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Abstract

Background—Ciliopathies are a class of inherited pleiotropic genetic disorders in which 

alterations in cilia assembly, maintenance, and/or function exhibit penetrance in the multiple organ 

systems. Olfactory dysfunction is one such clinical manifestation that has been shown in both 

patients and model organisms. Existing therapies for ciliopathies are limited to the treatment or 

management of symptoms. The last decade has seen an increase in potential curative therapeutic 

options including small molecules and biologics. Recent work in multiciliated olfactory sensory 

neurons has demonstrated the capacity of targeted gene therapy to restore ciliation in terminally 

differentiated cells and rescue olfactory function. This review will discuss the current 

understanding of the penetrance of ciliopathies in the olfactory system. Importantly, it will 

highlight both pharmacological and biological approaches, and their potential therapeutic value in 

the olfactory system and other ciliated tissues.

Methods—We undertook a structured and comprehensive search of peer-reviewed research 

literature encompassing in vitro, in vivo, model organism, and clinical studies. From these 

publications, we describe the olfactory system, and discuss the penetrance of ciliopathies and 

impact of cilia loss on olfactory function. In addition, we outlined the developing therapies for 

ciliopathies across different organ and cell culture systems, and discussed their potential 

therapeutic application to the mammalian olfactory system.

Results—One-hundred sixety-one manuscripts were included in the review, centering on the 

understanding of olfactory penetrance of ciliopathies, and discussing the potential therapeutic 

options for ciliopathies in the context of the mammalian olfactory system. Forty-four manuscripts 

were used to generate a table listing the known congenital causes of olfactory dysfunction, with 

the first ten listed are linked to ciliopathies. Twenty-three manuscripts were used to outline the 

potential of small molecules for the olfactory system. Emphasis was placed on HDAC6 inhibitors 

and lithium, both of which were shown to stabilize microtubule structures, contributing to 

ciliogenesis and cilia lengthening. Seventy-five manuscripts were used to describe gene therapy 

and gene therapeutic strategies. Included were the implementation of adenoviral, adeno-associated 
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virus (AAV), and lentiviral vectors to treat ciliopathies across different organ systems and 

application toward the olfactory system. Thus far, adenoviral and AAV-meditated ciliary 

restoration demonstrated successful proof-of-principle preclinical studies. In addition, gene 

editing, ex vivo gene therapy, and transplantation could serve as alternative therapeutic and long-

term approaches. But for all approaches, additional assessment of vector immunogenicity, 

specificity, and efficacy need further investigation. Currently, ciliopathy treatments are limited to 

symptomatic management with no curative options. However, the accessibility and amenability of 

the olfactory system to treatment would facilitate development and advancement of a viable 

therapy.

Conclusions—The findings of this review highlight the contribution of ciliopathies to a growing 

list of congenial olfactory dysfunctions. Promising results from other organ systems imply the 

feasibility of biologics, with results from gene therapies proving to be a viable therapeutic option 

for ciliopathies and olfactory dysfunction.
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INTRODUCTION

Cilia are organelles present on the surface of cells in a wide variety of organisms from 

unicellular flagellates and round worms to almost all cell types in vertebrates. Cilia have a 

diverse set of functions, including propulsion and fluid movement for motile cilia as well as 

cellular signaling and detection of external stimuli such as growth factors, sound, light, and 

odors for non-motile cilia [1–3]. While our understanding into the diverse biological 

functions of cilia is continually increasing, so is our comprehension for their role in disease. 

Ciliopathies are a class of pleiotropic congenital human diseases with phenotypes that 

exhibit variable penetrance depending on the tissue, the gene and the type of mutation, as 

well as an individual’s genetic background [4,5]. Clinical manifestations of ciliopathies can 

occur during development and throughout adulthood and may result in a variety of deficits 

including polydactyly, obesity, hypogonadism, renal dysplasia, infertility, situs inversus, 

respiratory complications, liver fibrosis, retinal dystrophy, and anosmia [5].

The olfactory epithelium (OE) is a pseudo-stratified epithelium that lines the nasal turbinates 

and septum and is comprised of multiple cell types including immature and mature olfactory 

sensory neurons (OSNs), supporting sustentacular cells, and two populations of stem cells 

known as globose basal cells and horizontal basal cells (HBCs) (Figure 1.). Within the OE, 

developing neurons possess primary cilia during embryogenesis [6,7], however their 

function is currently unknown. In addition, recent work has shown that HBCs possess 

primary cilia that are involved in regulating regeneration of the OE after injury [8]. Unlike 

developing neurons and HBCs, mature OSNs are multiciliated bipolar neurons that project 

from their dendritic knob approximately 20-35 cilia, extending up to ~100 μm in length, into 

the olfactory lumen and cover the surface of the OE [9]. Located within these cilia are 

odorant receptors, which are seven-transmembrane G-protein coupled receptors (GPCRs) 

that bind odor molecules within the nasal cavity. GPCRs are often pharmacological targets 

for therapies, due in part to their involvement in various diseases [10–13]. In addition to 
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odorant receptors, olfactory cilia also contain signal transduction machinery required for 

odor detection including the heterotrimeric G-proteins, adenylyl cyclase III (ACIII; EC 

4.6.1.1), cyclic nucleotide gated channels, and calcium activated chloride channels. 

Extending from basal bodies that are organized in a ring-like fashion around the dendritic 

knob, OSN cilia have a transition zone, proximal segment, and a long distal segment. The 

proximal segment (~1-2 μm) of cilia is made up of microtubule doublets, while the distal 

segment (on average, 50 μm in length) is made up microtubule singlets [9]. Much like 

primary cilia of other cells, OSN cilia utilize anterograde and retrograde intraflagellar 

transport for protein movement along the ciliary axoneme [9]. Importantly, mutations in 

genes associated with the structural integrity or function of cilia can lead to olfactory 

dysfunction.

Alterations in olfactory function can range from hyposmia (reduction of olfactory function) 

and anosmia (loss of olfactory function), to hyperosmia (increased olfactory acuity) and 

dysosmia (distorted odor perception). In patients, olfactory dysfunction can impact their 

personal safety and reduce their quality of life [14–16]. Olfactory dysfunction is attributed to 

multiple causes, which include post-viral infection, head trauma, inflammation or chronic 

sinusitis [17]. In addition, there is a growing list of olfactory dysfunctions resulting from 

congenital causes, which includes ciliopathies (Table 1). The degree of penetrance of 

ciliopathies within the olfactory system is not well understood, nor are the associated 

mechanisms of action and disease phenotypes. However, over approximately the last 10 

years, research in both ciliopathy patient populations and murine models has gradually 

started examining the occurrence and mechanisms of olfactory dysfunction in ciliopathies. 

Individuals with Bardet-Biedl Syndrome (BBS) as well as Leber congenital amaurosis 

(LCA) exhibit abnormal or anosmic scores on the B-SIT olfactory function test [18,19]. In 

murine ciliopathy models such as the Oak Ridge Polycystic Kidney (ORPK) mouse, as well 

as in knockouts of BBS1, BBS4, or BBS8, ciliation was either significantly reduced or 

absent from OSNs. In addition, these mice exhibit loss of olfactory function and 

significantly reduced olfactory bulb activity, while BBS8 knockout mice also show OSN 

axon mistargeting in the olfactory bulb [18,20,21]. In addition, loss of BBS1 in OSNs results 

in mistrafficking of core BBS complex proteins to cilia, causing a reduction in cilia length 

and number as well as reduced olfactory bulb activity [22]. Interestingly, in rd16 mice, 

which possess a genetic deletion of Cep290, cilia are still present on the surface of the OE. 

However, G proteins essential for olfactory signal transduction do not traffic into cilia and 

therefore rd16 mice are functionally anosmic [19]. These findings suggest that ciliopathies 

have varying degrees of penetrance in the OE and that the mechanisms underlying loss of 

olfactory function may vary. This may also be true for cells in the OE that elaborate primary 

cilia. Though primary cilia have been identified on developing OSNs [6,7], their function as 

well as their potential role in ciliopathy-related anosmia has yet to be determined. Recent 

work has shown that loss of primary cilia on HBCs, due to deletion of either Ift88 or Arl13b, 

two ciliopathy related genes, impairs the ability of HBCs to regenerate the OE after injury 

[8]. This work suggests that beyond OSNs, olfactory ciliopathies exhibit penetrance in stem 

cells of the OE and that impaired neurogenesis may also be a potential mechanism for 

congenital anosmia.
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Despite our incomplete understanding of the penetrance of cilia dysfunction within the 

olfactory system, both small molecule and gene therapies offer potential to treat olfactory 

ciliopathies. In this context, we address the current and future challenges for treating patients 

with olfactory dysfunction.

SMALL MOLECULE THERAPEUTIC STRATEGIES

While no small molecule therapies have been developed specifically for ciliopathy-induced 

olfactory dysfunction, the use of pharmaceuticals for treatment of ciliopathies in other organ 

systems, particularly for BBS and polycystic kidney disease (PKD), have shown progress. In 

BBS, cilia dysfunction leads to retinal degeneration [23–28] via protein accumulation in the 

inner segment of photoreceptors, stress of the endoplasmic reticulum, and the subsequent 

activation of the proapoptotic unfolded protein response [29]. Interestingly, in a murine 

model of BBS12, Mockel et al [29] showed that administration of a combination of valproic 

acid, guanabenz, and a specific caspase-12 inhibitor reduces apoptosis and preserves light 

detection in mutant animals. In PKD, extensive research and clinical trials of 

pharmacological therapies are ongoing. These studies frequently use pharmacological 

inhibitors to target cilia-associated cell proliferation signaling pathways such as mTOR 

(mammalian target of rapamycin), cAMP (cyclic adenosine monophosphate), and EGFR 

(epidermal growth factor receptor) [30–34]. Typically, reductions in kidney or liver volume 

were observed but kidney function was not completely restored [34–36]. More recently it 

has been demonstrated that cell proliferation in renal tubules was not sufficient to induce 

cyst formation after cilia disruption [37] and that cyst growth is regulated by the primary 

cilium, independent of cell proliferation signaling [38]. Other studies suggest that alterations 

in the length and/or stability of the primary cilium may be an important direct regulator of 

PKD pathogenesis [39–41].

Recent work has shown that histone deacetylase 6 (HDAC6; EC 3.5.1.98) is a major 

regulator of cilia stability and disassembly, and could be an important therapeutic target for 

ciliopathies [42]. Signaling proteins such as calmodulin and β-catenin as well as the ciliary 

protein nphp2/inversin interact with Aurora A, which phosphorylates and activates HDAC6, 

leading to deacetylation of α-tubulin and cortactin [43–46]. Deacetylation of a-tubulin leads 

to disassembly of primary cilia, while deacetylation of cortactin promotes interaction with 

filamentous actin (F-actin), ultimately leading to ciliary resorption [46]. Interestingly, 

calmodulin is involved in adaptation during olfactory signal transduction. It would be 

intriguing to examine whether calmodulin has a similar role in regulating ciliary disassembly 

via HDAC6 in the olfactory system and whether HDAC6 inhibitors could be used as a 

potential therapeutic option for olfactory dysfunction. In primary cilia, an HDAC6-specific 

inhibitor tubastatin A, has been shown to increase acetylated α-tubulin and restore ciliation 

and cilium-dependent processes [47]. Moreover, non-selective HDAC inhibitors including 

vorinostat, an FDA approved cancer drug, have also demonstrated increased ciliogenesis of 

primary cilia [42,47]. However, tubulin targeting chemotherapeutic cancer drugs such as 

paclitaxel (taxol) have shown negative effects on the OE, leading to severe lesions [48]. In 

zebrafish, characteristic ciliopathy phenotypes were observed upon reduction of BBSome-

interacting protein of 10 kDa (BBIP10), a protein required for microtubule acetylation and 

assembly of the primary cilia [49]. In BBIP10-depleted cells, application of tubacin, an 
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HDAC6 inhibitor, restored microtubule acetylation and ciliary assembly providing evidence 

that BBIP10 regulates tubulin acetylation by inhibiting HDAC6 [49]. As the BBSome is an 

important regulator of cilia function in the olfactory system [9], this work is suggestive that 

HDAC6 inhibitors may be a potential therapeutic target for olfactory ciliopathies.

Interestingly, lithium, which has been used to treat neurological disorders, also promotes 

tubulin acetylation and elongation of cilia [50]. Specifically, brain sections of mice 

chronically fed lithium carbonate demonstrate primary cilia elongation within the dorsal 

striatum and nucleus accumbens [51], while in cultured cells lithium chloride has also been 

shown to elongate cilia [50–52]. Lithium Chloride promotes acetylation of α-tubulin 

through the activation of α-tubulin N-acetyltransferase 1 (α-TAT1; EC 2.3.1.108) and 

inhibition of glycogen synthase kinase 3β (GSK3β; EC 2.7.11.26), resulting in elongation of 

primary cilia [50]. While lithium may increase cilia length it is currently unknown whether 

this is sufficient for restoring cilia function.

The use of small molecule therapy for treating olfactory dysfunction is enticing. However, 

extensive studies on their effects in vivo and efficacy in the context of the olfactory system 

remains unexplored. It also remains unclear whether restoration of cilia morphology is 

sufficient to reconstitute ciliary function, especially in multiciliated OSNs. In ciliopathies 

such as BBS, ciliary elongation and/or microtubule stabilization may be inadequate to 

restore the function of the missing BBS protein or the BBSome complex, which is critical 

for protein trafficking. Importantly, small molecule therapies are generally not curative 

treatments and other therapeutic approaches for restoration of olfactory function, such as 

gene therapy, should also be considered.

GENE THERAPEUTIC STRATEGIES

The first clinical trials of gene therapy to human patients were performed between 1989 and 

2000 using retroviral and adenoviral-mediated transduction. Since then, the field has 

advanced dramatically with modifications of those original vectors and the development of 

adeno-associated viral (AAV) vectors, which demonstrated tissue specificity and lower 

immunogenic response, and the expansion of non-viral mediated strategies [53–55]. Clinical 

trial successes have been shown in multiple diseases, such as sickle cell anemia, hemophilia, 

cystic fibrosis, and retinal degeneration. More recently, a major breakthrough occurred in the 

field with the use of gene therapy for CAR-T cells and cancer immunotherapies. During the 

time of this review, the United States Food and Drug Association approved tisagenlecleucel 

(Kymriah), a cell-based gene therapy to treat acute lymphoblastic leukemia. To date there 

are more than 1,200 early stage and active clinical trials that uses gene therapeutic 

approaches to address multiple diseases (http://www.ClinicalTrials.gov; September 30, 

2017; Keywords: Gene therapy). Regardless of the application, the strength of gene therapies 

is the potential for curative outcomes, especially monogenic diseases such as ciliopathies.

Fundamentally, the strategy of gene therapy is to deliver genetic material that would either 

replace or correct the disease-causing genetic mutation. The therapeutic gene is packaged in 

a viral vector, which then infects and is transduced in a host or target cell. The 

administration can be performed either in vivo, where the patient or animal is directly treated 
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with vector, or ex vivo, where cells are collected from the host, transduced, and then 

transplanted back into the host. In the following section, we will focus on the various vector-

mediated gene therapies, which have demonstrated successes in ciliopathy models and the 

capacity of treating ciliopathies affecting the olfactory system. Much like small molecule 

treatment, the accessibility of the olfactory system makes it conducive to gene therapeutic 

delivery. Several studies have demonstrated the receptiveness of the OE to transduction by 

multiple kinds of viral vectors, generating confidence in these approaches.

Recombinant Adenoviral-mediated Therapy

Adenoviruses are 90-100 nm non-enveloped icosahedral viruses with 57 serotypes. As a 

vector, adenoviral serotype 5 has been used for the majority of gene therapeutic studies due 

in part to its ability to efficiently infect multiple cell types, generate high titer preparations, 

and 3.0-8.0 kb insertional size in its ~36kb linear dsDNA genome. Early adoption of 

adenoviral vectors for gene therapies were hindered by the strong immunogenic responses 

from both animal models and human clinical trials [56], resulting in cytokine induction and 

activation of effector leukocytes [57]. Despite the immunogenic response, their insertion 

capacity and ease of production make adenovirus ideal for pre-clinical and ongoing gene 

therapeutic studies with efforts to reduce the immunogenic responses by capsid 

modifications [56,57].

Outside of the olfactory system, adenoviral-mediated strategies have been applied in 

ciliopathy models, particularly PKD. In vitro reintroduction of wildtype PKD2 

(polycystin-2, TRPP2) restored partial function from renal cells isolated from PKD2 

knockout mouse model [58]. In vivo and in vitro, postnatal PKD1 knockout mice 

demonstrated slower renal cyst growth 10 days following treatment with adenovirus 

containing the gene encoding for NGAL (neutrophil gelatinase associated lipocalin), which 

inhibits proliferation and increases apoptosis [59]. In an alternative strategy, in vivo 
administration of adenovirus encoding for a shRNA for the RAGE (receptor for advanced 

glycation end products) protein demonstrated slower cyst growth and improved renal 

function in a mouse model of autosomal dominant polycystic kidney disease (ADPKD) [60].

Within the olfactory field, several studies have demonstrated that the OE and particularly 

OSNs are amenable to adenoviral-mediated transduction following intranasal delivery 

[9,21,22,61–69]. Despite earlier reports of infiltration into the olfactory bulb [57,70], 

infection and transduction was highly restricted to the nasal cavity and OSNs axons [71,72]. 

Different studies have shown that intranasal delivery of adenovirus infects approximately 

15-25% of OSNs, with viral gene expression peaking at 10 days post infection [22,61]. 

Longevity studies have observed the persistence of gene products to up to 21 days post 

infection and as long as 90 days post infection; however, there is a dramatic drop in 

expression levels 30 days post infection [61,72]. Together, the accessibility for non-invasive 

delivery and the amenability of cells in the OE to viral transduction is an important 

consideration for gene therapy.

As a tool, adenoviral-mediated expression of fluorescently-tagged proteins has allowed for a 

greater understanding of the organization and structure of OSN cilia, which includes the 

detailed morphology, regional divisions, and the dynamics of intraflagellar transport (IFT) 
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protein trafficking [9]. Important as a potential therapy, the use of the adenoviral vectors is 

able to restore wildtype olfactory function in ciliopathy and other null mouse models 

[21,22,64]. First demonstrated in an OMP (olfactory marker protein) knockout mouse 

model, adenoviral-mediated gene replacement of the OMP gene restored normal odor 

response kinetics in infected OSNs [64]. The capacity of adenoviral-mediated restoration 

was bolstered in the ORPK ciliopathy mouse model, which possesses a hypomorphic 

mutation in Ift88. Intranasal delivery of wildtype Ift88 restored ciliation on OSNs and 

rescued olfactory function [21]. The success of adenoviral-mediated rescue was 

recapitulated in a patient-relevant BBS1 knockout mouse model of BBS, where ectopic 

expression of wildtype BBS1 was capable of restoring ciliary morphology, ciliary IFT 

protein trafficking, and olfactory function in vivo [22]. From the same study, adenoviral 

exposure and wildtype BBS1 overexpression did not exhibit changes in macrophage 

infiltration nor apoptosis. Suggesting the delivery and dosage did not induce an 

immunogenic response nor toxic effects. Together, these studies were the first to 

demonstrate restoration of ciliation and tissue function in a ciliopathy mouse model. More 

importantly, these studies provide the preclinical proof-of-concept highlighting the capacity 

of adenoviral-mediated gene therapy to treat olfactory dysfunctions.

Adeno-associated Viral-mediated Therapy

In the field of gene therapy, safety concerns over adenovirus has increased efforts using 

adeno-associated viral (AAV) vectors. This focus is due to AAV’s natural lack of 

pathogenicity and limited immunogenic response. Over the years, continual modification 

and expansion of the AAV serotype library resulted in serotype-dependent cellular 

specificity and distinct expression levels, onset kinetics, and viral genome copy numbers 

[73]. To date, there are 12 different serotypes of AAV with different AAV pseudotypes, 

where the genome from one serotype is packaged within the capsid of a different serotype. 

AAVs are 20 nm non-enveloped capsid vectors with a ~4.7 kb ssDNA genome. Unlike 

adenoviral vectors, the insertional capacity of AAV is relatively small and can only 

accommodate ~2.5 kb of genetic material. Following infection of the host cell, the single 

stranded AAV genome is processed into dsDNA and undergoes concatemerization, 

increasing episomal stabilization within the host cell’s nucleus. Although the AAV genome 

remains largely episomal, some AAVs demonstrate the capacity of integrating in the host’s 

genome. Specifically, integration occurs in the long arm of chromosome 19, on site called 

AAVS1 [74].

AAV-mediated gene therapies have demonstrated preclinical and clinical successes in 

multiple diseases including hemophilia, cystic fibrosis, and LCA. With regards to 

ciliopathies, the retina is one tissue that has seen significant successes. LCA is an inherited 

disease which can result from mutation of cilia genes. It affects retinal pigmented cells and 

results in severe visual loss shortly after birth. AAV-mediated therapies showed some 

success in RPE65-null mutations of LCA. In these studies, young and adult RPE65-null 

canine models exhibited functional and structural recovery of the retina [75–77]. Where 3 

years following a single dosage of AAV2/2, AAV2/1, or AAV2/5 serotypes the canine 

models maintained rod and cone vision [78]. With the success of canine studies, clinical 

trials using AAV2 containing wildtype Rpe65 gene to young patients proceeded with 
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patients also demonstrating success with visual improvement [79]. However, follow up 

studies show limited long-term effects with patients experiencing continual retinal 

degeneration despite earlier visual improvement [80,81].

In regards to other ciliopathies, similar successes were observed in the BBS4 knockout and 

BBS1(M390R) knock-in mouse models of BBS, where retinal degeneration is one of the 

symptoms [82,83]. Subretinal administration of self-complementary AAV5 containing the 

wildtype Bbs4 ciliary gene into BBS4-null mice restored rhodopsin localization, returned 

normal retinal morphology, and improved electroretinogram recordings [82]. Comparable 

restorations were observed in BBS1(M390R) knockin mice treated with AAV2/5 containing 

wildtype Bbs1, but did not prevent long-term retinal degeneration [83]. In the nasal cavity, 

the use of AAV-mediated transduction has been effectively observed in both olfactory and 

respiratory epithelia exhibiting stable expression up to 9 months in respiratory cells, while 

also demonstrating the capacity of reinfection [84–86]. More recently, intranasal delivery of 

AAV9 containing wildtype Bbs1 restored OSN cilia and olfactory function in a BBS1 

knockout mouse model of BBS, recapitulating the results from the adenoviral-mediated 

therapy [22]. In vivo imaging of the infection showed restriction of the treatment to the nasal 

cavity, and the restoration of odorant detection as recorded by electro-olfactogram 3 weeks 

post infection. These observations, demonstrate the amenability of the olfactory system and 

OSNs to AAV-mediated gene therapy. However, more studies are required to examine the 

efficacy of the strategy for other ciliopathies.

Retroviral-mediated Therapy

Early in the development of gene therapies, retrovirus was the preferred method of gene 

transfer. The advantage of retrovirus is their ability to stably incorporate into the host’s 

genome, which would allow for long-term and stable gene expression. Retroviruses, such as 

gammaretroviral and lentiviral vectors, are 100 nm enveloped particles that contain two 

ssRNAs between 7.0-10.0 kb, with an insertion capacity of 5.0-10.0 kb. Following infection, 

dsDNA is generated by reverse transcription and integration into the host cell’s genome. 

Lentiviruses differ from other retroviruses by having the pre-integration complex transported 

to the nucleus, allowing for genetic integration in dividing and non-dividing cells. Use of the 

retroviral-mediated therapies have demonstrated successes in proof-of-principle pre-clinical 

studies. Recently in isolated human fibroblasts from CEP290-null LCA patients, lentiviral 

transduction of the wildtype Cep290 cilia gene restored primary cilia formation [87]. In 

studies examining DNAI1-null primary ciliary dyskinesia (PCD), successful lentiviral 

transduction of the Dnai1 gene restored ciliary beating in mouse and human respiratory cell 

cultures [88,89]. Implementation of the lentiviral-mediated therapies to treat olfactory 

dysfunctions has not been directly attempted. However, cells of the OE demonstrate the 

capacity of lentiviral transduction both in vivo and ex vivo isolated OSN cultures [90–92]. 

The potential use of lentivirus as a gene therapeutic vector is further supported by the 

repetitive administration of lentivirus without the induction of immune response [93]. In 

order to gain a better understanding of the capacity of retroviral-mediated treatment of 

olfactory dysfunctions in ciliopathies, additional studies are required.
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Gene Editing Therapy

Despite the success of the gene replacement therapies across multiple diseases, the approach 

is limited by the longevity of therapeutic gene expression. Both adenoviral and AAV-

mediated transductions are dependent on the existence and stability of the episomal genetic 

material. The issue of longevity is partially addressed by lentiviral transduction, where the 

therapeutic gene is incorporated into the host cell’s genome. However, the insertion sites are 

nonspecific and demonstrate a risk of insertional oncogenesis or mutagenesis [94,95]. To 

date, there are three prominent gene editing approaches available: zinc-finger nucleases 

(ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered 

regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system [96,97]. ZFNs are 

artificial restriction enzymes generated by fusing a zinc-finger DNA-binding domain to 

cleavage domain, which can be engineered to a specific sequence. ZFNs has been shown to 

efficiently correct the DF508 mutation in the Ctfr gene in isolated tracheal cultures from 

cystic fibrosis patients [98]. More importantly, the correction of the Ctfr gene could be 

performed on isolated pluripotent stem cells and was retained following differentiation [99]. 

Similar to ZFNs, TALEN-mediated gene editing uses restriction enzymes engineered to cut 

specific DNA sequences by the fusion a TAL effector DNA-binding domain to a cleavage 

domain. Application of TALENs as a potential therapeutic agent in ciliopathies has been 

limited, but correction of the Dnah11 gene and restoration of the ciliary beating was 

demonstrated in isolated respiratory cells from PCD patients [100].

In recent years, the CRISPR-Cas9 system has become the primary method for gene editing 

due to its ease of use and higher specificity. Derived from the prokaryotic immune system, 

the CRISPR-Cas9 system utilizes a Cas9 nuclease and small guide RNAs to target and alter 

segments of the target gene. Applications of CRISPR-Cas9-mediated genome editing for 

treating ciliopathies are still premature, but encouraging results from correcting the IVS26 

mutation of the Cep290 gene of LCA in vitro and demonstrating the capacity of CRISPR-

Cas9-mediated genome editing in the mouse retina suggest the feasibility of future 

treatments [101]. Utilization of gene editing within the olfactory field has been limited to 

use as a tool for generating mutant models. At the time of this review, CRISPR-cas9 gene 

editing has found success in invertebrate animal models to examine olfactory-guided 

behaviors and development of the olfactory systems [102–105]. Additional studies are 

required to determine the feasibility and efficacy of the gene editing in the mammalian 

olfactory system, but could serve as an alternative long-term solution for treating olfactory 

dysfunctions.

Ex vivo Gene Therapy

While in vivo gene therapy remains the primary methodology for addressing many genetic 

diseases, the approach is not without its obstacles. Principally, there are ongoing concerns 

with the route of administration and viral vector specificity, both of which may result in 

potential systemic exposure and off-target effects of the vector. Besides off-target effects, 

there are also concerns of transduction efficiency, as well as, host or patient immunogenic 

responses. Because of these concerns, ex vivo gene therapy has become an alternative and 

secondary approach to in vivo gene therapy. Ex vivo therapy utilizes tissue or cells isolated 

from a patient or donor. These isolated cells are treated with vector containing the 
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therapeutic gene in culture, and then transplanted back into the patient or recipient. The most 

advancement has been made with cancer immunotherapies and the transduction of CAR-T 

cells. In the recent years, successful vector transduction of isolated respiratory cells from 

PCD and cystic fibrosis patients are encouraging [80,89,99], opening the door for future 

transplantation studies. In the context of olfactory ciliopathies, ex vivo gene therapy could 

serve as an alternative long-term solution. In addition to the potential hurdles of in vivo 
therapy, there is a biological limitation to the treatment. Mammalian OSNs are constantly 

turning over, where the lifespan of an individual OSN lasting anywhere from 60-90 days 

[106,107]. Therefore, there would be a decrease in efficacy of the in vivo treatment over 

time as OSNs turn over. A possible solution would be isolation and treatment of the OE stem 

cell population, and subsequent transplantation back into the host. Proof-of-principle 

experiments were successful in the isolation and transplantation of globose basal cells and 

horizontal basal cells (HBCs), the mitotically active and inactive multipotent progenitor stem 

cell populations of the OE, respectively [108–110]. Furthermore, these grafted cells 

demonstrated the capacity of generating multiple cell types, including OSNs, as well as the 

supporting sustentacular cells. This ex vivo strategy may also be useful for ciliopathies that 

might affect the olfactory stem cell populations. Recently, the HBC population were shown 

to have primary cilia [8]. While HBC-specific loss of ciliation did not affect the 

establishment and maintenance of the OE, loss of ciliation did inhibit the ability of the OE 

recovery after lesion. These observations suggest a possible ciliopathy phenotype outside of 

the OSN cilia, and susceptibility of ciliopathy patients to OE injury. Thus, ex vivo gene 

therapy may be a viable option for restoring proper ciliation and ciliation function within the 

HBCs. However, subsequent studies will need to be performed to examine the olfactory stem 

cell penetrance in patient relevant ciliopathy models.

Current Therapies and Future Challenges

Currently, there is no clinically approved universal treatment to directly address ciliopathies. 

Due to the complexity and pleiotropic nature of many ciliopathies, the majority of the 

existing treatments address the symptoms that would be considered most debilitating. These 

immediate treatments include surgery for polydactyly, weight management to address 

obesity, vision aids and mobility training for vision loss, special education for learning 

disabilities, and kidney transplants for renal dysfunctions. In regards to ciliopathy-induced 

olfactory dysfunctions, management of olfactory dysfunction is possible where there is 

residual olfactory function [18]. Under these circumstances, patients would follow a smell 

training regimen that would maximize use of the remaining sensory perceptions. Smell 

training has demonstrated improved detection threshold and olfactory sensitivity for patients 

with traumatic anosmia [111,112]. Similar improvements were observed in patients 

following post-infection induced olfactory loss [113,114]. In addition, patients undergoing 

the smell training have exhibited return of neuronal activity in olfactory areas within the 

brain suggesting a partial restoration of central function [115]. However, smell training 

remains a symptomatic management of olfactory dysfunction and does not directly address 

the cause nor prevent disease progression. This option is also not applicable to patients who 

are anosmic, or complete loss of olfaction. Therefore, a targeted and long-term therapeutic 

solution is still necessary in severe cases.

Uytingco et al. Page 10

Curr Med Chem. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In many ways, the peripheral olfactory system is privileged as the tissue is readily accessible 

and amenable to direct treatment. Because of this combination of isolation and accessibility, 

potential small molecule and/or gene therapeutic treatments can bypass many of the 

complications associated with systemic delivery, tissue specificity, dosage, and invasiveness. 

However, the accessibility and efficiency of the treatment could be impeded by the presence 

of mucus within the nasal cavity. In studies of PCD, where there is excessive mucosal 

accumulation, lentiviral-mediated transduction in the nasal cavity was severely reduced [88]. 

A similar problem was encountered in cases of cystic fibrosis, where the mucus acted as 

barrier for AAV and adenoviral vectors [116–118]. In such cases, there is a need to 

physically disrupt the mucosal accumulation or develop mucosal penetrating particles to 

assist in small molecule or vector penetrance.

For the most part, ciliopathies follow standard Mendelian genetic inheritance. However, 

some studies suggest a more complicated inheritance scheme where the disease or 

symptoms result from accumulated mutations across different genes [119]. This idea of the 

polygenic causes of ciliopathies was observed in patient populations of BBS where 

mutations in both Bbs6 and Bbs2 genes contribute to the disease phenotypes [120]. 

Mutational load was observed in other BBS patients, where Bbs4 mutations were 

accompanied with mutations in Bbs1 and Bbs2 [121]. With the involvement of multiple 

genetic mutations, the standard gene therapeutic approach of restoring a single gene may not 

be sufficient to restore ciliation or reverse the phenotypes. While co-infection of the same 

cell with different viral vectors is possible [9], the efficacy of a such a treatment is unknown. 

As such, alternative approaches may be required to address polygenic mutations.

At this time, the most viable treatment option for olfactory ciliopathies is through gene 

therapies. This is largely due to the compelling evidence of adenoviral and AAV-mediated 

delivery of wildtype genes to restore OSN ciliation in ORPK and BBS1 knockout mice 

[21,22]. However, there are still questions regarding whether this treatment is translatable to 

other ciliopathy models and to patients. The primary concern is the immunogenicity and 

toxicity of the treatment, which seem well tolerated in mouse models [22]. This is partially 

mitigated by the limited immunogenic response observed in cystic fibrosis studies where 

vector-related symptoms did not manifest in low doses of aerosolized adenoviral vectors 

[122]. Together, these observations suggest that the nasal cavity is one of the few areas that 

are immune-privileged. Another potential hurdle of gene therapy is the presence of a pre-

existing immunity to adenoviral and AAV vectors. Pre-existing immunities diminishes the 

infection of efficiency of the several vectors, resulting in an overall reduction in the efficacy 

of the treatment [123]. One practical solution to this problem would be to simply change to 

another serotype, but the occurrence of pre-existing immunity within the olfactory system 

has yet to be documented.

CONCLUSION

To date, the field has made significant progress understanding the structure and function of 

cilia in the olfactory system while work examining the penetrance of ciliopathies in this 

tissue continues. The potential biological treatment options are compelling, while additional 

studies are required to examine the direct effect of small molecules on olfactory cilia. 
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However, this does not detract from the most intriguing and promising finding that is the 

ability to restore ciliation and cilia function following gene therapy. Future work is needed to 

optimize and streamline the delivery, improve the infection efficiency, and increase the cell 

specificity. With the successes observed thus far, treating ciliopathy-induced olfactory 

dysfunction may provide novel insights into developing improved treatments for other 

ciliopathy-afflicted organ systems, as well as other congenital causes of olfactory 

dysfunction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the additional members of the Martens lab for their valuable discussions and input. This work was 
supported by NIH grant R01DC009606 to J.R.M.

LIST OF ABBREVIATIONS

OSN Olfactory Sensory Neuron

OE Olfactory Epithelium

GPCR G-Protein Coupled Receptor
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IFT Intraflagellar Transport
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LCA Leber Congenital Amaurosis
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PKD Polycystic Kidney Disease
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Figure 1. Olfactory epithelium cell types
Diagram depicting the major cell types present within the mammalian olfactory epithelium. 

At the basal surface are the ciliated horizontal basal cells (HBCs; red) and globose basal 

cells (GBCs; green). At the apical surface are the sustentacular cells (orange), and immature 

(purple) and multiciliated mature (blue) olfactory sensory neurons (OSNs). (Inset-top) 

Structural organization of OSN cilia depicting basal bodies (BB), proximal segment (PS), 

distal segment (DS), including trafficking of ciliary proteins and membrane bound G-protein 

coupled odor receptors. (Inset-bottom) Magnification of the HBC primary cilia, which has a 

role in OE neurogenesis.
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