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Abstract

High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple 

processes, including cognitive control processes. Recent neurocognitive research on these 

constructs highlight the importance of dynamic interaction across neural network systems and the 

role of cognitive control processes in guiding such a dynamic interaction. How can we 

quantitatively examine the extent and ways in which cognitive control contributes to creativity anf 

intelligence? To address this question, we apply a computational network control theory (NCT) 

approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample 

of participants, to examine how NCT relates to individual differences in distinct measures of 

creative ability and intelligence. Recent application of this theory at the neural level is built on a 

model of brain dynamics, which mathematically models patterns of inter-region activity 

propagated along the structure of an underlying network. The strength of this approach is its 

ability to characterize the potential role of each brain region in regulating whole-brain network 

function based on its anatomical fingerprint and a simplified model of node dynamics. We find 

that intelligence is related to the ability to “drive” the brain system into easy to reach neural states 

by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We 

also find that creativity is related to the ability to “drive” the brain system into difficult to reach 

states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration 

abilities in sensorimotor areas. Furthermore, we found that different facets of creativity—fluency, 

flexibility, and originality—relate to generally similar but not identical network controllability 

processes. We relate our findings to general theories on intelligence and creativity.
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1. Introduction

High-level cognition entails complex and multiple processes, including cognitive control 

processes. For example, current theories on the creative process view it as a multistage 

process, involving dynamic interactions between bottom-up, automatic processes involved 

during idea generation; and top-down, executive control processes involved during idea 

evaluation (Barr, Pennycook, Stolz, & Fugelsang, 2014; Beaty, Benedek, Silvia, & Schacter, 

2016; Chrysikou, in press; Sowden, Pringle, & Gabora, 2014). These theories attribute a key 

role to cognitive control processes in guiding creative novelty seeking and response retrieval, 

selection, and evaluation (Chrysikou, in press). Similarly, the neural processes related to 

reasoning and intelligence demand cognitive control processes, required for fluent 

manipulation of complex information (Hearne, Cocchi, Zalesky, & Mattingley, 2015; 

Hearne, Mattingley, & Cocchi, 2016; Jung & Haier, 2007). However, the exact nature of the 

cognitive control required in such high-level cognitive processes are still mostly unknown 

and debated. Here, we apply a state-of-the-art computational approach—network control 

theory—to quantitatively examine how different control strategies in specific brain regions 

relate to creativity and intelligence. Such a comparison can further elucidate the differences 

between these two high-level, cognitive constructs.

In the past decade, there has been a large increase in neurocognitive research on creativity, 

attempting to identify the main brain regions that contribute to creativity (Dietrich & Kanso, 

2010; Gonen-Yaacovi et al., 2013; Jung, Mead, Carrasco, & Flores, 2013; Shen, Yuan, Liu, 

& Luo, 2017; Wu et al., 2015; Yoruk & Runco, 2014). These efforts have related the 

generation process in creativity to the Default Mode Network (DMN) and the evaluation 

process in creativity to the Executive Control Network (ECN; Beaty et al., 2016). The DMN 

is a set of midline and inferior parietal regions that activate in the absence of most external 

task demands (Andrews-Hanna, Smallwood, & Spreng, 2014). The DMN is associated with 

cognitive processes that require internally-directed or self-generated thought, including 

mind-wandering, future thinking, semantic memory, and mental simulation (Andrews-Hanna 

et al., 2014; Zabelina & Andrews-Hanna, 2016). The ECN is a set of prefrontal and posterior 

parietal regions that are engaged during cognitive tasks that require externally-directed 

attention, such as working memory, relational integration, response inhibition, and task-set 

switching (Zabelina & Andrews-Hanna, 2016). Recent studies have found that ECN and 

DMN networks cooperate in tasks that require evaluation of internal information, such as 

autobiographical future memory planning, emotion regulation, and mind wandering 

(Christoff, Gordon, Smallwood, Smith, & Schooler, 2009; Gerlach, Spreng, Madore, & 

Schacter, 2014; Ochsner, Silvers, & Buhle, 2012; Spreng et al., 2014).

A growing amount of research relates the creative process to dynamical interactions between 

these two systems (Beaty, Benedek, Kaufman, & Silvia, 2015; Beaty et al., 2016; Liu et al., 

2015; Pinho, de Manzano, Fransson, Eriksson, & Ullén, 2014). For example, Beaty et al. 
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(2015) conducted a temporal functional connectivity analysis when participants either 

generated alternative uses or simple characteristics for common objects. The authors show 

DMN and ECN cooperation at later stages of the creative task, which they interpret as the 

ECN executing evaluation processes on ideas generated by the DMN during earlier stages of 

the task (Beaty et al., 2015). Such a dynamic role for the ECN is consistent with a theory on 

the role of the prefrontal cortex as a filtering mechanism, contingent on task demands and 

context (Chrysikou, Weber, & Thompson-Schill, 2014). According to this theory, cognitive 

control, as mediated by the prefrontal cortex, is critical to performance on tasks that rely on 

top-down, rule-based processes (such as idea evaluation), and can constrain performance in 

tasks that rely on bottom-up, spontaneous processes (such as idea generation; Chrysikou et 

al., 2014).

Recent neurocognitive theories also relate intelligence to similar brain networks and 

dynamics as those observed in creativity research (Hearne et al., 2016; Jung & Haier, 2007; 

Pineda-Pardo, Martínez, Román, & Colom, 2016). The dominant theory on the neural 

processes involved in intelligence has implicated frontal and parietal activation in relation to 

individual differences in intelligence, theory known as the Parieto-Frontal Integration 

Theory of intelligence (P-FIT; Jung & Haier, 2007). Hearne, Mattingley, and Cocchi (2016) 

conducted a resting state functional connectivity analysis to examine the P-FIT theory and 

how it relates to interactions between different neural system networks. Suprisngly, the 

authors found that greater connectivity between ECN (overlapping with the P-FIT theory) 

and DMN networks was associated with higher intelligence scores. Such an integration was 

also shown in a task related functional imaging study, which demonstrated how task 

complexity in the Wason sorting task led to higher connectivity between ECN and DMN 

areas (Hearne et al., 2015). Recently, Santarnecchi, Emmendorfer, and Pascual-Leone 

(2017) conducted a meta-analysis to examine the brain regions and networks related to fluid 

intelligence (Gf), the ability to apply a variety of mental operations to solve novel problems 

(McGrew, 2005). This analysis highlighted the interaction of attention, salience, and 

cognitive control networks in Gf (Santarnecchi et al., 2017). Specifically, the authors argue 

that individual differences in Gf are attributed to the interactions between the ventral 

(stimulus driven) attention network and the dorsal (goal driven) attention network (Corbetta, 

Patel, & Shulman, 2008). Finally, the authors found that increasing task difficulty recruited 

left prefrontal cortex areas (Santarnecchi et al., 2017).

The apparent parallels in the neurocognitive mechanisms supporting intelligence and 

creativity, along with several recent studies linking these constructs at the behavioral level 

(Beaty, Silvia, Nusbaum, Jauk, & Benedek, 2014; Benedek, Jauk, Sommer, Arendasy, & 

Neubauer, 2014; Benedek et al., 2017; Kenett, Beaty, Silvia, Anaki, & Faust, 2016; Silvia, 

2015), raises interesting questions about how intelligence and creativity engage cognitive 

control processes in the brain. Importantly, these studies argue for an interaction between the 

ECN and DMN, and that the ECN exerts cognitive control mechanisms that are crucial for 

reasoning and creativity. However, these studies do not account for the specific control 

mechanisms exerted in these processes. Furthermore, they do not examine the differences in 

the neurocognitive processes engaged in such control processes related to creativity or 

intelligence. Here we present a novel computational network neuroscience method that is 
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based on white-matter connectivity networks that may be applied to examine theoretical 

control processes related to different high-level cognitive processes.

Currently, the majority of the research on the neurocognitive processes of high-level 

cognition, such as creativity and intelligence, is conducted via functional MRI (both rest and 

task related; Basten, Hilger, & Fiebach, 2015; Beaty et al., 2016; Deary, Penke, & Johnson, 

2010). Functional MRI is well suited in examining state level variability across participants, 

given that rest and task functional activity related patterns fluctuate in ways that predict 

similarly fluctuating cognitive measures. However, anatomical brain network analysis might 

be better suited for looking at trait level variability across participants, by measuring stable 

individual differences in their neuroanatomy that might constrain neural and psychological 

states. Furthermore, recent computational studies have begun to demonstrate how functional 

brain signals are constrained by anatomical brain connectivity (Medaglia, Huang, et al., 

2016). Thus, anatomical brain connectivity can contribute to investigating state-level 

cognition, and to better understanding functional neural signals. This is due to the unique 

information embedded in the anatomical signal that is independent of the functional signal, 

Thus, anatomical connectivity analysis contributes to neurocognitive research on cognitive 

phenomena (Sotiropoulos & Zalesky, 2017).

Only a few studies have examined how white matter structural connectivity relates to 

creative ability (Jung, Grazioplene, Caprihan, Chavez, & Haier, 2010; Jung et al., 2013; 

Ryman et al., 2014; Takeuchi et al., 2017; Takeuchi et al., 2010, 2011; Wu, Zhong, & Chen, 

2016). Takeuchi et al. (2010) conducted a diffusion tensor imaging study to examine the 

relation between white matter integrity (measured with fractional anisotropy) and creative 

ability. The authors show how increased integrity in white-matter anatomical connectivity in 

several brain areas, including the bilateral prefrontal cortex and the corpus callosum, were 

significantly correlated with creativity. The authors interpret the significant relation between 

creativity and white matter integrity in the frontal lobes via enhanced cognitive control 

processes, and the relation with the corpus callosum via more efficient information 

integration across the two hemispheres. A few have examined how white matter structural 

connectivity relates to intelligence (Bettcher et al., 2016; Haász et al., 2013; Ohtani et al., 

2017; Ohtani et al., 2015; Penke et al., 2012). These studies, while mostly supporting the P-

FIT theory of intelligence, have also found a relation between white matter integrity in the 

corpus callosum and intelligence (Bettcher et al., 2016) or distributed white matter tracts 

across the brain (Haász et al., 2013). For example, Haász et al. (2013) examined the relation 

of white matter integrity to different components of fluid intelligence. The authors show how 

higher Gf was related to general higher white matter integrity across the brain.

Thus, individual differences in such high-level cognitive constructs may be related to 

variance in whole brain white matter connectivity, which may facilitate efficient cognitive 

control processes. In the current study, we apply computational network control theory 

(NCT) in relation to individual differences in creativity and intelligence. This allows us to 

examine how whole brain structural connectivity theoretically “controls” dynamic brain 

processes in relation to individual differences in creativity and intelligence and whether they 

engage similar control processes.
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From an engineering perspective, network control is a process in which a system is 

deliberately shifted or guided along a particular trajectory to support specific goals (Tang & 

Bassett, 2017). This guidance is usually theoretically examined by simulating injection of 

signals into the system via deliberate perturbations. Recently, network control theory has 

been applied to study the dynamics of large-scale neural systems (Gu et al., 2015; Medaglia, 

Gu, et al., 2016; Yan et al., 2017). A recent study applied NCT to investigate the significance 

of specific neurons in C. Elegans locomotion behavior. Importantly, these predictions were 

empirically examined and verified by ablating specific neurons identified as significant 

controllers (Yan et al., 2017). Thus, this study demonstrates the feasibility of this 

computational theoretical approach in examining control strategies and dynamics in such 

neural systems

Application of this theory at the human neural level is built on a mathematical model of 

brain dynamics in which patterns of inter-region activity are propagated along the white 

matter structure of an underlying network. The strength of this approach is its ability to 

better understand the role of each brain region in regulating whole-brain network function 

based explicitly on its anatomical fingerprint (Gu et al., 2015; Tang & Bassett, 2017). 

Investigating the controllability of neural dynamics is computationally challenging, as it 

requires modelling non-linear neural dynamics and the neural structural connectivity that 

gives rise to such dynamics (Gu et al., 2015). It has been shown that these two aspects of 

complexity are independent, and thus application of control theory in neuroscience is built 

upon anatomical connectivity networks combined with a simplified, linear model of such 

neural dynamics (Gu et al., 2015). This assumption of linear dynamics is commonly 

accepted, and is based upon prior models linking anatomical brain networks to resting state 

functional dynamics (Abdelnour, Voss, & Raj, 2014; Bettinardi et al., 2017; Honey et al., 

2009; Honey, Thivierge, & Sporns, 2010; Muldoon et al., 2016). These prior studies have 

demonstrated that a moderate amount of variance in neural dynamics as measured by fMRI 

can be predicted from simplified linear models (Galán, 2008; Honey et al., 2009). Recently, 

Muldonn et al. (2016) examined the effects of regional brain stimulation on controllability of 

brain states using a non-linear computational model. The authors demonstrate that while the 

dynamics of their computational model is highly variable across participants, it is highly 

reproducible across multiple imaging scans. Furthermore, the authors applied their non-

linear model to validate controllability measures computed based on the simplified linear 

model. Thus, while the forefront of computational neuroscience aims to develop methods to 

map the relation between structural and functional signals (Medaglia, Huang, et al., 2016), 

controllability measures built on a simplified linear model have proven their fruitfulness.

Recent applications of NCT to neural systems have mathematically formulated a set of three 

controllability metrics that quantify the contributions made by individual brain regions in 

“driving” the entire brain network from one state (the magnitude of neurophysiological 

activity across brain regions at a single time point) into another: Average, Modal, and 

Boundary controllability (Gu et al., 2015; Pasqualetti, Zampieri, & Bullo, 2014). Average 
controllability quantifies the theoretical extent to which a specific brain region can “drive” 

the brain into different states with little effort. Thus, brain regions with high average 

controllability can drive the brain into many “easy to reach” states, and it has been 

associated with DMN regions (Gu et al., 2015; Pasqualetti et al., 2014). Gu et al. (2015) 
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have argued that if control energy relates to cognitive effort, and if brain regions relate to 

cognitive function, than brain regions with high average controllability are important in 

allowing the brain to move smoothly between such functions that require little effort. Modal 
controllability quantifies the theoretical extent to which a specific brain region can “drive” 

the brain into states that require substantial input energy to reach, thus considered as 

“difficult-to-reach” states. Brain region with high modal controllability have been associated 

with fronto-parietal regions (Gu et al., 2015). Boundary controllability quantifies the 

theoretical extent to which a specific brain region lies at the “boundary” between network 

sub-communities, contributing to the integration between them. Brain regions with high 

boundary controllability have been associated with attention systems (Gu et al., 2015). 

Collectively, these three theoretical control roles define different continua in brain networks: 

brain regions may vary in their tendency to drive the brain to or away from specific types of 

states or into integrated states, and are termed according to their ability to globally control 

the entire brain system. Without the context of behavior and the brain, these are 

mathematical abstractions that may hold no behavioral relevance. The extent to which these 

controllability roles vary across individuals may be related to behavioral and cognitive 

variability, which would establish a link between network control theoretic analysis and 

cognition (Medaglia, Gu, et al., 2016; Medaglia, Harvey, White, Bassett, & Hamilton, 2017; 

Tang et al., 2016).

A few recent studies have demonstrated the feasibility of applying network control theory to 

study cognition. Tang et al. (2016) investigated whole brain network controllability 

measures related to typical neurocognitive development. The authors found that the relative 

strength of average controllability of subcortical brain regions predicted improved cognitive 

performance as related to development. Medaglia et al. (2016) demonstrated how modal and 

boundary controllability related to individual differences in cognitive control. The authors 

computed whole-brain modal and boundary controllability, and related these measures to 

performance on a variety of tasks that demand executive control (such as the Stroop task). 

This study demonstrates how these controllability measures for specific brain areas (such as 

in frontal control areas) correlate with performance on the different tasks, and it is the first to 

ground cognitive control in network controllability measures. Finally, Medaglia et al. (2017) 

show how modal controllability of the left inferior frontal gyrus predicts volburability to 

transcranial magnetic brain stimulation on linguistic tasks. Furthermore, the authors show 

how such brain stimulation affects the boundary controllability of the left inferior frontal 

gyrus. Thus, the application of NCT in neurocognitive research advances our understanding 

of regions’ theoretical roles in driving activity across the brain as related to cognitive 

processes.

In the current study, we apply NCT on white-matter anatomical connectivity networks in a 

large sample of participants (N = 416) who completed a battery of creativity and intelligence 

tasks. Creativity was assessed via a battery of divergent thinking tasks (DT), the hallmark 

predictor of creative ability characteristics, frequently applied in creativity research (Baird et 

al., 2012; Runco & Acar, 2012), and predicts real-life creative ability (Plucker, 1999). 

Intelligence was measured by a battery of Raven’s matrices tasks, widely applied in 

intelligence research (Carpenter, Just, & Shell, 1990). For each participant, we extracted 

anatomical connectivity matrices based on diffusion tractography and compute average, 
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modal, and boundary controllability for brain regions across the whole brain. We then 

examined and compared the relation of each of the controllability measures to creativity and 

intelligence. Next, we conducted a similar analysis to different facets of creativity based on 

standard measures of DT computed from participants’ performance – fluency, flexibility, and 

originality. This analysis allows us to quantify and compare how specific control strategies 

in different brain regions differentiate between intelligence and creativity in general, and 

between specific measures of creative ability. More generally, our study allows us to 

quantitatively examine theories on the roles of the DMN and ECN systems in driving brain 

network dynamics as related to individual differences in creativity and intelligence. While 

we are theoretically motivated to focus on the ECN and DMN networks, we conduct a 

whole-brain analysis to examine differences in controllability across all possible brain 

regions. This is motivated by the possibility that different brain regions actually regulate 

such dynamics and the functional imaging studies somhow shadow more specific 

interactions across different brain regions.

In line with recent research on the neurocognitive processes related to intelligence and 

creativity (Chrysikou, in press; Santarnecchi et al., 2017), we predict a significant positive 

relation between modal controllability, intelligence, and creativity in prefrontal cortex. 

Intuitively, individuals that have a prefrontal cortex that is highly specialized to drive the 

brain into difficult to reach brain states may have superior performance on tasks demanding 

higher cognitive control such as intelligence or creativity. Furthermore, consistent with 

theories on the significance of ECN and DMN interaction related to btoh creativity and 

intelligence (Beaty et al., 2016; Hearne et al., 2016), we predict a significant relation 

between boundary controllability, creativity, and intelligence in brain regions that have been 

implicated in coupling between ECN and DMN systems, such as the inferior frontal gyrus 

(Sebastian et al., 2016), or the insula (Menon, 2011). We expect that such a relation will 

highlight the coupling relation previously found in DMN and ECN networks in the creative 

process (Beaty et al., 2015) and in reasoning (Hearne et al., 2015).

2. Methods

2.1. Participants

The sample was collected as part of a large research project exploring the associations 

among individual differences in brain structure and function, creativity, and mental health 

(Chen et al., 2016; Chen et al., 2015; W. Liu et al., 2017). Participants were recruited from 

Southwest University by means of the campus network, advertisements on bulletin boards 

and leaflets, or through face-to-face communications on campus. Before enrolling in the 

study, each participant was screened with a set of exclusion procedures involving self-

reported questionnaires as well as structured and semi-structured interviews.

The original sample included 443 participants. Seventeen participants were excluded from 

the final analysis due to a creativity score two standard deviations lower or higher than the 

average score. The remaining sample of 416 participants included 225 females (54%) with 

an average age of 20 years (SD = 1.26 years). All participants were required to be right-

handed, and none had a history of psychiatric disorder, cognitive disability, substance abuse, 

or MRI contraindications. This research project was approved by the Southwest University 
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Brain Imaging Center Institutional Review Board, and written informed consent was 

obtained from each participant. Participants received payment depending on time and tasks 

completed.

2.2. Materials

2.2.1. Behavioral Measures

Creativity Assessment: The verbal form of the Torrance Tests of Creative Thinking (TTCT; 

Torrance, 1966) was used to assess creativity (i.e., divergent thinking ability). The TTCT 

was revised in Chinese by the Shanghai Normal University (Ye, Hong, & Torrance, 1988), 

and the scoring guide was slightly adjusted in recent studies because some responses were 

produced in contemporary times that were non-existent in the original guidelines (Chen et 

al., 2015; Wei et al., 2014). We administered five tasks out of the Chinese version of the 

TTCT: generating questions; causes and consequences; improving products; alternate uses; 

and manipulating objects. The TTCT provides a total creativity score as well as indices and 

scores for evaluating different measures of creativity, assessed by divergent thinking 

abilities, which includes (a) fluency (the number of meaningful and relevant responses, 

which is associated with the ability to generate and consider several different possibilities), 

(b) flexibility (the number of different categories of responses, which reflects the ability to 

shift between conceptual fields), and (c) originality (the degree of originality of the 

responses, which is associated with thinking “outside of the box”).

Three trained raters scored the creative quality of all responses. The three raters majored in 

psychology and were blind to the goal of this research. First, they were trained to master the 

method of manual scoring of the responses. Then, they independently assessed all responses 

of 30 participants and yielded relatively uniform scoring criterion through structured 

discussions. This step was used to adjust the scoring guide for flexibility in the present 

sample, such as to how to evaluate a response that was nonexistent in the original guidelines. 

Finally, raters were asked to assess the responses of all participants based on these 

guidelines, and their inter-rater correlation coefficient was significant (ICC > .90).

Latent variable analysis was applied to extract factor scores for each participant on the three 

DT measures (fluency, flexibility, and originality) using Mplus 7.4. a strength of this 

approach compared to computing averages is that it models error variance separately from 

true measurement variance, leading to a more robust and reliable assessment of effect size 

(Klein, 2011). In addition to modelling the three DT measures separately, we also specified a 

higher-order latent model that included these three measures as lower-order indicators. We 

thus examined unique relationships between the three DT measures (fluency, flexibility, and 

originality), as well as their combined contribution, and network controllability measures.

Intelligence assessment: To adjust for the effect of general intelligence on creativity, we 

assessed intelligence with the Combined Raven’s Test (CRT), a widely adopted measure 

administered to Chinese individuals between the ages of 5 and 75 (Li, Hu, Chen, & Jin, 

1989; Qian, Wang, & Chen, 1997; Wang, Di, & Qian, 2007). The CRT is based on Raven’s 

Color Progressive Matrices (Raven, 1958) and Raven’s Standard Progressive Matrices 

(Raven, 1960). It contains 72 items in 6 segments of the CRT-RC2, corresponding to the 
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Color Progressive Matrices lists A, AB, and B, and the Standard Progressive Matrices lists 

C, D, and E in the original Raven matrices. The CRT for Adults in China (CRT-AC2) has 

shown good reliability and validity, and the Chinese norms for CRT-AC2 was established 

from a sample of 2526 people (17–64) from 20 provinces in China (Qian et al., 1997).

The raw scores of the CRT are computed by summing the number of correct responses, and 

the distribution of participants is calculated with percentiles that vary from 0 to 100 in the 

different age groups. The percentiles were converted to z-scores using a z-table and the 

standard CRT scores (mean = 100 and SD = 15) were calculated according to the Norm for 

Chinese Adult by Tianjin Medical University (Qian et al., 1997; Wang et al., 2007).

2.2.2. MRI Data Acquisition—Imaging data were collected using a 12-channel head coil 

on a Siemens 3 T Trio scanner (Siemens Medical Systems, Erlangen, Germany) at the Brain 

Imaging Center, Southwest University. High-resolution, three-dimensional T1-weighted 

structural images were obtained using a Magnetization Prepared Rapid Acquisition 

Gradient-echo (MPRAGE) sequence (TR/TE = 1900 ms/2.52 ms, FA = 9°, resolution matrix 

= 256 × 256; slices = 176; thickness = 1.0 mm; voxel size = 1 × 1 × 1 mm3). Diffusion 

tensor images were obtained using a diffusion-weighted, single shot, spin echo, EPI 

sequence (TR/TE = 11000/98 ms, matrix = 128 × 128, field of view = 256 × 256 mm, voxel 

size = 2 × 2 × 2 mm3, 60 axial slices, 2 mm slice thickness, b value 1 = 0 s/mm2, b value 2 = 

1000 s/mm2) in 30 directions and repeated acquisition of DWI data three times to increase 

the signal-to-noise (SNR).

DTI data were reconstructed in DSI Studio (www.dsi-studio.labsolver.org) using q-space 

diffeomorphic reconstruction (QSDR; Yeh, Wedeen, & Tseng, 2011). QSDR first 

reconstructs diffusion-weighted images in native space and computes the quantitative 

anisotropy (QA) in each voxel. These QA values are used to warp the brain to a template QA 

volume in Montreal Neurological Institute (MNI) space using the statistical parametric 

mapping nonlinear registration algorithm. Once in MNI space, spin density functions were 

again reconstructed with a mean diffusion distance of 1.25 mm using three fiber orientations 

per voxel. Fiber tracking was performed in DSI Studio with an angular cutoff of 35, step size 

of 1.0 mm, minimum length of 10 mm, spin density function smoothing of 0, maximum 

length of 400 mm and a QA threshold determined by DWI signal in the colony-stimulating 

factor. Deterministic fiber tracking using a modified FACT algorithm was performed until 

1,000,000 streamlines were reconstructed for each individual. Anatomical scans were 

segmented using FreeSurfer (Fischl, 2012) and parcellated using the connectome mapping 

toolkit (Cammoun et al., 2012). Based on previous research (Gu et al., 2015; Hermundstad 

et al., 2013; Medaglia, Gu, et al., 2016), a parcellation scheme including 234 brain regions 

(Cammoun et al., 2012) was registered to the B0 volume from each participant’s DTI data. 

The B0 to MNI voxel mapping produced via QSDR was used to map region labels from 

native space to MNI coordinates. To extend region labels through the grey-white matter 

interface, the atlas was dilated by 4 mm (Cieslak & Grafton, 2014). Dilation was 

accomplished by filling non-labelled voxels with the statistical mode of their neighbors’ 

labels. In the event of a tie, one of the modes was arbitrarily selected. Each streamline was 

labelled according to its terminal region pair. From these data, we constructed structural 

connectivity networks that map streamline connections between 234 cortical and sub-
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cortical regions. In these anatomical connectivity matrices brain regions are defined as 

nodes, and a link between two nodes represents the number of streamlines connecting them, 

normalized for their density (Sotiropoulos & Zalesky, 2017).

2.2.3. Network controllability analysis—To study the ability of a certain brain region 

to influence other regions in different ways, we adopt the control theoretic notion of 

controllability. Controllability of a dynamical system refers to the possibility of driving the 

state of a dynamical system to a specific target state by means of an external control input 

(Tang & Bassett, 2017). Classic results in control theory ensure that controllability of the 

network is equivalent to the controllability Gramian matrix, which determines whether a 

linear system is controllable (Summers, Cortesi, & Lygeros, 2016).

Besides ensuring controllability, the eigenvalues of the controllability Gramian are a 

quantitative measure of the magnitude of the control input that drives a network to a desired 

target state, and the structure of the Gramian itself provides systematic guidelines for the 

selection of control regions that can theoretically optimize cognitive functions. While the 

magnitude of the control input may not be the unique feature to take into account when 

controlling brain dynamics (Kumar, Menolascino, & Ching, 2014), it allows us to better 

understand the relationship between the anatomical organization of the brain and its 

dynamics. Here, this allows us to isolate the control role of each region separately for each 

participant and relate it with our behavioral measures. A rigorous mathematical formulation 

of network controllability in brain networks can be found in Gu et al. (2015). From the 

Gramian matrix, different controllability measures can be computed for each node (brain 

region) in the network. Here, based on previous research of network controllability in brain 

networks, we compute for each participant and each brain region their average 

controllability, modal controllability, and boundary controllability (Gu et al., 2015; 

Medaglia, Gu, et al., 2016; Pasqualetti et al., 2014).

Average controllability identifies brain regions that, on average, can drive the system into 

different states with little effort (input energy). A state can be defined as the vector of 

neurophysiological activity magnitudes across brain regions at a single time point. Thus, 

regions with high average controllability can move the brain to many easily reachable states 

(Figure 1D). Thus, these regions may be important in allowing the brain to move smoothly 

between many cognitive functions that require little cognitive effort. Previous work has 

identified brain regions that demonstrate high average controllability, such as the precuneus, 

posterior cingulate, superior frontal, paracentral, precentral and subcortical structures (Gu et 

al., 2015).

Modal controllability identifies brain regions that can drive the brain into different states that 

require high effort to achieve (those which require substantial input energy). Thus, regions 

with high modal controllability can move the brain to many difficult to reach states (Figure 

1E). From a cognitive perspective, these regions may be important in switching the brain 

between functions that require significant cognitive effort. Previous work has identified brain 

regions that demonstrate high modal controllability, such as the postcentral, supramarginal, 

inferior parietal, pars orbitalis, medial orbitofrontal and rostral middle frontal cortices (Gu et 

al., 2015).
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Boundary controllability identifies brain regions that can drive the system into states where 

different cognitive systems are either coupled or decoupled (Figure 1F). From a cognitive 

perspective, these regions may be important in gating, synchronizing or otherwise 

manipulating information across different cognitive processes. Previous work has identified 

brain regions that demonstrate high boundary controllability, such as the rostral middle 

frontal, lateral orbitofrontal, frontal pole, medial orbitofrontal, superior frontal and anterior 

cingulate cortices (Gu et al., 2015).

Boundary controllability identifies network nodes that lie at the boundaries between network 

communities, as defined across all possible levels of hierarchical modularity in a network 

(Tang & Bassett, 2017). As such, an initial identification of brain modules (or communities) 

is required. While data-driven approaches have been developed to achieve such an 

identification, identifying brain modular organization remains an open challenge (see 

Medaglia, Gu, et al., 2016). Here we chose to side step this issue and use a modular 

assignment that was computed via a data-driven approach that analyzed a large independent 

sample of resting state functional data using the same parcellation atlas. This approach, 

based on the method developed by Mišić et al. (2015), uses a consensus analysis to identify 

a partition that maximizes the modular partition of a large sample of independent datasets 

(Mišić et al., 2015). This partition identified 12 systems which are in line with neural 

systems identified in previous research (Dosenbach et al., 2010). Using this a priori 

independent modularity partition controls for the stochastic nature of the boundary 

controllability method and is justified by the identified relation between anatomical 

connectivity and resting state functional data (Honey et al., 2009).

2.2.4. Analysis overview—Our analysis process is as follows (Figure 1): We defined 

anatomical brain networks by subdividing the entire brain into 234 anatomically distinct 

brain regions (network nodes) in a commonly used anatomical atlas (Cammoun et al., 2012; 

Daducci et al., 2012; Hagmann et al., 2008). Following prior work (Bassett, Brown, 

Deshpande, Carlson, & Grafton, 2011; Gu et al., 2015; Hermundstad et al., 2013; 

Hermundstad et al., 2014), we connected nodes (brain regions) by the number of white 

matter streamlines identified by a commonly used deterministic tractography algorithm 

(Cieslak & Grafton, 2014). This procedure results in sparse, weighted, undirected structural 

brain networks for each participant. To control for volume confounds between pairs of brain 

regions i and j, streamline counts were normalized by dividing by the sum of streamlines 

brain region i has, which resulted in a measure of streamline density (Medaglia, Gu, et al., 

2016). Next, a simplified model of brain dynamics was applied to simulate network control 

and quantify average, modal, and boundary controllability for each brain region for each 

participant, as described above (Gu et al., 2015; Tang & Bassett, 2017). Intuitively, a node’s 

average and modal controllability values are negatively related (Gu et al., 2015; Wu-Yan et 

al., 2017). To verify this, we computed the correlations between average and modal 

controllability across all participants. This revealed a nearly perfect negative correlation 

between raw average and modal controllability scores in our dataset (average correlation = 

−.9992, range of correlations = −.9992 – −.9402, all p’s < .001).

We then conducted a whole-brain correlation analysis between the behavioral measures and 

each of the network controllability measures for all brain regions. Previous studies have 
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shown that raw boundary scores are difficult to compare across participants. This is resolved 

by assigning a rank boundary value for each of the nodes. Therefore, we conducted a 

Spearman correlation analysis for boundary controllability and a Pearson’s correlation 

analysis for average and modal controllability, controlling for multiple comparisons by 

calculating the False Discovery Rate (FDR; Benjamini & Hochberg, 1995; Benjamini & 

Yekutieli, 2001) with a false positive rate of 0.05. The brain networks were then visualized 

via the BrainNet Viewer (http://www.nitrc.org/projects/bnv/; Xia, Wang, & He, 2013). 

Anatomical labels were determined using the Brainnetome Atlas (http://

atlas.brainnetome.org), which uses state-of-the-art multimodal neuroimaging techniques to 

provide a current fine-grained, cross-validated atlas and contains information on both 

anatomical and functional connections (Fan et al., 2016).

3. Results

We first computed the correlations between all behavioral measures analyzed (Table 1). A 

small but significant negative correlation was found between the CRT and the latent measure 

of fluency. As expected, all three divergent thinking measures were highly correlated with 

each other (Table 1). Contrary to previous studies (Jauk, Benedek, Dunst, & Neubauer, 

2013), no significant correlation was found between the intelligence measure, as measured 

with the CRT, and the compiled latent creativity, as measured with DT, measures.

We then applied the network controllability analysis by contrasting the different measures of 

network controllability and brain regions in the latent CRT and DT measures. Next, we 

conducted the same analysis for the different DT measures – fluency, flexibility, and 

originality. Despite the DT measures being highly correlated, this analysis allowed us to 

examine any possible differences between them in relation to network controllability and 

creativity. Such an approach allowed us to first contrast network controllability in 

intelligence and creativity and then to more sensitively examine network controllability in 

the different dimensions of creativity that were measured.

3.1. Network controllability related to intelligence and creativity

Intelligence—The correlation analysis between the CRT measure and the network 

controllability measures identified only two brain regions that survived FDR correction 

(Table 2 and Figure 2). A brain region within the right Inferior Parietal Lobe (IPL) exhibited 

a significant positive correlation with average controllability (adjusted p < .02) and a 

significant negative correlation with modal controllability (adjusted p < .02). Furthermore, 

the left Retrosplenial Cortex (RSC) exhibited a significant negative correlation with 

boundary controllability (adjusted p < .03).

Creativity—The correlation analysis between the latent DT measure and the network 

controllability measures revealed several brain regions that survived the FDR correction 

(Table 2 and Figure 2). This analysis revealed three brain regions that exhibited a significant 

negative correlation with average controllability and a significant positive correlation with 

modal controllability: An area in the right dorsolateral Pre-Frontal Cortex, the right Inferior 

Frontal Junction (IFJ; average: adjusted p < .001; modal: adjusted p < .001), the right 

posterior Medial Frontal Gyrus (pMFG; average: adjusted p < .04; modal: adjusted p < .04); 
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and the left Fusiform area (average: adjusted p < .04; modal: adjusted p < .04). Furthermore, 

this analysis revealed a significant positive correlation with several post-central brain regions 

and boundary controllability (all adjusted p’s < .04) and a brain region in the left Superior 

Temporal Gyrus (STG; adjusted p < .03).

3.2. Network controllability related to Fluency, Flexibility, and Originality

We conducted a similar analysis on the three different DT measures: fluency, flexibility, and 

originality. The aim of this analysis was to examine any differences in the relation between 

them and network controllability measures.

Fluency—The correlation analysis between the fluency measure and the network 

controllability measures found two brain regions that survived FDR correction (Table 3 and 

Figure 3). The right IFJ exhibited a significant negative correlation with average 

controllability (adjusted p < .01) and a significant positive correlation with modal 

controllability (adjusted p < .01). Furthermore, the right Medial Temporal Gyrus (MTG) 

exhibited a significant positive correlation with boundary controllability (adjusted p < .02).

Flexibility—The correlation analysis between the flexibility measure and the network 

controllability measures found several brain regions that survived FDR correction (Table 3 

and Figure 3). This analysis revealed several brain regions that exhibited a significant 

negative correlation with average controllability and a significant positive correlation with 

modal controllability: The right IFJ (average: adjusted p < .001; modal: adjusted p < .001), 

three brain regions (one anterior, two posterior) in the right MFG (average: all adjusted p’s 
< .03; modal: all adjusted p’s < .03), the left Fusiform (average: adjusted p < .02; modal: 

adjusted p < .02), and the left posterior MTG (average: adjusted p < .02; modal: adjusted p 
< .02). Furthermore, several brain regions exhibited a significant positive correlation with 

boundary controllability: The right MTG (adjusted p < .049), three brain regions in the post-

central gyrus (all adjusted p’s < .04), and the left STG (adjusted p < .049).

Originality—The correlation analysis between the originality measure and the network 

controllability measures found several brain regions that survived FDR correction (Table 3 

and Figure 3). This analysis revealed two brain regions that exhibited a significant negative 

correlation with average controllability and a significant positive correlation with modal 

controllability: The right IFJ (average: adjusted p < .001; modal: adjusted p < .001), and two 

brain regions in the posterior Inferior Temporal Gyrus (ITG; average: all adjusted p’s < .04; 

modal: all adjusted p’s < .04). Furthermore, two brain regions exhibited a significant positive 

correlation with boundary controllability: Two brain regions in the post-central gyrus (all 

adjusted p’s < .047), and the left STG (adjusted p < .045).

4. Discussion

In the current study, we applied a novel computational approach—network control theory—

to quantify the relation between the role of different brain regions in theoretically 

“controlling” whole brain neural dynamics related to creativity and intelligence. Current 

research has implicated cognitive control processes in the ECN in both intelligence (Hearne 

et al., 2016; Jung & Haier, 2007) and creativity (Beaty et al., 2016; Chrysikou, in press; 

Kenett et al. Page 13

Neuropsychologia. Author manuscript; available in PMC 2018 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chrysikou et al., 2014). But what specific control processes distinguish these cognitive 

abilities? We argue that network control theory can advance our understanding of the control 

processes evoked during fluid intelligence, as measured with the CRT, and creativity, as 

measured with a battery of divergent thinking tasks. Our approach is motivated by previous 

initial work that has implicated the importance of average controllability in typical 

development (Tang et al., 2016) and modal and boundary controllability in cognitive control 

tasks (Medaglia, Gu, et al., 2016; Medaglia et al., 2017). The current study extends recent 

applications of control theory to cognitive neuroscience by revealing differential control 

effects of intelligence and creativity—two high-level cognitive abilities that tap common and 

distinct aspects of cognitive control (Benedek, Jauk, Sommer, et al., 2014). While these 

abilities involve complex non linear neural dynamics, previous studies demonstrated how a 

simplified linear model applied in network control theory can be applied to study neural 

dynamics (Muldoon et al., 2016; Tang & Bassett, 2017). Finally, while our work is 

theoretically focused on the ECN and DMN systems, we apply here a whole brain analysis. 

Such an analysis is consistent with previous similar studies, and is also aimed to identify 

different brain regions that contribute to the neural dynamics, but are somhow obscured in 

functional imaging studies.

4.1. Controllability, Intelligence, and Creativity

Regarding intelligence, we found that the right IPL exhibited a positive correlation with 

average controllability and a negative correlation with modal controllability. Previous studies 

have found activation in right IPL related to mental manipulation of information and 

working memory tasks (Chochon, Cohen, Van De Moortele, & Dehaene, 1999; 

Klepousniotou, Gracco, & Pike, 2014; H. Liu et al., 2017). In accordance with the parietal-

frontal theory of intelligence (Jung & Haier, 2007), the higher average controllability in the 

right IPL may facilitate processing of the multiple interpretations of specific CRT stimuli. In 

this sense, the more the IPL can drive the brain network into easy to reach states, the easier it 

may be to process demanding CRT stimuli.

We also found a negative correlation between intelligence and boundary controllability 

within the retrosplenial cortex (RSC). The RSC has been implicated in episodic memory, 

future simulation, spatial cognition, and context processing, and it exhibits direct 

connections with hippocampal, parahippocampal, and thalamic regions (Miller, Vedder, 

Law, & Smith, 2014; Spreng, Mar, & Kim, 2009; Vann, Aggleton, & Maguire, 2009). 

According to Miller, Vedder, Law, and Smith (2014), the RSC plays a role in processing 

complex cue associations (Miller et al., 2014), a function that appears crucial to performance 

on the CRT task, which requires processing complex associations between cues, and 

identifying a solution that adheres to such a complex relation. The negative relation between 

intelligence and RSC boundary controllability might reflect lower integration-segregation 

abilities in this area for heightened performance in the CRT, possibly due to a higher demand 

of more fluid spread of information across the dorsal-RSC-hippocampus stream.

Regarding creativity, we found a consistent pattern of relations between network 

controllability measures in specific brain regions associated with cognitive control, including 

a positive correlation with modal controllability and a negative correlation with average 
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controllability. The brain region that showed the strongest correlations between modal 

controllability and creativity measures was a region in the right dorsolateral prefrontal cortex

—the right Inferior Frontal Junction (IFJ). Located at the junction of the inferior frontal 

sulcus and the precentral sulcus (Muhle-Karbe et al., 2016), the left IFJ has been shown to 

play a general role in creative tasks (Gonen-Yaacovi et al., 2013) and has been specifically 

attributed to cognitive flexibility and task switching (Harding, Yücel, Harrison, Pantelis, & 

Breakspear, 2015; Yin, Wang, Pan, Liu, & Chen, 2016). Recently, Sebastian et al. (2016) 

showed that the right IFJ was associated with the detection of salient stimuli and co-

activated with both the ventral and dorsal attention networks (Corbetta et al., 2008). This co-

activation pattern points to its potential role as a mediator between the stimulus-driven 

ventral attention network and the goal-directed dorsal attention network (Corbetta et al., 

2008; Levy & Wagner, 2011). Furthermore, in light of its role in switching between the 

ventral (stimulus based) and dorsal (goal directed) attention systems, the IFJ may serve as a 

link between DMN and ECN interactions, which have commonly been reported in fMRI 

studies (Beaty et al., 2015; Beaty et al., 2016). We found a similar pattern of relations within 

anterior posterior regions of the right MFG, consistent with past work implicating this region 

in suppressing inappropriate responses (CITE), shifting between response alternatives (Chen 

et al., 2016; Gonen-Yaacovi et al., 2013; Volle et al., 2012), and facilitating dynamic 

coupling between ECN and DMN networks during divergent thinking (Beaty et al., 2015; 

Beaty et al., 2016; Zhu et al., 2017).

Our analysis further revealed a similar pattern of relations in the left fusiform area. Research 

has shown that compared with baseline, original idea generation exhibits robust activation of 

the fusiform gyrus, indicating its involvement in the formation of new associations 

(Bechtereva et al., 2004; Chrysikou & Thompson-Schill, 2011; Ellamil, Dobson, Beeman, & 

Christoff, 2012). For example, Chrysikou and Thompson-Schill (2011) examined neural 

activity during generating common versus uncommon uses for objects. The authors found 

higher left fusiform activation when participants were required to generate uncommon 

responses, possibly reflecting a deeper retrieval process over visual features of objects. Our 

findings support the findings of Chrysikou and Thompson-Schill (2011) by finding a 

positive correlation between modal controllability and flexibility in the left fusiform area.

Finally, we found a similar pattern of network controllability effects within the left posterior 

MTG and ITG. The posterior MTG plays a key role semantic control processes (Binder & 

Desai, 2011; Davey et al., 2015; Davey et al., 2016; Noonan, Jefferies, Visser, & Lambon 

Ralph, 2013; Price, 2010) and is commonly implicated in studies of creativity (Gonen-

Yaacovi et al., 2013; Shen et al., 2017). Recently, Davey et al. (2016) investigated the 

functional role of the left posterior MTG in semantic control, and showed that the left 

posterior MTG integrates information from the DMN and ECN. In this context, higher 

modal controllability in the left posterior MTG may facilitate inhibition of salient responses 

during verbal creativity tasks, consistent with behavioral work linking inhibitory control and 

divergent thinking abilities (Benedek, Jauk, Sommer, et al., 2014). The role of the posterior 

inferior temporal areas (BA 20) in creativity is currently unclear (Benedek, Jauk, Fink, et al., 

2014; Zhu et al., 2017). A recent meta-analysis has shown how this region plays a secondary 

role in language processing, as a kind of marginal language processing region (Ardila, 

Bernal, & Rosselli, 2016). In a recent large-scale patient study, Herbet et al. (2016) 
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investigate the anatomical factors that prevent full recovery of lexical retrieval in patients. 

The authors identify the importance of BA 20 and its underlying white matter tracts to 

lexical retrieval deficits (Herbet et al., 2016). Thus, higher modal controllability in the pITG 

may facilitate more lexical retrieval processes that increase originality.

4.2. Boundary controllability and creativity

We found a consistent correlation between boundary controllability within sensorimotor 

areas and divergent thinking performance. Although this finding was unexpected, it is 

consistent with a cognitive embodiment perspective, which argues for the importance of 

sensorimotor simulations (Barsalou, 2008) in divergent thinking tasks. Sensorimotor 

simulations refer to “the reenactment of perceptual, motor, and introspective states acquired 

during experience with the world, body, and mind” (Barsalou, 2008). Such simulation 

mechanisms have been argued to act as a core computational factor in the brain (Binder, 

2016). One such example is mental imagery, which involves the construction of conscious 

representations in working memory (Pearson, Naselaris, Holmes, & Kosslyn, 2015). Finally, 

a recent study demonstrated how semantic representations of concepts bidirectionally 

converges with the sensorimotor system (Ekstrand et al., 2017). Thus, mental conceptual 

manipularions required in DT may involve the recruitment of sensorimotor brain regions.

Neuroimaging studies have demonstrated how simulation plays a central role in conceptual 

representations (Binder, 2016; Binder & Desai, 2011; Binder, Desai, Graves, & Conant, 

2009). Surprisingly, however, no research has directly examined the relation of sensorimotor 

simulations and creativity (but see Cousijn, Zanolie, Munsters, Kleibeuker, & Crone, 2014, 

p. 10), despite the flexible processes utilized in creativity on sensorimotor features of 

concepts (Barsalou, 2008; Binder, 2016). In divergent thinking tasks, the canonical measure 

of creative ability, participants are required to simulate and manipulate concepts in order to 

generate novel, alternative, or uncommon uses to them (Runco & Acar, 2012). In a recent 

study, Matheson, Buxbaum and Thompson-Schill (2017) examine multivariate voxel pattern 

activation when participants generate common and uncommon tool uses to concrete tools. 

The authors found that common tool use is related to categorical information in ventral 

stream areas while uncommon tools use is related to action and visual information in dorsal 

stream areas, thus demonstrating flexible activation within the “tool network” (Matheson et 

al., 2017). The authors interpret this flexibility as contributing to the generation of creative 

responses.

In the context of Matheson and colleagues, we argue that the positive correlations between 

sensorimotor brain regions and boundary controllability as related to individual differences 

in divergent thinking measures of flexibility and originality, highlight the importance of 

integration of sensori and motor information in relation to creativity. This may indicate that a 

higher role in integration across brain sub-networks in such sensorimotor areas contributes 

to creative ability by higher integration of ventral and dorsal “tool” areas, which may lead to 

more creative responses in divergent thinking tasks. Such an interpretation requires future 

research to further explore the role of sensorimotor simulation in DT.

We also found positive correlations between divergent thinking measures and boundary 

controllability within temporal regions, including the left posterior STG and right MTG. 
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Activation in the left posterior STG has been consistently found in creativity research 

(Gonen-Yaacovi et al., 2013; Jung-Beeman, 2005; Mirous & Beeman, 2012; Shen et al., 

2017). The left STG is considered to play a key role in integrative processing via selective 

access to distributed cross-modal representations, which is important in forming novel 

associations that are required in semantic creativity tasks (Shen et al., 2017). The right MTG 

has also been implicated in several creativity studies (Bashwiner, Wertz, Flores, & Jung, 

2016; Chen et al., 2016; Cousijn, Koolschijn, Zanolie, Kleibeuker, & Crone, 2014; Cousijn, 

Zanolie, et al., 2014). For example, a recent resting-state study found that divergent thinking 

ability was related to increased functional connectivity between the right MTG and post-

central gyrus (Cousijn, Zanolie, et al., 2014). Thus, higher boundary controllability of this 

region could facilitate integration with sensorimotor areas, which could in turn increase 

fluency and flexibility of ideas that originate from sensorimotor simulations.

Taken together, our results highlight the different control processes involved in intelligence 

and creativity. We found that intelligence was related to a heightened ability to drive the 

brain into easy-to-reach states within contextual association regions (e.g., IPL and RSC). On 

the other hand, creativity was related to a heightened ability to drive the brain into both easy- 

and difficult-to-reach states, with effects largely localized within regions that connect 

between bottom-up and top-down processes to integration/segregation processes in 

sensorimotor areas.

4.3 Limitations and Future Directions

A few limitations of the current study are worth noting. First, despite an established relation 

between intelligence and creativity (Jauk et al., 2013), we only found a correlation between 

our measure of intelligence (CRT) and divergent thinking fluency (Table 1). In a previous 

report of these behavioral data (from the same sample; Chen et al., 2015), the authors 

suggested this relation might be due to the focus of the CRT on reasoning skills, which 

might be more similar in our sample of college students. Importantly, studies that have found 

a correlation between intelligence and creativity have done so only at a latent level, based on 

several measures of intelligence (Beaty et al., 2014; Benedek, Jauk, Sommer, et al., 2014; 

Nusbaum & Silvia, 2011), and not a single measure, as in the current study. Furthermore, 

previous studies have also found a negative correlation between fluency and intelligence 

(e.g., Beaty et al., 2014). Thus, future research is needed to replicate our findings with other 

measures of creativity and intelligence. Finally, previous research has indicated differences 

in the notion of creativity between Western and Eastern cultures (Niu & Sternberg, 2002). 

Such differences may account for the pattern of the behavioral results. Thus, our study 

requires future replication in a Western society.

Another limitation concerns the method we used to measure structural connectivity, which 

was based on DTI data. Past research suggests that DTI may under-sample some white 

matter fibers, particularly those linking hemispheres or those that cross paths with other 

fibers (Wedeen et al., 2008). This may also partially account for relatively small correlations 

found in our data. Future efforts should apply diffusion spectrum imaging to improve 

estimates of structural network architecture.
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Third, our boundary controllability analysis was based on an independent, a-priori brain 

modularity partition, which was based on a modularity analysis of resting-state fMRI data 

(Mišić et al., 2015). Future research is needed to establish a-priori partitions based on 

structural connectivity networks, which will increase the reliability and validity of the 

boundary controllability analysis.

Finally, the ability of specific nodes in a network (such as anatomical brain networks) to 

drive the system into a specific state has been recently questioned (Menara, Gu, Bassett, & 

Pasqualetti, 2017; Tu et al., 2017). In this paper, we were interested in investigating the 

theoretical notion of network control theory and individual differences in creativity, without 

committing to linking between cognitive control processes and network controllability.

In conclusion, we applied a network control theory approach to identify specific control 

strategies in specific brain regions as related to intelligence and creativity. We found that 

intelligence is related to driving the brain into easy-to-reach states within association 

cortices, whereas creativity is related to driving the brain into difficult-to-reach states within 

regions involved in DMN-ECN switching and sensorimotor processing. Our work 

demonstrates the strength of this computational approach and how it can shed unique light 

on cognitive control processes involved in cognition, and highlights the role of white matter 

structural connectivity on large scale functional dynamics in high-level cognition.
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Figure 1. 
Overview of Methods: (A) We performed diffusion tractography for each participant, and 

(B) applied a whole-brain parcellation to identify anatomical divisions. (C) We constructed a 

anatomical connectivity matrix that represents the number of streamlines between pairs of 

regions, normalized by density. We defined a simplified model of brain dynamics and 

simulated network control to quantify (D) average, (E) modal and (F) boundary 

controllability for each node (brain region) in the network for each participant.
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Figure 2. 
Relation between individual differences in average, modal, and boundary controllability 

anatomical brain networks to CRT and DT. Maps highlight brain regions with significant 

correlation values that survived FDR correction. Warmer/colder colors indicate a positive/

negative correlation between controllability and behavior.
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Figure 3. 
Relation between individual differences in average, modal, and boundary controllability of 

anatomical brain networks to fluency, flexibility, and originality DT measures. Maps 

highlight brain regions with significant correlation values that survived FDR correction. 

Warmer/colder colors indicate a positive/negative correlation between controllability and 

behavior.
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