface 
differentiation, such as CD133+, СD44, A2B5+, СD15+, CD81 
and TPT1 among others (16). The differences of these cells 
are disputable, and there is variability in their ability to 
induce tumor growth in animals. Furthermore, they have 
different responses to radiation and chemotherapy. Apart 
from CSCs (6,7), glioblastoma tissue includes cancer stem 
progenitor cells, tumor‑inducing cells and other specific 
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types of cells (16). Reversible transitions between different 
phenotypes of cells are possible, as well.

CSCs expressing CD133+ display non‑adhesive formation 
of neurospheres (gliomaspheres) in vitro and are capable of 
limited non‑invasive growth in vivo, while they are sensitive 
to radiation. CD44+ CSCs adhere to substrates in vitro, rapidly 
trigger invasive growth and are radiation‑resistant. In addi-
tion, CSCs that are CD133+/CD44+ are able to rapidly create 
gliomaspheres, exhibit a high index of invasion in vitro, trigger 
rapid infiltration processes in vitro, and are resistant to radia-
tion and relatively sensitive to temozolomide (17). There is also 
a cluster of CSCs characterized by the expression of immature 
nervous and embryonal tissue markers, including nestin, SOX2, 
SALL4, OCT4, STAT3, NANOG and c‑Myc (18). These latter 
cells are considered to have significantly more differential 
freedom compared with either CD133+ or CD44+ cells (13).

In view of the aforementioned findings, a personalized 
oncologic treatment is impossible without the application of 
flow cytometry and cellular sorting, although further steps are 
also required. It is likely that CD133+ CSCs are associated with 
the pro‑neural type of GBM, while CSCs expressing CD44+ 
are characteristic of the mesenchymal type (12,13); neverthe-
less, such a division is rather provisional. GBM has several 
active zones of cellular division where the cellular phenotype 
of CSC descendants depends on the intensity and length of 
hypoxic preconditioning/cytokine activity, activity of secre-
tome factors and recruited non‑cancer cells (microglia and 
fibroblasts), as well as radiation and anti‑tumor chemotherapy. 
Thus, the main vector of CSC clonal selection that influences 
the basic properties of these cells is crucial to understanding 
the glioblastoma biology.

CSCs are quick to produce generations of progenitors from 
which only clones with the strongest adaptability to the existing 
microconditions can survive, thereby defining the molecular 
phenotype of cells in a relapsing tumor. For this reason, 
emphasis in developing a treatment program should focus on 
molecular targets (ligand‑receptor complexes) identified from 
proteome analysis of the main subtype (or subtypes) of CSCs 
extracted from the patient's tumor. Proteome characteristics 
of CSCs demonstrate the actual condition of GBM hierarchy, 
while properties of cancer cells in the common pool are less 
important.

GBM cells have a specific and well‑organized system of 
intercellular communication. According to electron micros-
copy data, U87 human glioblastoma cells actively interact with 
each other by complete or partial fusion (Fig. 1A‑C), create 
strong contacts among cells with interdigitation and subsequent 
dissolution of the cytomembrane (Fig. 1D‑F), with formation 
of special cytomembrane differentiations in the form of tubes 
and connecting bridges (Fig. 1G‑I). Exchange of intracellular 
contents (and information) is a crucial part of these contacts. 
This communication network is credited for the fast GBM 
relapse following surgical removal (19,20), as well as for the 
resistance of this tumor to medication and radiation (21,22), 
the development of hierarchy (17), and the creation of CSC 
niches (23). GBM cells freely exchange fluorescent markers, 
which become directly connected to cellular proteins while 
staining  (24), indicating the cytoplasmic transfer between 
neoplastic cells of different immunohistochemical pheno-
types (Fig. 2).

Cancer cells are informationally accessible living systems 
with a dynamic proteome and unique abilities for intercel-
lular collaboration (25). Dynamic changes of the proteome 
of GBM cells during intercellular interaction are likely to be 
a key regulator of oncogenes and onco‑suppressor activity 
that stimulates the creation of highly invasive GBM cell 
clones. Since CSCs occupy a central position in the hierarchy 
of glioblastoma cells, the CSC proteome is a key target for 
regulation of all cancer cell activity. Epithelial‑mesenchymal 
transition (EMT) is a strategically important mechanism of 
modifying the cancer cell proteome (25).

EMT is a complex morphogenetic program whereby 
epithelial cells lose their apical‑basal polarity, break intercel-
lular contacts, undergo cytoskeletal reorganization, secrete 
extracellular matrix proteins and are transformed into mobile 
mesenchymal cells (26). Glioblastoma cells with EMT display 
marked alterations in their proteome (27). This mechanism is 
likely to control the transition of GBM from the pro‑neural 
type to the more aggressive mesenchymal type. EMT is also 
an important mechanism of generating new CSC types (28) 
and reinforcing their invasive properties (29).

Hypoxia is a main driver of EMT and a strategic factor of 
GBM biology. The ability of hypoxia to induce the EMT has been 
proven in models of breast cancer (29), renal carcinoma (30), 
stomach cancer (31), colon cancer (32), pancreatic cancer (33) 
and other epithelial tumors (34). Glycolysis is a priority type of 
metabolism in tumor cells. Different types of GBM cells can be 
either glycolytic or use oxidative phosphorylation. It is consid-
ered that, the more aggressive the CSC clone, the more glycolytic 
it is; however, CSCs are able to switch between the two types 
of energy metabolism depending on external conditions (35). 
Alteration of the metabolic profile of CSCs is possible under 
the influence of factors induced by hypoxia. Hypoxia‑inducible 
factors (HIFs) activate metabolic genes (such as GLUT1 and 
GLUT3), trigger alternative pathways for glucose utiliza-
tion (including the polyol and pentose phosphate pathways) and 
interact with the components of the Wnt, NF‑κB, transforming 
growth factor β (TGF‑β) and PI3K/AKT/mTOR signaling path-
ways. In addition, HIFs stabilize cell energy, prevent apoptosis 
and ensure the survival of tumor cells. Therefore, a high level of 
HIF expression in GBM tissue is one of the key conditions for 
the generation of new CSCs (35).

In GBM tissue, hypoxia induces the expression of >80 
cytokines, and among these is TGF‑β. TGF‑β is a member of 
a large cytokine family that participates in the regulation of 
embryonal development and tissue homeostasis. This factor 
acts through a complex signaling network of ligands and 
receptors. In cancer, TGF‑β signaling has both suppressing 
and stimulating functions (36), known as the TGF‑β paradox. 
TGF‑β1 stimulation markedly alters the molecular phenotype 
of GBM cells (29), increasing the production of 512 proteins 
associated with the change of molecular phenotype to a 
mesenchymal one. TGF‑β promotes the transmission of signals 
through RHO‑like GTPases, PI3K and mitogen‑activated 
protein kinase (MAPK) pathways that also stimulate EMT. 
In GBM, hypoxia is a destructive factor for pathogenesis (37), 
triggering EMT and reinforcing the stem properties of cancer 
cells (38).

Taking the aforementioned observations into account, the 
most effective strategy for improving the median survival of 
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GBM patients involves putting more effort into destroying 
key targets in the primary type of CSCs and suppressing the 
mechanisms of CSC proteome destabilization. These tasks 
are achievable through the use of post‑genome biomedical 
technologies in GBM therapy.

3. Complex therapy of glioblastoma and CSC protein 
targets

In GBM, surgery does not guarantee complete elimination 
of cancer cells; thus, the main focus of treatment is radiation 
therapy (39). The standard procedure involves 25‑30 radiation 
fractions for 5‑6 weeks five times a week, with a dosage of 
1.8‑2.0 Gy. The patient's life expectancy correlates with the 
total radiation dose (40), reaching 60‑70 Gy (1,2). Suggested 
GBM relapse prevention methods include brain irradiation 
with a dose of up to 50 Gy per year. The combination of surgery 
and radiation in the CyberKnife system appears to be prom-
ising as a method of delivering radiotherapy, with the intention 
of treatment targeted more accurately than standard radio-
therapy (41). In addition, brachytherapy involving radioactive 
isotopes of iodine, gold and iridium allows for application of 
a large dose of radiation directly to the tumor. Radiation treat-
ment applied with a linear accelerator can also be potentially 
successful (42). Nevertheless, radiation is one of the strongest 
EMT‑inducing factors that reinforces the invasive proper-
ties of CSCs (42,43). In turn, a combination of surgery and 
radiation intensifies hypoxia and triggers canonic signaling 
pathways of eukaryotic cell survival (44), accompanied by cell 
rounding, autophagy (45), cell dedifferentiation and expression 
of embryonic cell surface markers (such as STAT3, Nanog and 
Okt4), thus enriching the CSC population (38) and signifi-
cantly increasing its heterogeneity

There are no effective means of suppressing dediffer-
entiation and EMT, although the possibility of combining 
radiation treatment and hyperbaric oxygen therapy has been 
discussed (46). While potentially useful, the Warburg effect 
in cancer cells is determined by mutations and, as such, 

Figure 2. Fluorescent laser microscopy examination of glioblastoma U87MG 
cell culture, examined by the authors. Green tag (arrows labeled 1) repre-
sents CD133+ cells stained with Vybrant® CFDA SE cell tracer (V12883; 
Molecular Probes; Thermo Fisher Scientific, Inc., Waltham, MA, USA; 
λ=488 nm; 25 µM in PBS for 25 min at 37˚С). Red tag (arrows labeled 
2) represents СD44+ cells stained with CellTracker™ Red CMTPX Dye 
(C34552; Molecular Probes; Thermo Fisher Scientific, Inc.; λ=546 nm; 
15 µM in DMEM for 25 min at 37˚С). Staining was conducted according 
to the manufacturer's protocol. After 48 h, CD133+ showed red fluorescent 
tag indicating the presence of cytoplasm components, CD44+ cells (arrows 
labeled 3). 

Figure 1. Electron microscopy examination of human glioblastoma U87MG cells, indicating the mechanisms of glioblastoma cell interaction, examined by 
the authors. (A) Fusion of two interacting cells (magnification, x2,300). (B) Numerous mergers between cells (magnification, x953). (C) Conglomerate forming 
from interacting cells (magnification, x793). (D) Creation of close contacts among the cells with interdigitations (magnification, x13,380). (E) formation of 
gap junctions (magnification, x40,150). (F) subsequent dissolution of cytomembrane (magnification, x28,600); (G) Special differentiation of cytomembrane 
into microtubes and/or connective bridges (magnification, x493). (H) Formation of microtubes between remote cells (magnification, x919). (I) Microtubes 
formation between close cells (magnification, x798).
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controlling external hypoxia does not decrease the pace of 
lactate synthesis that, together with oxidative stress, is a 
powerful inducer of EMT in cancer cells (47).

The main emphasis is currently placed on chemotherapy 
that can prolong the non‑relapse period. The gold standard 
is temozolomide, which is recommended for primary and 
metastatic brain tumors  (39). Its cytotoxic effect is due to 
the disruption of the structure and synthesis of DNA. The 
PCV  (involving the use of procarbazine, lomustine and 
vincristine) and CAP (involving cyclophosphamide, doxo-
rubicin and cisplatin) schemes are less popular. Carmustine, 
nimustine, fotemustine, dacarbazine, irinotecan, etoposide, 
cisplatin, carboplatin and paclitaxel also have limited use. 
The disadvantage of the abovementioned agents lies in their 
inability to destroy CSCs.

Low effectiveness of chemotherapy can be attributed to 
the insufficient use of new technologies. According to our 
previous data (10), among the entire spectrum of signaling 
pathways with a domain in CSC membranes, CD133+ glioblas-
toma stem cells of the U87 cell line have only 10 signaling 
pathways with intact signaling clusters in the cytoplasm and 
nucleus. Special attention should be directed to the angio-
genesis signaling pathway, Rho GTPase, epidermal growth 
factor (EGF), fibroblast growth factor, chemokine‑mediated 
pathway of inflammation, integrin pathway, focal adhesion, 
MAPK and Wnt signaling pathways.

One of the suggested approaches to destabilize the CSC 
energy metabolism is the application of indinavir, ritonavir, 
nigericin, metformin and ivermectin in combination with a 
ketogenic diet. Key enzymes targeting the bioenergetic CSC 
pathways, such as lactate dehydrogenase, pyruvate kinase 
muscle isozyme 2 (48), aldehyde dehydrogenase (49), isoci-
trate dehydrogenase  (50), enzymes of glucose‑transporter 
systems (including GLUT1, 2, 3, 6, 8 and 13) (51), hexoki-
nase 2  (52), aldolase A, pyruvate dehydrogenase kinase 1, 
6‑phosphofructo‑2‑kinase/fructose‑2,6‑bisphosphatase 4 (53) 
have been widely studied. A promising target for the suppres-
sion of aerobic respiration processes in CSCs is the insulin‑like 
growth factor 2 mRNA‑binding protein (35). However, this 
therapy is not sufficiently effective.

Concentration on these targets helps to impede certain key 
functions of CSCs. It is possible to target Rho GTPase (54), 
signaling pathways of MAPK (Sunitinib), EGF (cyclopamine, 
gefitinib, erlotinib and lapatinib), and PDGF (imatinib and 
tandutinib). Targeting proteins of CSC telomeres, such as 
TRF1 (55), is also possible. However, these therapies exhibit 
certain disadvantages. For instance, bevacizumab, which is 
an inhibitor of the biological activity of vascular endothelial 
growth factor (VEGF) and is widely used in GBM treatment, 
stimulates EMT (56,57). This drawback is typical for tyrosine 
kinase inhibitors targeting tumor angiogenesis. Standard 
combination GBM therapy leads to intensive accumulation of 
new CSC clones in the tumor, thus creating a vicious circle 
causing relapse and patient mortality.

One potential way to solve this problem is total suppression 
of all CSC‑type pluripotency by targeting a key mechanism 
regulating cellular proliferation and differentiation during 
prenatal development, namely, the Wnt signaling pathway. 
The latter is inactive in adult organisms, with the exception 
of normal stem cells (58) where it serves an important role in 

supporting pluripotency. In different types of cancer (59,60) 
activation of the Wnt/Frizzled signaling pathway promotes 
CSC proliferation and induces EMT. Therefore, targeting this 
factor may limit the reproductive and invasive properties of 
CSCs (61).

Excessive activation of the Wnt signaling pathway in GBM 
cells is achieved through epigenetic changes that inhibit the 
expression of antagonist proteins (such as NKD1‑1, sRFP1‑5 
and DKK1/3) and/or cause massive overexpression of active 
pathway components  (including Wnt6, FZD2, FZD9 and 
Dvl2) (62). Such activation of the Wnt cascade renders GBM 
similar to the most aggressive triple‑negative subtype of breast 
cancer (63).

While little is known about the use of Wnt pathway inhibi-
tors for GBM treatment, a number of examples are described 
as follows: Clofazimine, a drug used to treat leprosy and 
specific types of tuberculosis, appears to also be an efficacious 
inhibitor of Wnt signaling in Wnt‑dependent types of breast 
cancer (64). Aspirin suppresses Wnt‑signaling in colorectal 
cancer cells (65‑67), while non‑steroidal anti‑inflammatory 
drugs (such as diclofenac and celecoxib) suppress this signaling 
pathway in GBM cells (68). In turn, celecoxib is capable of 
suppressing the activity of MRP1‑5, ABCA2 and ABCG2 
transporters that export drugs from cancer cells (69). In addi-
tion, regorafenib reduces the activity and lowers the expression 
of Wnt pathway genes (70). A similar effect is produced by the 
antibiotics nigericin and monensin that impede the progres-
sion of intestinal cancer (71). It has also been reported that 
inhibition of the Wnt pathway by the polyether antibiotic 
salinomycin prevents GBM cell transformation into cancer 
stem‑like cells  (72). Niclosamide, which has anthelmintic 
properties, significantly reduces the number of pluripotent 
cells and diminishes their invasive potential by suppressing 
several signaling pathways, such as WNT/β‑catenin, NOTCH, 
mTOR and NF‑κB  (73,74). Niclosamide also inhibits the 
WNT/β‑catenin pathway in colon, ovary, breast and prostate 
cancer, and in osteosarcomas (75‑80). Furthermore, silibinin, 
a flavonolignan antioxidant, suppresses the Wnt cascade in 
stem cells of breast and prostate cancer (81), as well as in lung 
cancer (82).

Collectively, radiation and anti‑angiogenic therapy 
transform the CSC proteome and trigger EMT. In principle, 
proteome mapping of CSCs allows to increase the effect of 
chemotherapy due to application of tyrosine kinase inhibitors. 
Introduction of Wnt pathway antagonists into treatment proto-
cols will limit the reproductive capacity of neoplastic cells. 
However, prolonged remission is impossible without regulating 
the mechanisms of CSC molecular phenotype generation and 
transformation. Targeting these mechanisms is possible via a 
therapeutic approach based on normal human stem cells.

4. Biomedical cellular technologies in glioblastoma therapy

Mammalian and human postnatal stem cells possess 
pronounced anti‑tumor potential, while they are capable 
of directed migration to and interaction with tumor cells. 
Previous studies by our group (83,84) and studies by other 
researchers (85,86) have described this phenomenon using 
models of gliomas, metastatic melanoma (87), solid tumors (88) 
and CSCs of metastatic tumors (89). The vector of migration 
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activity for normal tissue‑specific stem cells in relation to 
GBM cells is inversely proportional to the differentiation level 
of cancer cells and is more pronounced among cells with one 
histogenetic source in the brain (86) that allows to target CSCs 
directly using neural stem cells.

A strong similarity between the proteomes of glioblastoma 
CSCs and human normal neural stem cells (10,84) indicates 
their involvement in carcinogenesis. Normal bone marrow 
stem cells lack this disadvantage, since they are very mobile 
compared with cancer cells that adhere to their surface and 
interact with them. An important stage of this contact is likely 
to be the transfer of proteome and/or secretome components, as 
illustrated in Fig. 3A‑D. This phenomenon is observed in 40% 
of C6 glioma cells, 77% of lung cancer cells (А549), 47% of 
breast adenocarcinoma cells and 64% of human glioblastoma 
cells (83,84).

Interaction between stem cells and cancer cells may 
involve gap junctions between normal bone marrow stem cells 
and low‑grade differentiation glioma cells. Such junctions 
allow the exchange of micro‑RNA, and trigger p53‑induced 
apoptosis that is likely to be a mechanism of the anti‑tumor 
potential of stem cells  (90). Gap junctions can allow the 
transport of relatively small molecules, while excluding the 
transmission of cytoplasm proteins. Gap junctions are likely 
to co‑exist with other mechanisms of intercellular interaction, 
for instance, with the creation of close syncytial contacts with 
subsequent complete or partial cell fusion. GBM cells have 
a high fusion potential  (91‑93). Cultivation of glioma and 
carcinoma cells (83,84) with hematopoietic stem cells (HSCs) 
and fibroblasts (91) results in a higher number of fusions and 
creation of cells with two fluorescent tags. This cell fusion 
promotes the formation of tumorigenic hybrid cells (92) and 
enhances tumor heterogeneity  (93). This mechanism also 
permits epigenetic re‑programming of cancer cells by means 
of HSC cytoplasm factors.

Another mechanism of intercellular interaction involves 
the production of microvesicles by HSCs. Stem cells of all 
types secrete microvesicles transporting RNA and/or DNA 
that modify the local microenvironment. Microvesicles may, 
thus, be considered as a strategic component of CSC epigenetic 
regulation. The effect of microvesicles is directly associated 
with their content that is significantly determined by the 
specifics of their paracrine function. The ability to produce 
VEGF is part of the HSC restoring program (94). Inhibition of 
VEGF/VEGF‑R signaling (95) stimulates tumor growth and 
triggers EMT (49), while production of VEGF by stem cells 
suppresses EMT (96). VEGF activates CSCs in the hypoxic 
niche and facilitates their differentiation into blood vessel 
endothelial cells, preventing their transformation into highly 
aggressive CSCs (97,98).

Reprogramming CSCs via transcriptomic factors of the 
HSC proteome and transcriptome provides possibilities for 
EMT suppression. Interaction with HSCs strongly inhibits the 
activity of glial tumors; this phenomenon is dose‑dependent 
and, to a certain extent, explains stem cell migration to the 
tumor. Modified content of interacting cellular systems or 
previous affection of HSCs results in the development of 
specific interrelated effects inside the cellular population and 
is accompanied by regular modulations in their microenviron-
ment. Pretreatment of HSCs with non‑lethal doses of cytostatics 

increases their anti‑tumor potential (99). Interaction between 
bone marrow stem cells modifies their proteome and secre-
tome, and GBM cells with EMT phenotype display decreased 
cell mobility, destabilized CSC links with extracellular matrix 
and diminished invasion. As shown in Fig. 4, this mechanism 
was explored using a culture model of C6 glioma and HSC 
cells treated with fascaplysin, a potent alkaloid CDK‑4 
inhibitor (99), and the results suggested clinical potential.

Mesenchymal stem cells  (MSCs), well‑known for their 
anti‑tumor properties, represent a promising instrument for 
CSCs as MSCs can suppress their invasion and proliferation. 
Chemotherapy and transplantation of MSCs have been reported 
to improve the survival rate in animals with glioma (100,101). 
In homotransplantation, these cells escape rejection, which 
makes possible the use of homogeneous material from public 
stem cell cryobanks to create new anti‑tumor biomedical 
cellular products (102).

The highest hopes for developing new strategies in 
oncology and regenerative medicine lie with the MSC 
secretome (103). MSC‑derived microvesicles can be used in 
monotherapy, as well as together with other components of 
cell‑based products. MSC‑derived exosomes are stable in the 
extracellular medium, safe for patients and absorbed by cancer 
cells, while they suppress the growth of glial tumors (104).

The high content of angiogenetic factors in exosomes 
renders them an effective treatment instrument  (105). The 
anti‑tumor properties of MSC exosomes depend on their 
origin  (106) MSC‑derived exosomes from the menstrual 
endometrium block prostate tumor‑induced angiogen-
esis (107), inhibit the activity of NF‑κB, VEGF, HIF‑1α and 
PDGF/PDGFR. Furthermore, MSC‑derived exosomes of 
bone marrow (108) stimulate the interphase in breast cancer 
metastatic cells, while MSC‑derived exosomes from adipose 
tissue induce the apoptosis of ovarian cancer cells (109).

The anti‑tumor properties of exosomes are associated with 
the transportation of BAX, CASP9 and CASP3 proteins (110), 
and microRNA families, such as let‑7а, miR‑34, miR‑31, 
miR‑451, miR‑145, miR‑200/141, miR‑14/15, miR‑23b, miR‑223 
and miR‑224 (111). It has been reported that miR‑124 inhibits 
EMT in glioma cells (112), and miR‑145‑5p impedes EMT in 
esophageal carcinoma (113). In addition, the miR‑200a family 
suppresses EMT in renal cancer cells  (114), and miR‑23b 
inhibits EMT in ovarian cancer cells (115). miR‑451 stops EMT 
in neuroblastoma cells (116), bladder cancer cells (117) and 
osteosarcoma (118). Furthermore, miR‑34 inhibits pancreatic 
CSC activity (119), while miR‑181 and miR‑21 (120) impede 
NF‑κB signaling that prevents the expression of Toll‑like 
receptors in glioblastoma stem cells, thus decreasing their 
stem properties. miR‑92а from MSC‑derived exosomes stops 
angiogenesis (104), while miR‑145 inhibits the proliferation, 
migration and invasion of neoplastic cells (121,122). Finally, 
miR‑146b significantly suppresses glioma growth (123). The 
aforementioned observations identify a molecular arsenal of 
exosomes that control EMT in GBM cells.

Another mechanism of CSC activity suppression is modu-
lation of the monocyte‑macrophage system by combining 
MSC‑derived exosomes with mononuclear CD45+ cells from 
human blood (124,125). Injection of haploidentical rat CD45+ 
cells into rats with brain glioma led to a rapid increase in 
tumor cell numbers with microglial markers. These markers 
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are frequently attributed to tumor progression (126). However, 
morphochemical modification of the glioma node as a 

response to injection of mononuclear cells does not always 
increase life expectancy of these rats. The decisive factors are 
the localization and qualitative parameters of microglia.

Bone marrow cell accumulation in the tumor is largely due 
to the formation of neoplastic blood vessels as a direct response 
to intracellular hypoxia (127). Only a small number of HSCs 
are capable of penetrating the intact blood‑brain barrier. The 
brain is normally protected by resident microglia originating 
from the embryonic yolk sack, which support their population 
by proliferating, while bone marrow cells are not involved in 
this process. The creation of blood vessels in GBM allows 
the recruitment of stem and progenitor cells, as well as other 
bone marrow cells, with their subsequent transformation into 
microglia. This may lead to the conclusion that tumor growth 
induced by these cells is partially determined by hypoxic 
preconditioning (127). Hypoxia stimulates alternative activa-
tion of macrophages (M2 state) that amplifies their phagocytic 
activity, while it increases the synthesis of interleukin (IL)‑10, 
TGF‑β1 and other anti‑inflammatory cytokines that promote 
remodeling of necrotized tissue (128), cell migration, disrup-
tion of epigenetic regulation of genes (129) and generation 
of new CSCs. Hypoxia is likely to activate a paracrine func-
tion of CSCs (130). Production of periostin (131) and other 
EMT moderators is mainly attributed to cells expressing M2 
microglial markers in the CSC microenvironment. These cells 
create secretory loops, and together with fibroblasts, they 
actively produce TGF‑β and trigger generation of CSCs with 
an EMT phenotype.

Suppression of CSCs with the most invasive phenotype is 
possible in the case of classic macrophage activation (M1 state). 
M1 activation is reflected by robust production of reactive 

Figure 4. Scheme of personalized therapy for glioblastoma multiforme 
involving hematopoietic stem cells with remodeled proteome and secretome. 
Cellular therapy results in breaking the connection between CSCs and 
extracellular matrix, impeding invasion. CSCs, cancer stem cells; TGF‑β, 
transforming growth factor β.

Figure 3. Fluorescent laser microscopy examination of combined culture of stem and cancer cells of human glioblastoma, examined by the authors. Green tag 
represents hematopoietic stem cells stained with Vybrant® CFDA SE tracer (V12883; Molecular Probes; Thermo Fisher Scientific, Inc.; λ=488 nm; 25 µM 
in PBS for 25 min at 37˚С). Red tag represents glioblastoma cells stained with CellTracker™ Red CMTPX Dye (C34552; Molecular Probes; Thermo Fisher 
Scientific, Inc.; λ=546 nm; 15 µM in DMEM for 25 min at 37˚С). (А) Adhesion of HSCs to cancer cells; (B) fluorescent tag exchange; components of fluorescent 
tag (C) on the surface and (D) in the cytoplasm of cancer cells. 



BRYUKHOVETSKIY et al:  PERSONALIZED REGULATION OF GLIOBLASTOMA CANCER STEM CELLS 698

oxygen and nitrogen oxide species, TNF‑α, IL‑1, IL‑6, IL‑12 
and other inflammatory cytokines that promote inflammation, 
damage the extracellular matrix and prevent cancer cells with 
EMT from adhesion. Standard activators of the M1 state are 
bacterial lipopolysaccharides, interferon‑γ, TNF‑α and IL‑1β, 
IL‑12, IL‑18 and IL‑23. The introduction of mononuclear cells 
with MSC‑derived exosomes affected by systemic inflam-
matory response triggered by bacterial lipopolysaccharide 
can result in stronger local inflammation, destruction of the 
extracellular matrix, and disruption of the communication 
between CSCs and their microenvironment. In principle, 
microglia are capable of impeding self‑regeneration (120) and 
even destroying CSCs. This is probably possible with the use 
of other modern methods of antitumor immunotherapy (132), 
although this requires further study.

5. Conclusion

The success of medicine depends on the efficiency of its 
methods. While traditional surgery does not solve the problem 
of GBM treatment, more radical surgery that incorporates 
modern scientific advances is an indispensable part of the 
therapy. Surgery eliminates a significant number of cancer 
cells, including CSCs that promote the proliferation of adjacent 
cells, thus rendering tumors responsive to treatment. However, 
further GBM therapy can be effective only with personalized 
regulation of CSCs based on post‑genome and biomedical 
cellular technologies (Fig. 5).

Extraction of primary GBM cells, their immunohisto-
chemical description, determination of the dominating types of 
CSCs, and proteome mapping and bioinformatics analysis are 
the most important stages in developing an effective treatment 
program. The CSC proteome reflects the state of the tumor 
system at a certain moment. Emphasis should be placed on cell 
surface molecular targets of the main CSC type that are asso-
ciated with intact intracellular signal transduction pathways 
and able to impede key CSC functions (Fig. 5А). The main 
focus should be on the inhibition of tyrosine kinases (such as 
PDGFR, fibroblast growth factor, EGF and HIF) and targeted 
therapy.

A CSC is an informationally accessible system with a 
dynamic proteome and unique abilities of intercellular commu-
nication. For this reason, it is preferable to focus on regulating 
the predominant type of CSCs and attempting to suppress pluri-
potency of all GBM stem cells. Introduction of Wnt‑signaling 
inhibitors into complex treatment protocols is considered to 
be the most reasonable step, emphasizing on combinations of 
established medications (Fig. 5B). In the absence of contraindi-
cations, radiation therapy should be combined with hyperbaric 
oxygenation. Cytotoxic and cytostatic chemotherapies should 
only be used with knowledge of molecular determinants of the 
dominant CSC type's response to a given drug.

EMT suppression in CSCs is, in principle, a crucial 
step in treating invasive tumors. This goal can be achieved 
through biomedical drugs based on the MSC secre-
tome and HSC agents  (Fig.  5С  and  D). Destabilizing the 

Figure 5. Methods of personalized regulation of glioblastoma cancer stem cells. (A) Identification of molecular targets in CSC proteome and their inhibition with 
chemotherapeutic agents. (B) Suppression of pluripotency in all types of CSCs via using inhibitors of Wnt‑dependent signaling pathway. (C) Reprogramming 
of CSCs during their interaction with normal stem cells. (D) Inhibition of EMT in CSCs using exosomes of MSCs. (E) Destabilization of CSC interaction with 
local microsurroundings and extracellular matrix via monocytes and macrophages with a set vector of classic (pro‑inflammatory) pathway activation. CSC, 
cancer stem cell; EMT, epithelial‑mesenchymal transition; MSC, mesenchymal stem cell.
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interaction of CSCs with their local microenvironment and 
extracellular matrix is possible by modulating components 
of the cerebral macrophage‑monocyte system during the 
systemic inflammatory reaction (Fig. 5E).

The information discussed in the present review allows 
to formulate the following key strategies of CSC regulation 
in the complex therapy of GBM: Cell‑sorting technologies 
for determination of CSCs and personalization of treatment 
based on proteome and bioinformatics analyses; suppression 
of pluripotency in cancer cells of all types; and targeting EMT 
in GBM cells and destabilization of CSC interaction with 
local microenvironment and extracellular matrix by means 
of biomedical cellular products. While introduction of these 
principles is a goal for the near future, certain of these can 
even be implemented at the moment.
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