Skip to main content
. 2017 Nov 24;6(4):579–592. doi: 10.1556/2006.6.2017.065

Table 5.

Parameter estimates for HLM analysis in Online Addiction Behavior, Problems Caused by Computer Use, and Time Spent Online as function of time (treatment effect)

Online Addiction Behavior Problems Caused by Computer Use Time Spent Online
Parameter Model 0 Model 1 Model 0 Model 1 Model 0 Model 1
Fixed effects
Initial status Intercept (γ00) 10.81 18.75 31.91 37.64 1.72 2.19
(0.50) (1.11) (1.02) (1.75) (0.08) (0.21)
p < .001 p < .001 p < .001 p < .001 p < .001 p < .001
Rate of change Slope (γ10) −6.32 −4.85 −0.31
(0.84) (1.22) (0.13)
p < .001 p < .001 p = .026
Variance components
Level 1 Within-person (Inline graphic) 25.98 12.09 31.77 20.41 0.26 0.22
(6.17) (3.41) (8.66) (5.70) (0.75) (0.06)
p < .001 p < .001 p < .001 p < .001 p < .001 p < .001
Level 2 Initial status (Inline graphic) 0.67 6.54 55.41 63.10 0.04 0.07
(5.12) (3.79) (14.37) (13.46) (0.06) (0.06)
p < .001 p < .001
Model fit parameters
graphic file with name jba-06-04-065_ig014.jpg .53 .36 .15
2 log-likelihood 661.01 618.83 746.87 734.18 82.35 77.30
AIC 667.01 626.83 752.87 742.18 88.35 85.30

Note. Parameter estimates for Time Spent Online are log-transformed using the ln(x)-function and need to be retransformed using the ex-function for interpretation. Standard errors are displayed in parentheses. The rate of change displays the amount of change per observation. Inline graphic: estimates the proportion of explained within-person variation (level 1); HLM: hierarchical linear models; AIC: Akaike’s information criterion.