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Abstract

A natural Bayesian approach for mixture models with an unknown number of components is to 

take the usual finite mixture model with symmetric Dirichlet weights, and put a prior on the 

number of components—that is, to use a mixture of finite mixtures (MFM). The most commonly-

used method of inference for MFMs is reversible jump Markov chain Monte Carlo, but it can be 

nontrivial to design good reversible jump moves, especially in high-dimensional spaces. 

Meanwhile, there are samplers for Dirichlet process mixture (DPM) models that are relatively 

simple and are easily adapted to new applications. It turns out that, in fact, many of the essential 

properties of DPMs are also exhibited by MFMs—an exchangeable partition distribution, 

restaurant process, random measure representation, and stick-breaking representation—and 

crucially, the MFM analogues are simple enough that they can be used much like the 

corresponding DPM properties. Consequently, many of the powerful methods developed for 

inference in DPMs can be directly applied to MFMs as well; this simplifies the implementation of 

MFMs and can substantially improve mixing. We illustrate with real and simulated data, including 

high-dimensional gene expression data used to discriminate cancer subtypes.
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1 Introduction

Mixture models are used in a wide range of applications, including population structure 

(Pritchard et al., 2000), document modeling (Blei et al., 2003), speaker recognition 

(Reynolds et al., 2000), computer vision (Stauffer and Grimson, 1999), phylogenetics (Pagel 

and Meade, 2004), and gene expression profiling (Yeung et al., 2001), to name a few 

prominent examples. A common issue with finite mixtures is that it can be difficult to 

choose an appropriate number of mixture components, and many methods have been 

proposed for making this choice (e.g., Henna, 1985; Keribin, 2000; Leroux, 1992; Ishwaran 

et al., 2001; James et al., 2001).
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From a Bayesian perspective, perhaps the most natural approach is to treat the number of 

components k like any other unknown parameter and put a prior on it. When the prior on the 

mixture weights is Dirichletk(γ, …, γ) given k, we refer to such a model as a mixture of 

finite mixtures (MFM), for short. Several inference methods have been proposed for this 

type of model (Nobile, 1994; Phillips and Smith, 1996; Richardson and Green, 1997; 

Stephens, 2000; Nobile and Fearnside, 2007; McCullagh and Yang, 2008), the most 

commonly-used method being reversible jump Markov chain Monte Carlo (Green, 1995; 

Richardson and Green, 1997). Reversible jump is a very general technique, and has been 

successfully applied in many contexts, but it can be difficult to use since applying it to new 

situations requires one to design good reversible jump moves, which is often nontrivial, 

particularly in high-dimensional parameter spaces. Advances have been made toward 

general methods of constructing good reversible jump moves (Brooks et al., 2003; Hastie 

and Green, 2012), but these approaches add another level of complexity to the algorithm 

design process and/or the software implementation.

Meanwhile, infinite mixture models such as Dirichlet process mixtures (DPMs) have 

become popular, partly due to the existence of relatively simple and generic Markov chain 

Monte Carlo (MCMC) algorithms that can easily be adapted to new applications (Neal, 

1992, 2000; MacEachern, 1994, 1998; MacEachern and Müller, 1998; Bush and 

MacEachern, 1996; West, 1992; West et al., 1994; Escobar and West, 1995; Liu, 1994; Dahl, 

2003, 2005; Jain and Neal, 2004, 2007). These algorithms are made possible by the variety 

of computationally-tractable representations of the Dirichlet process, including its 

exchangeable partition distribution, the Blackwell–MacQueen urn process (a.k.a. the 

Chinese restaurant process), the random discrete measure formulation, and the Sethuraman–

Tiwari stick-breaking representation (Ferguson, 1973; Antoniak, 1974; Blackwell and 

MacQueen, 1973; Aldous, 1985; Pitman, 1995, 1996; Sethuraman, 1994; Sethuraman and 

Tiwari, 1981).

It turns out that there are MFM counterparts for each of these properties: an exchangeable 

partition distribution, an urn/restaurant process, a random discrete measure formulation, and 

in certain cases, an elegant stick-breaking representation. The main point of this paper is that 

the MFM versions of these representations are simple enough, and parallel the DPM 

versions closely enough, that many of the inference algorithms developed for DPMs can be 

directly applied to MFMs. Interestingly, the key properties of MFMs hold for any choice of 

prior distribution on the number of components.

There has been a large amount of research on efficient inference methods for DPMs, and an 

immediate consequence of the present work is that most of these methods can also be used 

for MFMs. Since several DPM sampling algorithms are designed to have good mixing 

performance across a wide range of applications—for instance, the Jain–Neal split-merge 

samplers (Jain and Neal, 2004, 2007), coupled with incremental Gibbs moves (MacEachern, 

1994; Neal, 1992, 2000)—this greatly simplifies the implementation of MFMs for new 

applications. Further, these algorithms can also provide a major improvement in mixing 

performance compared to the usual reversible jump approaches, particularly in high 

dimensions.
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This work resolves an open problem discussed by Green and Richardson (2001), who noted 

that it would be interesting to be able to apply DPM samplers to MFMs:

“In view of the intimate correspondence between DP and [MFM] models discussed 

above, it is interesting to examine the possibilities of using either class of MCMC 

methods for the other model class. We have been unsuccessful in our search for 

incremental Gibbs samplers for the [MFM] models, but it turns out to be reasonably 

straightforward to implement reversible jump split/merge methods for DP models.”

The paper is organized as follows. In Sections 2 and 3, we formally define the MFM and 

show that it gives rise to a simple exchangeable partition distribution closely paralleling that 

of the Dirichlet process. In Section 4, we describe the Pólya urn scheme (restaurant process), 

random discrete measure formulation, and stick-breaking representation for the MFM. In 

Section 5, we establish some asymptotic results for MFMs. In Section 6, we show how the 

properties in Sections 3 and 4 lead to efficient inference algorithms for the MFM. In Section 

7, we compare the mixing performance of reversible jump versus our proposed algorithms, 

then apply the model to high-dimensional gene expression data, and finally, provide an 

empirical comparison between MFMs and DPMs.

2 Model

We consider the following well-known model:

K pK, where pK is a p.m.f. on {1, 2, …}

(π1, …, πk) Dirichletk(γ, …, γ), given K = k

Z1, …, Zn ∼iid π, given π

θ1, …, θk ∼iid H, given K = k

X j f θZ j
independently for j = 1, …, n, given θ1:K, Z1:n .

(2.1)

Here, H is a prior or “base measure” on Θ ⊂ ℝℓ, and {fθ : θ ∈ Θ} is a family of probability 

densities with respect to a sigma-finite measure ζ on  ⊂ ℝd. (As usual, we give Θ and 

the Borel sigma-algebra, and assume (x, θ) ↦ fθ(x) is measurable.) We denote x1:n = (x1, 

…, xn). Typically, X1, …, Xn would be observed, and all other variables would be hidden/

latent. We refer to this as a mixture of finite mixtures (MFM) model.

It is important to note that we assume a symmetric Dirichlet with a single parameter γ not 

depending on k. This assumption is key to deriving a simple form for the partition 

distribution and the other resulting properties. Assuming symmetry in the distribution of π is 

quite natural, since the distribution of X1, …, Xn under any asymmetric distribution on π 
would be the same as if this asymmetric distribution was replaced by its symmetrization, i.e., 

if the entries of π were uniformly permuted (although this would no longer necessarily be a 

Dirichlet distribution). Assuming the same γ for all k is a genuine restriction, albeit a fairly 
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natural one, often made in such models even when not strictly necessary (Nobile, 1994; 

Phillips and Smith, 1996; Richardson and Green, 1997; Green and Richardson, 2001; 

Stephens, 2000; Nobile and Fearnside, 2007). Note that prior information about the relative 

sizes of the weights π1, …, πk can be introduced through γ—roughly speaking, small γ 
favors lower entropy π’s, while large γ favors higher entropy π’s. Also note that sometimes 

it is useful to put a hyperprior on the parameters of H (Richardson and Green, 1997).

Meanwhile, we put very few restrictions on pK, the distribution of the number of 

components. For practical purposes, we need the infinite series ∑k = 1
∞ pK(k) to converge to 1 

reasonably quickly, but any choice of pK arising in practice should not be a problem. For 

certain theoretical purposes, it is desirable to have pK(k) > 0 for all k ∈ {1, 2, …}, e.g., this 

is necessary to have consistency for the number of components (Nobile, 1994).

For comparison, the Dirichlet process mixture (DPM) model with concentration parameter α 
> 0 and base measure H is defined as follows, using the stick-breaking representation 

(Sethuraman, 1994):

B1, B2, … ∼iid Beta(1, α)

Z1, …, Zn ∼iid π, given π = (π1, π2, …) where πi = Bi∏ j = 1
i − 1 (1 − B j)

θ1, θ2, … ∼iid H

X j f θZ j
independently for j = 1, …, n, given θ1:∞, Z1:n .

3 Exchangeable partition distribution

The primary observation on which our development relies is that the distribution on 

partitions induced by an MFM takes a form which is simple enough that it can be easily 

computed. Let  denote the partition of [n] := {1, …, n} induced by Z1, …, Zn; in other 

words,  = {Ei : |Ei| > 0} where Ei = {j : Zj = i} for i ∈ {1, 2, …}.

Theorem 3.1: Under the MFM (Equation 2.1), the probability mass function of  is

p(𝒞) = Vn(t) ∏
c ∈ 𝒞

γ( ∣ c ∣ ) (3.1)

where t = | | is the number of parts/blocks in the partition, and

Vn(t) = ∑
k = 1

∞ k(t)
(γk)(n) pK(k) . (3.2)
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Here, x(m) = x(x+1) ··· (x+m−1) and x(m) = x(x−1) ··· (x−m+1), with x(0) = 1 and x(0) = 1 by 

convention; note that x(m) = 0 when x is a positive integer less than m. Theorem 3.1 can be 

derived from the well-known formula for p( |k), which can found in, e.g., Green and 

Richardson (2001) or McCullagh and Yang (2008); we provide a proof for completeness. All 

proofs have been collected in the supplementary material. We discuss computation of Vn(t) 
in Section 3.2. For comparison, under the DPM, the partition distribution induced by Z1, …, 

Zn is pDP(𝒞 ∣ α) = αt

α(n) ∏c ∈ 𝒞 ( ∣ c ∣ − 1)! where t = | | (Antoniak, 1974). When a prior is 

placed on α, as in the experiments in Section 7, the DPM partition distribution becomes

pDP(𝒞) = Vn
DP(t) ∏

c ∈ 𝒞
( ∣ c ∣ − 1)! (3.3)

where Vn
DP(t) = ∫ αt

α(n) p(α)dα.

Viewed as a function of the block sizes (|c| : c ∈ ), Equation 3.1 is an exchangeable 
partition probability function (EPPF) in the terminology of Pitman (1995, 2006), since it is a 

symmetric function of the block sizes. (Some authors also require EPPFs to have self-

consistent marginals—see Section 3.3—but we follow the usage of Pitman (2006), who does 

not require this.) Consequently,  is an exchangeable random partition of [n]; that is, its 

distribution is invariant under permutations of [n] (alternatively, this can be seen directly 

from the definition of the model, since Z1, …, Zn are exchangeable). In fact, Equation 3.1 

induces an exchangeable random partition of the positive integers; see Section 3.3.

Further, Equation 3.1 is a member of the family of Gibbs partition distributions (Pitman, 

2006); this is also implied by the results of Gnedin and Pitman (2006) characterizing the 

extreme points of the space of Gibbs partition distributions. Results on Gibbs partitions are 

provided by Ho et al. (2007), Lijoi et al. (2008), Cerquetti (2011), Cerquetti (2013), Gnedin 

(2010), and Lijoi and Prünster (2010). However, the utility of this representation for 

inference in mixture models with a prior on the number of components does not seem to 

have been previously explored in the literature.

Due to Theorem 3.1, we have the following equivalent representation of the model:

𝒞 p(𝒞), with p(𝒞) as in Equation 3.1

ϕc ∼iid H for c ∈ 𝒞, given 𝒞

X j f ϕc
independently for j ∈ c, c ∈ 𝒞, given ϕ, 𝒞,

(3.4)

where ϕ = (ϕc : c ∈ ) is a tuple of t = | | parameters ϕc ∈ Θ, one for each block c ∈ .
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This representation is particularly useful for doing inference, since one does not have to deal 

with component labels or empty components. (If component-specific inferences are desired, 

a method such as that provided by Papastamoulis and Iliopoulos (2010) may be useful.) The 

formulation of models starting from a partition distribution has been a fruitful approach, 

exemplified by the development of product partition models (Hartigan, 1990; Barry and 

Hartigan, 1992; Quintana and Iglesias, 2003; Dahl, 2009; Park and Dunson, 2010; Müller 

and Quintana, 2010; Müller et al., 2011) and the loss-based approach of Lau and Green 

(2007).

3.1 Basic properties

We list here some basic properties of the MFM model. See the supplementary material for 

proofs. Denoting xc = (xj : j ∈ c) and m(xc) = ∫Θ [Πj∈c fθ(xj)] H(dθ) (with the convention 

that m(x∅) = 1), we have

p(x1:n ∣ 𝒞) = ∏
c ∈ 𝒞

m(xc) . (3.5)

While some authors use the terms “cluster” and “component” interchangeably, we use 

cluster to refer to a block c in a partition , and component to refer to a probability 

distribution fθi in a mixture ∑i = 1
k πi f θi

(x). The number of components K and the number of 

clusters T = | | are related by

p(t ∣ k) =
k(t)

(γk)(n) ∑
𝒞: ∣ 𝒞 ∣ = t

∏
c ∈ 𝒞

γ( ∣ c ∣ ), (3.6)

p(k ∣ t) = 1
Vn(t)

k(t)
(γk)(n) pK(k), (3.7)

where in Equation 3.6, the sum is over partitions  of [n] such that | | = t. Note that p(t|k) 

and p(k|t) depend on n. Wherever possible, we use capital letters (such as K and T) to denote 

random variables as opposed to particular values (k and t). The formula for p(k|t) is required 

for doing inference about the number of components K based on posterior samples of ; 

fortunately, it is easy to compute. We have the conditional independence relations

𝒞 ⊥ K ∣ T , (3.8)
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X1:n ⊥ K ∣ T . (3.9)

3.2 The coefficients Vn(t)

The following recursion is a special case of a more general result for Gibbs partitions 

(Gnedin and Pitman, 2006).

Proposition 3.2: The numbers Vn(t) (Equation 3.2) satisfy the recursion

Vn + 1(t + 1) = Vn(t)/γ − (n/γ + t)Vn + 1(t) (3.10)

for any 0 ≤ t ≤ n and γ > 0.

This is easily seen by plugging the identity

k(t + 1) = (γk + n)k(t)/γ − (n/γ + t)k(t)

into the expression for Vn+1(t + 1). In the case of γ = 1, Gnedin (2010) has discovered a 

beautiful example of a distribution on K for which both pK(k) and Vn(t) have closed-form 

expressions.

In previous work on the MFM model, pK has often been chosen to be proportional to a 

Poisson distribution restricted to the positive integers or a subset thereof (Phillips and Smith, 

1996; Stephens, 2000; Nobile and Fearnside, 2007), and Nobile (2005) has proposed a 

theoretical justification for this choice. Interestingly, the model has some nice mathematical 

properties if one instead chooses K − 1 to be given a Poisson distribution, that is, pK(k) = 

Poisson(k − 1|λ) for some λ > 0. For instance, it turns out that if pK(k) = Poisson(k − 1|λ) 

and γ = 1 then Vn(0) = (1 − ∑k = 1
n pK(k))/λn.

However, to do inference, it is not necessary to choose pK to have any particular form—we 

just need to be able to compute p( ), and in turn, we need to be able to compute Vn(t). To 

this end, note that k(t)/(γk)(n) ≤ kt/(γk)n, and thus the infinite series for Vn(t) (Equation 3.2) 

converges rapidly when t ≪ n. It always converges to a finite value when 1 ≤ t ≤ n; this is 

clear from the fact that p( ) ∈ [0, 1]. This finiteness can also be seen directly from the series 

since kt/(γk)n ≤ 1/γn, and in fact, this shows that the series for Vn(t) converges at least as 

rapidly (up to a constant) as the series ∑k = 1
∞ pK(k) converges to 1. Hence, for any reasonable 

choice of pK (i.e., not having an extraordinarily heavy tail), Vn(t) can easily be numerically 

approximated to a high level of precision. In practice, all of the required values of Vn(t) can 

be precomputed before MCMC sampling, and this takes a negligible amount of time relative 

to MCMC (see the supplementary material).
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3.3 Self-consistent marginals

For each n = 1, 2, …, let qn( ) denote the MFM distribution on partitions of [n] (Equation 

3.1). This family of partition distributions is preserved under marginalization, in the 

following sense.

Proposition 3.3: If m < n then qm coincides with the marginal distribution on partitions of 
[m] induced by qn.

In other words, drawing a sample from qn and removing elements m + 1, …, n from it yields 

a sample from qm. This can be seen directly from the model definition (Equation 2.1), since 

 is the partition induced by the Z’s, and the distribution of Z1:m is the same when the model 

is defined with any n ≥ m. This property is sometimes referred to as consistency in 
distribution (Pitman, 2006).

By Kolmogorov’s extension theorem (e.g., Durrett, 1996), it is well-known that this implies 

the existence of a unique probability distribution on partitions of the positive integers ℤ>0 = 

{1, 2, …} such that the marginal distribution on partitions of [n] is qn for all n ∈ {1, 2, …} 

(Pitman, 2006).

4 Equivalent representations

4.1 Pólya urn scheme / Restaurant process

Pitman (1996) considered a general class of urn schemes, or restaurant processes, 

corresponding to exchangeable partition probability functions (EPPFs). The following 

scheme for the MFM falls into this general class.

Theorem 4.1: The following process generates partitions 1, 2, … such that for any n ∈ 
{1, 2, …}, the probability mass function of n is given by Equation 3.1.

• Initialize with a single cluster consisting of element 1 alone: 1 = {{1}}.

• For n = 2, 3, …, element n is placed in …

an existing cluster c ∈ n−1 with probability ∝ |c| + γ

a new cluster with probability ∝
Vn(t + 1)

Vn(t) γ

where t = | n−1|.

Clearly, this bears a close resemblance to the Chinese restaurant process (i.e., the Blackwell–

MacQueen urn process), in which the nth element is placed in an existing cluster c with 

probability ∝ |c| or a new cluster with probability ∝ α (the concentration parameter) 

(Blackwell and MacQueen, 1973; Aldous, 1985).

4.2 Random discrete measures

The MFM can also be formulated starting from a distribution on discrete measures that is 

analogous to the Dirichlet process. With K, π, and θ1:K as in Equation 2.1, let
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G = ∑
i = 1

K
πiδθi

where δθ is the unit point mass at θ. Let us denote the distribution of G by ℳ(pK, γ,H). Note 

that G is a random discrete measure over Θ. If H is continuous (i.e., H({θ}) = 0 for all θ ∈ 
Θ), then with probability 1, the number of atoms is K; otherwise, there may be fewer than K 
atoms. If we let X1, …, Xn|G be i.i.d. from the resulting mixture, i.e., from

f G(x): = ∫ f θ(x)G(dθ) = ∑
i = 1

K
πi f θi

(x),

then the distribution of X1:n is the same as in Equation 2.1. So, in this notation, the MFM 

model is:

G ℳ(pK, γ, H)

X1, …, Xn ∼iid f G, given G .

This random discrete measure perspective is connected to work on species sampling models 
(Pitman, 1996) in the following way. When H is continuous, we can construct a species 

sampling model by letting G ~ ℳ(pK, γ,H) and modeling the observed data as β1, …, βn ~ G 
given G. We refer to Pitman (1996), Hansen and Pitman (2000), Ishwaran and James (2003), 

Lijoi et al. (2005, 2007), and Lijoi et al. (2008) for more background on species sampling 

models and further examples. Pitman derived a general formula for the posterior predictive 

distribution of a species sampling model; the following result is a special case. Note the 

close relationship to the restaurant process (Theorem 4.1).

Theorem 4.2: If H is continuous, then β1 ~ H and the distribution of βn given β1, …, βn−1 is 
proportional to

Vn(t + 1)
Vn(t) γH + ∑

i = 1

t
(ni + γ)δ

βi
∗, (4.1)

where β1
∗, …, βt

∗ are the distinct values taken by β1, …, βn−1, and ni = # { j ∈ [n − 1]: β j = βi
∗}.

For comparison, when G ~ DP(αH) instead, the distribution of βn given β1, …, βn−1 is 

proportional to αH + ∑ j = 1
n − 1 δβ j

= αH + ∑i = 1
t niδβi

∗, since 

G ∣ β1, …, βn − 1 DP(αH + ∑ j = 1
n − 1 δβ j

) (Ferguson, 1973; Blackwell and MacQueen, 1973).
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4.3 Stick-breaking representation

The Dirichlet process has an elegant stick-breaking representation for the mixture weights 

π1, π2, … (Sethuraman, 1994; Sethuraman and Tiwari, 1981). This extraordinarily 

clarifying perspective has inspired a number of nonparametric models (MacEachern, 1999, 

2000; Hjort, 2000; Ishwaran and Zarepour, 2000; Ishwaran and James, 2001; Griffin and 

Steel, 2006; Dunson and Park, 2008; Chung and Dunson, 2009; Rodriguez and Dunson, 

2011; Broderick et al., 2012), has provided insight into the properties of related models 

(Favaro et al., 2012; Teh et al., 2007; Thibaux and Jordan, 2007; Paisley et al., 2010), and 

has been used to develop efficient inference algorithms (Ishwaran and James, 2001; Blei and 

Jordan, 2006; Papaspiliopoulos and Roberts, 2008; Walker, 2007; Kalli et al., 2011).

In a certain special case—namely, when pK(k) = Poisson(k − 1|λ) and γ = 1—we have 

noticed that the MFM also has an interesting representation that we describe using the stick-

breaking analogy, although it is somewhat different in nature. Consider the following 

procedure:

Take a unit-length stick, and break off i.i.d. Exponential(λ) pieces until you run out 
of stick.

In other words, let ε1, ε2, … ∼iid Exponential(λ), define K∼ = min { j: ∑i = 1
j εi ≥ 1}, let π̃

i = εi for 

i = 1, …, K̃ − 1, and let π∼
K∼ = 1 − ∑i = 1

K∼ − 1 π∼i.

Proposition 4.3: The stick lengths π̃ have the same distribution as the mixture weights π in 
the MFM model when pK(k) = Poisson(k − 1|λ) and γ = 1.

This is a consequence of a standard construction for Poisson processes. This suggests a way 

of generalizing the MFM model: take any sequence of positive random variables (ε1, ε2, …) 

(not necessarily independent or identically distributed) such that ∑i = 1
∞ εi > 1 with 

probability 1, and define K̃ and π̃ as above. Although the distribution of K̃ and π̃ may be 

complicated, in some cases it might still be possible to do inference based on the stick-

breaking representation. This might be an interesting way to introduce different kinds of 

prior information on the mixture weights, however, we have not explored this possibility.

5 Asymptotics

In this section, we consider the asymptotics of Vn(t), the asymptotic relationship between 

the number of components and the number of clusters, and the approximate form of the 

conditional distribution on cluster sizes given the number of clusters.

5.1 Asymptotics of Vn(t)

Recall that Vn(t) = ∑k = 1
∞ k(t)

(γk)(n) pK(k) (Equation 3.2) for 1 ≤ t ≤ n, where γ > 0 and pK is a 

p.m.f. on {1, 2, …}. When an, bn > 0, we write an ~ bn to mean an/bn → 1 as n→∞.

Theorem 5.1: For any t ∈ {1, 2, …}, if pK(t) > 0 then
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Vn(t)
t(t)

(γt)(n) pK(t) t!
n!

Γ(γt)
nγt − 1 pK(t) (5.1)

as n→∞.

In particular, Vn(t) has a simple interpretation, asymptotically—it behaves like the k = t term 

in the series. All proofs have been collected in the supplementary material.

5.2 Relationship between the number of clusters and number of components

In the MFM, it is perhaps intuitively clear that, under the prior at least, the number of 

clusters T = | | behaves very similarly to the number of components K when n is large. It 

turns out that under the posterior they also behave very similarly for large n.

Theorem 5.2: Let x1, x2, … ∈  and k ∈ {1, 2, …}. If pK(1), …, pK(k) > 0 then

∣ p(T = k ∣ x1:n) − p(K = k ∣ x1:n) ∣ 0

as n→∞.

5.3 Distribution of the cluster sizes under the prior

Here, we examine one of the major differences between the MFM and DPM priors. Roughly 

speaking, under the prior, the MFM prefers all clusters to be the same order of magnitude, 

while the DPM prefers having a few large clusters and many very small clusters. In the 

following calculations, we quantify the preceding statement more precisely. (See Green and 

Richardson (2001) for informal observations along these lines.) Interestingly, these prior 

influences remain visible in certain aspects of the posterior, even in the limit as n goes to 

infinity.

Let  be the random partition of [n] in the MFM model (Equation 3.1), and let A = (A1, …, 

AT) be the ordered partition of [n] obtained by randomly ordering the blocks of , uniformly 

among the T! possible choices, where T = | |. Then

p(A) = p(𝒞)
∣ 𝒞 ∣ ! = 1

t!Vn(t) ∏
i = 1

t
γ
( ∣ Ai ∣ )

,

where t = | |. Now, let S = (S1, …, ST) be the vector of block sizes of A, that is, Si = |Ai|. 

Then
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p(S = s) = ∑
A:S(A) = s

p(A) = Vn(t)n!
t! ∏

i = 1

t γ
(si)

si!

for s ∈ Δt, t ∈ {1, …, n}, where Δt = {s ∈ ℤt : Σi si = n, si ≥ 1 ∀i} (i.e., Δt is the set of t-part 

compositions of n). For any x > 0, by writing x(m)/m! = Γ(x + m)/(m! Γ(x)) and using 

Stirling’s approximation, we have x(m)/m! ~ mx−1/Γ(x) as m→∞. This yields the 

approximations

p(S = s) ≈
Vn(t)

Γ(γ)t
n!
t! ∏

i = 1

t
si
γ − 1 ≈

pK(t)

nγt − 1
Γ(γt)
Γ(γ)t

∏
i = 1

t
si
γ − 1

(using Theorem 5.1 in the second step), and

p(S = s ∣ T = t) ≈ κ ∏
i = 1

t
si
γ − 1

for s ∈ Δt, where κ is a normalization constant. Thus, p(s|t) has approximately the same 

shape as a symmetric t-dimensional Dirichlet distribution, except it is discrete. This would 

be obvious if we were conditioning on the number of components K, and it makes intuitive 

sense when conditioning on T, since K and T are essentially the same for large n.

It is interesting to compare p(s) and p(s|t) to the corresponding distributions for the Dirichlet 

process. For the DP with a prior on α, we have pDP(𝒞) = Vn
DP(t)∏c ∈ 𝒞 ( ∣ c ∣ − 1)! by 

Equation 3.3, and pDP(A) = pDP( )/| |! as before, so for s ∈ Δt, t ∈ {1, …, n},

pDP(S = s) = Vn
DP(t)n!

t! s1
−1⋯st

−1

and

pDP(S = s ∣ T = t) ∝ s1
−1⋯st

−1,

which has the same shape as a t-dimensional Dirichlet distribution with all the parameters 

taken to 0 (noting that this is normalizable since Δt is finite). Asymptotically in n, pDP(s|t) 
puts all of its mass in the “corners” of the discrete simplex Δt, while under the MFM, p(s|t) 
remains more evenly dispersed.
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6 Inference algorithms

Many approaches have been used for posterior inference in the MFM model (Equation 2.1). 

Nobile (1994) approximates the marginal likelihood p(x1:n|k) of each k in order to compute 

the posterior on k, and uses standard methods given k. Phillips and Smith (1996) and 

Stephens (2000) use jump diffusion and point process approaches, respectively, to sample 

from p(k, π, θ|x1:n). Richardson and Green (1997) employ reversible jump moves to sample 

from p(k, π, θ, z|x1:n). In cases with conjugate priors, Nobile and Fearnside (2007) use 

various Metropolis–Hastings moves on p(k, z|x1:n), and McCullagh and Yang (2008) 

develop an approach that could in principle be used to sample from p(k, |x1:n).

Due to the results of Sections 3 and 4, much of the extensive body of work on MCMC 

samplers for DPMs can be directly applied to MFMs. This leads to a variety of MFM 

samplers, of which we consider two main types: (a) sampling from p( |x1:n) in cases where 

the marginal likelihood m(xc) = ∫Θ [Πj∈c fθ(xj)] H(dθ) can easily be computed (typically, 

this means H is a conjugate prior), and (b) sampling from p( , ϕ|x1:n) (in the notation of 

Equation 3.4) in cases where m(xc) is intractable or when samples of the component 

parameters are desired.

When m(xc) can easily be computed, the following Gibbs sampling algorithm can be used to 

sample from the posterior on partitions, p( |x1:n). Given a partition , let  \ j denote the 

partition obtained by removing element j from .

1. Initialize  = {[n]} (i.e., one cluster).

2. Repeat the following steps N times, to obtain N samples.

For j = 1, …, n: Remove element j from , and place it …

in c ∈  \ j with probability ∝ ( ∣ c ∣ + γ)
m(xc ∪ j)

m(xc)

in a new cluster with probability ∝ γ
Vn(t + 1)

Vn(t) m(x j)

where t = |  \ j|.

This is a direct adaptation of “Algorithm 3” for DPMs (MacEachern, 1994; Neal, 1992, 

2000). The only differences are that in Algorithm 3, |c| + γ is replaced by |c|, and γVn(t 
+ 1)/Vn(t) is replaced by α (the concentration parameter). Thus, the differences between the 

MFM and DPM versions of the algorithm are precisely the same as the differences between 

their respective urn/restaurant processes. In order for the algorithm to be valid, the Markov 

chain needs to be irreducible, and to achieve this it is necessary that {t ∈ {1, 2, …} : Vn(t) > 

0} be a block of consecutive integers containing 1. It turns out that this is always the case, 

since for any k such that pK(k) > 0, we have Vn(t) > 0 for all t = 1, …, k.

Note that one only needs to compute Vn(1), …, Vn(t*) where t* is the largest value of t 
visited by the sampler. In practice, it is convenient to precompute these values using a guess 

at an upper bound tpre on t*, and this takes a negligible amount of time compared to running 

the sampler (see the supplementary material). Just to be clear, tpre is only introduced for 
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computational expedience—the model allows unbounded t, and in the event that the sampler 

visits t > tpre, it is trivial to increase tpre and compute the required values of Vn(t) on 

demand.

When m(xc) cannot easily be computed, a clever auxiliary variable technique referred to as 

“Algorithm 8” can be used for inference in the DPM (Neal, 2000; MacEachern and Müller, 

1998). Making the same substitutions as above, we can apply Algorithm 8 for inference in 

the MFM as well, to sample from p( , ϕ|x1:n).

A well-known issue with incremental Gibbs samplers such as Algorithms 3 and 8, when 

applied to DPMs, is that mixing can be somewhat slow, since it may take a long time to 

create or destroy substantial clusters by moving one element at a time. With MFMs, this 

issue seems to be exacerbated, since compared with DPMs, MFMs tend to put small 

probability on partitions with tiny clusters (see Section 5.3), making it difficult for the 

sampler to move through these regions of the space.

To deal with this issue, split-merge samplers for DPMs have been developed, in which a 

large number of elements can be reassigned in a single move (Dahl, 2003, 2005; Jain and 

Neal, 2004, 2007). In the same way as the incremental samplers, one can directly apply 

these split-merge samplers to MFMs as well, by simply plugging-in the MFM partition 

distribution in place of the DPM partition distribution. More generally, it seems likely that 

any partition-based MCMC sampler for DPMs could be applied to MFMs as well. In Section 

7, we apply the Jain–Neal split-merge samplers, coupled with incremental Gibbs samplers, 

to do inference for MFMs in both conjugate and non-conjugate settings.

As usual in mixture models, the MFM is invariant under permutations of the component 

labels, and this can lead to so-called “label-switching” issues if one naively attempts to 

estimate quantities that are not invariant to labeling—such as the mean of a given component

—by averaging MCMC samples. In the experiments below, we only estimate quantities that 

are invariant to labeling, such as the density, the number of components, and the probability 

that two given points belong to the same cluster. Consequently, the label-switching issue 

does not arise here. If inference for non-invariant quantities is desired, methods for this 

purpose have been proposed (Papastamoulis and Iliopoulos, 2010).

In addition to the partition-based algorithms above, several DPM inference algorithms are 

based on the stick-breaking representation, such as the slice samplers for mixtures (Walker, 

2007; Kalli et al., 2011). Although we have not explored this approach, it should be possible 

to adapt these to MFMs using the stick-breaking representation described in Section 4.3.

7 Empirical demonstrations

In Section 7.1, we compare the mixing performance of reversible jump MCMC versus the 

Jain–Neal split-merge algorithms proposed in Section 6 for inference in the MFM. Section 

7.2 applies an MFM model to discriminate cancer subtypes based on gene expression data. 

In Section 7.3, we illustrate some of the similarities and differences between MFMs and 

DPMs. All of the examples below happen to involve Gaussian component densities, but of 

course our approach is not limited to mixtures of Gaussians.
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7.1 Comparison with reversible jump MCMC

We compare two methods of inference for the MFM: the usual reversible jump MCMC 

(RJMCMC) approach, and our proposed approach based on the Jain–Neal split-merge 

algorithms. This purpose of this is (1) to compare the mixing performance of our method 

versus RJMCMC, and (2) to demonstrate the validity of our method by showing agreement 

with results obtained using RJMCMC. In addition to having better mixing performance, our 

method has the significant advantage of providing generic algorithms that apply to a wide 

variety of component distributions and priors, whereas RJMCMC requires one to design 

specialized reversible jump moves.

RJMCMC is a very general framework and an enormous array of MCMC algorithms could 

be considered to be a special case of it. The most commonly-used instantiation of RJMCMC 

for mixtures seems to be the original algorithm of Richardson and Green (1997) for 

univariate Gaussian mixtures, so it makes sense to compare with this. For multivariate 

Gaussian mixtures, several RJMCMC algorithms have been proposed (Marrs, 1998; Zhang 

et al., 2004; Dellaportas and Papageorgiou, 2006), however, the model we consider below 

uses diagonal covariance matrices, and in this case, the Richardson and Green (1997) moves 

can simply be extended to each coordinate. More efficient algorithms almost certainly exist 

within the vast domain of RJMCMC, but the goal here is to compare with “plain-vanilla 

RJMCMC” as it is commonly-used.

7.1.1 Comparison with RJMCMC on the galaxy dataset—The galaxy dataset 

(Roeder, 1990) is a standard benchmark for mixture models, consisting of measurements of 

the velocities of 82 galaxies in the Corona Borealis region. To facilitate the comparison with 

RJMCMC, we use exactly the same model as Richardson and Green (1997). The component 

densities are univariate normal, fθ(x) = fμ,λ(x) = (x|μ, λ−1), and the base measure (prior) 

H on θ = (μ, λ) is μ 𝒩(μ0, σ0
2), λ ~ Gamma(a, b) independently (where Gamma(λ|a, b) ∝ λa

−1e−bλ). Further, a hyperprior is placed on b, by taking b ~ Gamma(a0, b0). The remaining 

parameters are set to μ0 = (max{xi} + min{xi})/2, σ0 = max{xi} − min{xi}, a = 2, a0 = 0.2, 

and b0 = 10/σ0
2. Note that the parameters μ0, σ0, and b0 are functions of the observed data x1, 

…, xn, making this a data-dependent prior. Note further that taking μ and λ to be 

independent results in a non-conjugate prior; this is appropriate when the location of the data 

is not informative about the scale (and vice versa). See Richardson and Green (1997) for the 

rationale behind these parameter choices. (Note: This choice of σ0 may be a bit too large, 

affecting the posteriors on the number of clusters and components, however, we stick with it 

to facilitate the comparison.) Following Richardson and Green (1997), we take K ~ 

Uniform{1, …, 30} and set γ = 1 for the finite-dimensional Dirichlet parameters.

To implement our proposed inference approach, we use the split-merge sampler of Jain and 

Neal (2007) for non-conjugate priors, coupled with Algorithm 8 of Neal (2000) (using a 

single auxiliary variable) for incremental Gibbs updates to the partition. Specifically, 

following Jain and Neal (2007), we use the (5,1,1,5) scheme: 5 intermediate scans to reach 

the split launch state, 1 split-merge move per iteration, 1 incremental Gibbs scan per 

iteration, and 5 intermediate moves to reach the merge launch state. We use Gibbs sampling 
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to handle the hyperprior on b (i.e., append b to the state of the Markov chain, run the 

sampler given b as usual, and periodically sample b given everything else). More general 

hyperprior structures can be handled similarly. We do not restrict the parameter space in any 

way (e.g., forcing the component means to be ordered to obtain identifiability, as was done 

by Richardson and Green, 1997). All of the quantities we consider are invariant to the 

labeling of the clusters; see Jasra et al. (2005) for discussion on this point.

Results for RJMCMC were obtained using the Nmix software provided by Peter Green,1 

which implements the algorithm of Richardson and Green (1997).

Results: First, we demonstrate agreement between inference results obtained using 

RJMCMC and using our method based on the Jain–Neal algorithm. Table 1 compares 

estimates of the MFM posterior on the number of components k using both Jain–Neal and 

RJMCMC. Each algorithm was run for 106 iterations, the first 105 of which were discarded 

as burn-in. The two methods are in very close agreement, empirically verifying that they are 

both correctly sampling from the MFM posterior.

To compare the mixing performance of the two methods, Figure 1 (top) shows traceplots of 

the number of clusters over the first 5000 iterations. The number of clusters is often used to 

assess mixing, since it is usually one of the quantities for which mixing is slowest. One can 

see that the Jain–Neal split-merge algorithm appears to explore the space more quickly than 

RJMCMC. Figure 1 (bottom left) shows estimates of the autocorrelation functions for the 

number of clusters, scaled by iteration. The autocorrelation of Jain–Neal decays significantly 

more rapidly than that of RJMCMC, confirming the visual intuition from the traceplot. This 

makes sense since the Jain–Neal algorithm makes splitting proposals in an adaptive, data-

dependent way. The effective sample size (based on the number of clusters) is estimated to 

be 1.6% for Jain–Neal versus 0.6% for RJMCMC; in other words, 100 Jain–Neal samples 

are equivalent to 1.6 independent samples (Kass et al., 1998).

However, each iteration of the Jain–Neal algorithm takes approximately 2.9 × 10−6 n 
seconds, where n = 82 is the sample size, compared with 1.3 × 10−6 n seconds for RJM-

CMC, which is a little over twice as fast. (All experiments in this paper were performed 

using a 2.80 GHz processor with 6 GB of RAM.) In both algorithms, one iteration consists 

of a reassignment move for each datapoint, updates to component parameters and 

hyperparameters, and a split or merge move, but it makes sense that Jain–Neal would be a 

bit slower per iteration since its reassignment moves and split-merge moves require a few 

more steps. Nonetheless, it seems that this is compensated for by the improvement in mixing 

per iteration: Figure 1 (bottom right) shows that when rescaled to account for computation 

time, the estimated autocorrelation functions are nearly the same. Thus, in this experiment, 

the two methods perform roughly equally well.

7.1.2 Comparison with RJMCMC as dimensionality increases—In this subsection, 

we show that our approach can provide a massive improvement over RJMCMC when the 

1Currently available at http://www.maths.bris.ac.uk/~peter/Nmix/.
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parameter space is high-dimensional. We illustrate this with a model that will be applied to 

gene expression data in Section 7.2.

We simulate data of increasing dimensionality, and assess the effect on mixing performance. 

Specifically, for a given dimensionality d, we draw 

X1, …, Xn
1
3𝒩(m, I) + 1

3𝒩(0, I) + 1
3𝒩( − m, I), where m = (3/ d, …, 3/ d) ∈ ℝd, and then 

normalize each dimension to have zero mean and unit variance. The purpose of the 1/ d
factor is to prevent the posterior from concentrating too quickly as d increases, so that one 

can still see the sampler exploring the space.

To enable scaling to the high-dimensional gene expression data in Section 7.2, we use 

multivariate Gaussian component densities with diagonal covariance matrices (i.e., for each 

component, the dimensions are independent univariate Gaussians), and we place 

independent conjugate priors on each dimension. Specifically, for each component, for i = 1, 

…, d, dimension i is 𝒩(μi, λi
−1) given (μi, λi), and λi ~ Gamma(a, b), μi|λi ~ (0, (cλi)−1). 

We set a = 1, b = 1, c = 1 (recall that the data are zero mean, unit variance in each 

dimension), K ~ Geometric(r) (pK(k) = (1 − r)k−1r for k = 1, 2, …) with r = 0.1, and γ = 1. 

We compare the mixing performance of three samplers:

1. Collapsed Jain–Neal. Given the partition C of the data into clusters, the 

parameters can be integrated out analytically since the prior is conjugate. Thus, 

we can use the split-merge sampler of Jain and Neal (2004) for conjugate priors, 

coupled with Algorithm 3 of Neal (2000). Following Jain and Neal (2004), we 

use the (5,1,1) scheme: 5 intermediate scans to reach the split launch state, 1 

split-merge move per iteration, and 1 incremental Gibbs scan per iteration.

2. Jain–Neal. Even though the prior is conjugate, we can still use the Jain and Neal 

(2007) split-merge algorithm for non-conjugate priors, coupled with Algorithm 8 

of Neal (2000). As in Section 7.1.1, we use the (5,1,1,5) scheme.

3. RJMCMC. For reversible jump MCMC, we use a natural multivariate extension 

of the moves from Richardson and Green (1997). Specifically, for the split move, 

we propose splitting the mean and variance for each dimension i according to the 

formulas in Richardson and Green (1997), using independent variables u2i and 

u3i. For the birth move, we make a proposal from the prior. The remaining moves 

are essentially the same as in Richardson and Green (1997).

Results: For each d ∈ {4, 8, 12}, a dataset of size n = 100 was generated as described above, 

and each of the three algorithms was run for 106 iterations. For each algorithm and each d, 

Figure 2 shows the estimated autocorrelation function for the number of clusters (scaled to 

milliseconds), as well as a traceplot of the number of clusters over the first 20 seconds of 

sampling. We see that as the dimensionality increases, mixing performance degrades for all 

three algorithms, which is to be expected. However, it degrades significantly more rapidly 

for RJMCMC than for the Jain–Neal algorithms, especially the collapsed version. This 

difference can be attributed to the clever data-dependent split-merge proposals in the Jain–
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Neal algorithms, and the fact that the collapsed version benefits further from the effective 

reduction in dimensionality resulting from integrating out the parameters.

As the dimensionality increases, the advantage over RJMCMC becomes ever greater. This 

demonstrates the major improvement in performance that can be obtained using the 

approach we propose. In fact, in the next section, we apply our method to very high-

dimensionality gene expression data on which the time required for RJMCMC to mix 

becomes unreasonably long, making it impractical. Meanwhile, our approach using the 

collapsed Jain–Neal algorithm still mixes well.

7.2 Discriminating cancer subtypes using gene expression data

In cancer research, gene expression profiling—that is, measuring the amount that each gene 

is expressed in a given tissue sample—enables the identification of distinct subtypes of 

cancer, leading to greater understanding of the mechanisms underlying cancers as well as 

potentially providing patient-specific diagnostic tools. In gene expression datasets, there are 

typically a small number of very high-dimensional data points, each consisting of the gene 

expression levels in a given tissue sample under given conditions.

One approach to analyzing gene expression data is to use Gaussian mixture models to 

identify clusters which may represent distinct cancer subtypes (Yeung et al., 2001; 

McLachlan et al., 2002; Medvedovic and Sivaganesan, 2002; Medvedovic et al., 2004; de 

Souto et al., 2008; Rasmussen et al., 2009; McNicholas and Murphy, 2010). In fact, in a 

comparative study of seven clustering methods on 35 cancer gene expression datasets with 

known ground truth, de Souto et al. (2008) found that finite mixtures of Gaussians provided 

the best results, as long as the number of components k was set to the true value. However, 

in practice, choosing an appropriate value of k can be difficult. Using the methods developed 

in this paper, the MFM provides a principled approach to inferring the clusters even when k 
is unknown, as well as doing inference for k, provided that the components are well-

modeled by Gaussians.

The purpose of this example is to demonstrate that our approach can work well even in very 

high-dimensional settings, and may provide a useful tool for this application. It should be 

emphasized that we are not cancer scientists, so the results reported here should not be 

interpreted as scientifically relevant, but simply as a proof-of-concept.

7.2.1 Setup: data, model, and inference—We apply the MFM to gene expression data 

collected by Armstrong et al. (2001) in a study of leukemia subtypes. Armstrong et al. 

(2001) measured gene expression levels in samples from 72 patients who were known to 

have one of two leukemia types, acute lymphoblastic leukemia (ALL) or acute myelogenous 

leukemia (AML), and they found that a previously undistinguished subtype of ALL, which 

they termed mixed-lineage leukemia (MLL), could be distinguished from conventional ALL 

and AML based on the gene expression profiles.

We use the preprocessed data provided by de Souto et al. (2008), which they filtered to 

include only genes with expression levels differing by at least 3-fold in at least 30 samples, 

relative to their mean expression level across all samples. The resulting dataset consists of 
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72 samples and 1081 genes per sample, i.e., n = 72 and d = 1081. Following standard 

practice, we take the base-2 logarithm of the data before analysis, and normalize each 

dimension to have zero mean and unit variance.

We use the same model as in Section 7.1.2. Note that these parameter settings are simply 

defaults and have not been tailored to the problem; a careful scientific investigation would 

involve thorough prior elicitation, sensitivity analysis, and model checking.

The collapsed Jain–Neal algorithm described in Section 7.1.2 was used for inference. The 

sampler was run for 1,000 burn-in iterations, and 19,000 sample iterations. This appears to 

be many more iterations than required for burn-in and mixing in this particular example—in 

fact, only 5 to 10 iterations are required to separate the clusters, and the results are 

indistinguishable from using only 10 burn-in and 190 sample iterations. The full state of the 

chain was recorded every 20 iterations. Each iteration took approximately 1.3 × 10−3 n 
seconds, where n = 72 is the number of observations in the dataset.

7.2.2 Results—The posterior on the number of clusters t is concentrated at 3 (see Figure 

3), in agreement with the division into ALL, MLL, and AML determined by Armstrong et 

al. (2001). The posterior on k is shifted slightly to the right because there are a small number 

of observations; this accounts for uncertainty regarding the possibility of additional 

components that were not observed in the given data.

Figure 3 also shows the posterior similarity matrix, that is, the matrix in which entry (i, j) is 

the posterior probability that data points i and j belong to the same cluster; in the figure, 

white is probability 0 and black is probability 1. The rows and columns of the matrix are 

ordered according to ground truth, such that 1–24 are ALL, 25–44 are MLL, and 45–72 are 

AML. The model has clearly separated the subjects into these three groups, with a small 

number of exceptions: subject 41 is clustered with the AML subjects instead of MLL, 

subject 52 with the MLL subjects instead of AML, and subject 17 is about 50% ALL and 

50% MLL. Thus, the MFM has successfully clustered the subjects according to cancer 

subtype. This demonstrates the viability of our approach in high-dimensional settings.

7.3 Similarities and differences between MFMs and DPMs

In the preceding sections, we established that MFMs share many of the mathematical 

properties of DPMs. Here, we empirically compare MFMs and DPMs, using simulated data 

from a three-component bivariate Gaussian mixture. Our purpose is not to argue that either 

model should be preferred over the other, but simply to illustrate that in certain respects they 

are very similar, while in other respects they differ. In general, we would not say that either 

model is uniformly better than the other; rather, one should choose the model that is best 

suited to the application at hand—specifically, if one believes there to be infinitely many 

components, then an infinite mixture such as a DPM is more appropriate, while if one 

expects finitely many components, an MFM is likely to be a better choice. See Section A.1 

for further discussion. For additional empirical analysis of MFMs versus DPMs, we refer to 

Green and Richardson (2001), who present different types of comparisons than we consider 

here.
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7.3.1 Setup: data, model, and inference—Consider the data distribution 

∑i = 1
3 wi𝒩(μi, Ci) where w = (0.45, 0.3, 0.25), 

μ1 = 4
4 , μ2 = 7

4 , μ3 = 6
2 , C1 = 1 0

0 1 , C2 = R
2.5 0
0 0.2 RT where R = cos ρ − sin ρ

sin ρ cos ρ
 with ρ = 

π/4, and C3 = 3 0
0 0.1 . See Figure 4 (bottom).

For the model, we use multivariate normal component densities fθ(x) = fμ,Λ(x) = (x|μ,Λ
−1), and for the base measure H on θ = (μ, Λ), we take μ ~  (μ̂, Ĉ), Λ ~ Wishartd(V, ν) 

independently, where μ̂ is the sample mean, Ĉ is the sample covariance, ν = d = 2, and V = 

Ĉ −1/ν. Here, Wishartd(Λ ∣ V , ν) ∝ ∣ det Λ ∣(ν − d − 1)/2 exp − 1
2 tr(V−1Λ) .

For the MFM, we take K ~ Geometric(0.1) and γ = 1. For the DPM, we put an 

Exponential(1) prior on the concentration parameter, α. This makes the priors on the number 

of clusters t roughly comparable for the range of n values considered below; see Figure 7.

For both the MFM and DPM, we use the split-merge sampler of Jain and Neal (2007) for 

non-conjugate priors, coupled with Algorithm 8 of Neal (2000), as in Section 7.1.1. The 

same inference algorithm as in Section 7.1.1 is used, with the sole exception that in this case 

there is no hyperprior on the parameters of H. Gibbs updates to the DPM concentration 

parameter α are made using Metropolis–Hastings moves.

Five independent datasets were used for each n ∈ {50, 100, 250, 1000, 2500}, and for each 

model (MFM and DPM), the sampler was run for 5,000 burn-in iterations and 95,000 

sample iterations (for a total of 100,000). Judging by traceplots and running averages of 

various statistics, this appeared to be sufficient for mixing. The cluster sizes were recorded 

after each iteration, and to reduce memory storage requirements, the full state of the chain 

was recorded only once every 100 iterations. For each run, the seed of the random number 

generator was initialized to the same value for both the MFM and DPM. The sampler used 

for these experiments took approximately 8 × 10−6 n seconds per iteration.

7.3.2 Density estimation—For certain nonparametric density estimation problems, both 

the DPM and MFM have been shown to exhibit posterior consistency at the minimax 

optimal rate, up to logarithmic factors (Kruijer et al., 2010; Ghosal and Van der Vaart, 2007). 

In fact, even for small sample sizes, we observe empirically that density estimates under the 

two models are remarkably similar; for example, see Figure 4. (See the supplementary 

material for details on computing the density estimates.) As the amount of data increases, 

the density estimates for both models appear to be converging to the true density, as 

expected. Indeed, Figure 5 indicates that the Hellinger distance between the estimated 

density and the true density is going to zero, and further, that the rate of convergence appears 

to be nearly identical for the DPM and the MFM. This suggests that for density estimation, 

the behavior of the two models seems to be essentially the same.

On the other hand, Figure 5 shows that the Bayes factors p(x1:n|MFM)/p(x1:n|DPM) are 

increasing as n grows, indicating that the MFM is a better fit to this data than the DPM, in 

the sense that it has a higher marginal likelihood. This makes sense, since the MFM is 
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correctly specified for data from a finite mixture, while the DPM is not. See Section A.2 for 

details on computing these Bayes factors.

7.3.3 Clustering—Frequently, mixture models are used for clustering and latent class 

discovery, rather than for density estimation. MFMs have a partition distribution that takes a 

very similar form to that of the Dirichlet process, as discussed in Section 3. Despite this 

similarity, the MFM partition distribution differs in two fundamental respects.

1. The prior on the number of clusters t is very different. In an MFM, one has 

complete control over the prior on the number of components k, which in turn 

provides control over the prior on t. Further, as the sample size n grows, the 

MFM prior on t converges to the prior on k. In contrast, in a Dirichlet process, 

the prior on t takes a particular parametric form and diverges at a log n rate.

2. Given t, the prior on the cluster sizes is very different. In an MFM, most of the 

prior mass is on partitions in which the sizes of the clusters are all the same order 

of magnitude, while in a Dirichlet process, most of the prior mass is on partitions 

in which the sizes vary widely, with a few large clusters and many very small 

clusters (see Section 5.3).

These prior differences carry over to noticeably different posterior clustering behavior. 

Figure 6 displays a few representative clusterings sampled from the posterior for the three-

component bivariate Gaussian example. When n = 250, around 92% of the MFM samples 

look like (a) and (b), while around 2/3 of the DPM samples look like (d). Since the MFM is 

consistent for k, the proportion of MFM samples with three clusters tends to 100% as n 
increases, however, we do not expect this to occur for the DPM (see Section 7.3.4); indeed, 

when n = 2500, it is 98% for the MFM and still around 2/3 for the DPM. Many of the DPM 

samples have tiny “extra” clusters consisting of only a few points, as seen in Figure 6(e) and 

(f). Meanwhile, when the MFM samples have extra clusters, they tend to be large, as in (c). 

All of this is to be expected, due to items (1) and (2) above, along with the fact that these 

data are drawn from a finite mixture over the assumed family, and thus the MFM is correctly 

specified, while the DPM is not.

7.3.4 Number of components and the mixing distribution—Assuming that the data 

are from a finite mixture, it is also sometimes of interest to infer the number of components 

or the mixing distribution, subject to the caveat that these inferences are meaningful only to 

the extent that the component distributions are correctly specified and the model is finite-

mixture identifiable. (In the notation of Section 4.2, the mixing distribution is G, and we say 

the model is finite-mixture identifiable if for any discrete measures G, G′ supported on 

finitely-many points, fG = fG′ a.e. implies G = G′.) While Nguyen (2013) has shown that 

under certain conditions, DPMs are consistent for the mixing distribution (in the Wasserstein 

metric), Miller and Harrison (2013, 2014) have shown that the DPM posterior on the number 

of clusters is typically not consistent for the number of components, at least when the 

concentration parameter is fixed; the question remains open when using a prior on the 

concentration parameter, but we conjecture that it is still not consistent. On the other hand, 

MFMs are consistent for the mixing distribution and the number of components (for 

Lebesgue almost-all values of the true parameters) under very general conditions (Nobile, 
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1994); this is a straightforward consequence of Doob’s theorem. The relative ease with 

which this consistency can be established for MFMs is due to the fact that in an MFM, the 

parameter space is a countable union of finite-dimensional spaces, rather than an infinite-

dimensional space.

These consistency/inconsistency properties are readily observed empirically—they are not 

simply large-sample phenomena. As seen in Figure 7, the tendency of DPM samples to have 

tiny extra clusters causes the number of clusters t to be somewhat inflated, apparently 

making the DPM posterior on t fail to concentrate, while the MFM posterior on t 
concentrates at the true value (by Section 5.2 and Nobile, 1994). In addition to the number 

of clusters t, the MFM also permits inference for the number of components k in a natural 

way (Figure 7), while in the DPM the number of components is always infinite. One might 

wonder whether the DPM would perform better if the data were drawn from a mixture with 

an additional one or two components with much smaller weight, however, this doesn’t seem 

to make a difference; see the supplementary material. On the other hand, on data from an 

infinite mixture, one would expect the DPM to perform better than the MFM. See the 

supplementary material for the formulas used to compute the posterior on k.

Although the MFM enables consistent inference for k in principle (Nobile, 1994), there are 

several issues that need to be carefully considered in practice; see Section A.3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Appendix

A.1 Examples where MFMs may be more suitable than DPMs

In many real-world situations, it is clear a priori that there is a finite (but unknown) number 

of components, due to the physics of the data generating process. In neural spike sorting, for 

instance, the observed spikes come from a mixture in which each spike is generated by one 

of many neurons/units, and “regardless of the number of putative spikes detected, the 

number of different single units one could conceivably discriminate from a single electrode 

is upper bounded due to the conductive properties of the tissue” (Carlson et al., 2014). In 

genetics, “a straightforward statistical genetics argument shows that the problem of 

haplotype inference can be formulated as a mixture model, where the set of mixture 

components corresponds to the pool of ancestor haplotypes, or founders, of the population… 

however, the size of this pool is unknown; indeed, knowing the size of the pool would 

correspond to knowing something significant about the genome and its history” (Xing et al., 

2006). In cancer tumor phylogenetics, each datapoint corresponds to a locus in the genome, 

and the data come from a mixture of tumor cell populations within a single tissue sample. 

The number of cell populations (k) should not increase indefinitely as the number of loci 

assayed (n) grows (Landau et al., 2013).

Furthermore, the DPM is often mistakenly described in the literature as a mixture with a 

prior on the number of components, i.e., it is mistakenly described as an MFM. For instance, 

da Silva (2007) writes, “the DP mixture model is a Bayesian nonparametric methodology 

that relies on Markov chain Monte Carlo simulations for exploring mixture models with an 

unknown number of components.” Medvedovic and Sivaganesan (2002) write, “this [DPM] 

model does not require specifying the number of mixture components, and the obtained 

clustering is a result of averaging over all possible numbers of mixture components.” Xing et 

al. (2007) write, “methods for fitting the genotype mixture must crucially address the 

problem of estimating a mixture with an unknown number of mixture components… we 

present a Bayesian approach to this problem based on a nonparametric prior known as the 

Dirichlet process.” We suspect that in many such cases an MFM is a more natural model.

There are a variety of examples where researchers initially used an MFM, and later began 

using a DPM only because it was more computationally convenient. For instance, Tadesse et 

al. (2005) used MFMs with RJMCMC for a novel Bayesian variable selection method, but in 

follow-on work (Kim et al., 2006) they used DPMs because “with the Dirichlet process 

mixture models, the creation and deletion of clusters is naturally taken care of in the process 

of updating the sample allocations.” Meanwhile, in some cases, researchers have attempted 

to force DPMs to behave more like MFMs by choosing the DPM concentration parameter as 

a function of n to prevent the number of clusters from growing with n (Landau et al., 2013). 

With our new MFM algorithms, researchers need not default to DPMs for computational 

considerations; they can use the model that is best suited to the application at hand.
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A.2 Computing Bayes factors for MFM versus DPM

In principle, the Bayes factor for the MFM versus the DPM could be used as an empirical 

criterion for choosing between the two models, and in fact, it is quite easy to compute an 

approximation to the Bayes factor using importance sampling. However, at this time we are 

not comfortable with using this as a method for choosing between MFM and DPM because 

when n is small, this Bayes factor can be sensitive to the choice of hyperparameters, and 

when n is large, the importance sampling approximation might have high variance since the 

two partition distributions could be concentrating in different regions of the space. 

Nonetheless, we include the details of the calculation here, since it may be of interest.

Given a pair of partition distributions f(C) = f̃(C)/Zf and g(C) = g̃(C)/Zg with common 

support, importance sampling can be used to approximate the ratio of normalization 

constants: Z f /Zg ≈ 1
N ∑i = 1

N f
∼(𝒞i)/g∼(𝒞i) where C1,…, CN ~ g. In particular, if f̃(C) = p(x1:n|

C)pMFM(C) and g̃(C) = p(x1:n|C)pDP(C), then f is the MFM posterior and g is the DPM 

posterior, and we can use samples C1, …, CN from g to approximate the Bayes factor in 

favor of the MFM over the DPM:

BF =
p(x1:n ∣ MFM)
p(x1:n ∣ DPM) =

Z f
Zg

≈ 1
N ∑

i = 1

N f
∼(𝒞i)
g∼(𝒞i)

= 1
N ∑

i = 1

N pMFM(𝒞i)
pDP(𝒞i)

,

where we have used the fact that f̃(C)/g̃(C) = pMFM(C)/pDP(C) since the likelihood p(x1:n|C) 

is the same in the MFM and the DPM. This approximation to the Bayes factor is easy to 

compute using the output of an MCMC sampler for the DPM, since all we need to do is 

compute the ratio of the prior probabilities pMFM(Ci)/pDP(Ci) for each partition Ci sampled 

from the DPM posterior. Alternatively, one could use the output of an MCMC sampler for 

the MFM, by swapping the roles of the DPM and the MFM throughout.

A.3 Issues with estimating the number of components

Due to the fact that inference for the number of components is a topic of high interest in 

many communities, it seems prudent to make some cautionary remarks in this regard. Many 

approaches have been proposed for estimating the number of components (Henna, 1985; 

Keribin, 2000; Leroux, 1992; Ishwaran et al., 2001; James et al., 2001; Henna, 2005; Woo 

and Sriram, 2006, 2007). In theory, the MFM model provides a Bayesian approach to 

consistently estimating the number of components, making it a potentially attractive method 

of assessing the heterogeneity of the data. However, there are several possible pitfalls to 

consider, some of which are more obvious than others.

An obvious potential issue is that in many applications, the clusters which one wishes to 

distinguish are purely notional (for example, perhaps, clusters of images or documents), and 

a mixture model is used for practical purposes, rather than because the data are actually 

thought to arise from a mixture. Clearly, in such cases, inference for the “true” number of 

components is meaningless. On the other hand, in some applications, the data definitely 

come from a mixture (for example, extracellular recordings of multiple neurons), so there is 
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in reality a true number of components, although usually the form of the mixture 

components is far from clear.

More subtle issues are that the posteriors on k and t can be (1) strongly affected by the base 

measure H, and (2) sensitive to misspecification of the family of component distributions 

{fθ}. Issue (1) can be seen, for instance, in the case of normal mixtures: it might seem 

desirable to choose the prior on the component means to have large variance in order to be 

less informative, however, this causes the posteriors on k and t to favor smaller values 

(Richardson and Green, 1997; Stephens, 2000; Jasra et al., 2005). The basic mechanism at 

play here is the same as in the Bartlett–Lindley paradox, and shows up in many Bayesian 

model selection problems. With some care, this issue can be dealt with by varying the base 

measure H and observing the effect on the posterior—that is, by performing a sensitivity 

analysis—for instance, see Richardson and Green (1997).

Issue (2) is more serious. In practice, we typically cannot expect our choice of {fθ: θ ∈ Θ} to 

contain the true component densities (assuming the data are even from a mixture). When the 

model is misspecified in this way, the posteriors of k and t can be severely affected and 

depend strongly on n. For instance, if the model uses Gaussian components, and the true 

data distribution is not a finite mixture of Gaussians, then the posteriors of k and t can be 

expected to diverge to infinity as n increases. Consequently, the effects of misspecification 

need to be carefully considered if these posteriors are to be used as measures of 

heterogeneity. Steps toward addressing the issue of robustness have been taken by Woo and 

Sriram (2006, 2007) and Rodríguez and Walker (2014), however, this is an important 

problem demanding further study.

Despite these issues, sample clusterings and estimates of the number of components or 

clusters can provide a useful tool for exploring complex datasets, particularly in the case of 

high-dimensional data that cannot easily be visualized. It should always be borne in mind, 

though, that the results can only be interpreted as being correct to the extent that the model 

assumptions are correct.
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Figure 1. 
Results on the galaxy dataset. Top: Traceplots of the number of clusters at each iteration. 

Bottom: Estimated autocorrelation function of the number of clusters, scaled by iteration 

(left) and time in milliseconds (right).
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Figure 2. 
Top: Estimated autocorrelation functions for the number of clusters, for each algorithm, for 

each d ∈ {4, 8, 12}. Bottom: Traceplots of the number of clusters over the first 20 seconds 

of sampling.
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Figure 3. 
Results on the leukemia gene expression dataset. Left: Posteriors on the number of clusters 

and components. Right: Posterior similarity matrix. See the text for discussion.
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Figure 4. 
Density estimates for MFM (left) and DPM (right) on increasing amounts of data from the 

bivariate example (bottom). As n increases, the estimates appear to be converging to the true 

density, as expected.
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Figure 5. 
Left: Hellinger distance between the estimated and true densities, for MFM (red, left) and 

DPM (blue, right) density estimates, on the bivariate example. Right: Bayes factors in favor 

of the MFM over the DPM. For each n ∈ {50, 100, 250, 1000, 2500}, five independent 

datasets of size n were used, and the lines connect the averages for each n.
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Figure 6. 
Representative sample clusterings from the posterior for the MFM and DPM, on n = 250 

data points from the bivariate example. The bottom plot shows the true component 

assignments. See discussion in the text. (Best viewed in color.)

Miller and Harrison Page 35

J Am Stat Assoc. Author manuscript; available in PMC 2018 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Prior and posterior on the number of clusters t for the MFM (left) and DPM (right), and the 

posterior on the number of components k for the MFM (bottom), on increasing amounts of 

data from the bivariate example. Each prior on t is approximated from 106 samples from the 

prior.
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|k), which can found in, e.g., Green and Richardson (2001) or McCullagh and Yang (2008); we provide a proof for completeness. All proofs have been collected in the supplementary material. We discuss computation of Vn(t) in Section 3.2. For comparison, under the DPM, the partition distribution induced by Z1, …, Zn is  where t = |
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| (Antoniak, 1974). When a prior is placed on α, as in the experiments in Section 7, the DPM partition distribution becomes
(3.3) where 
.Viewed as a function of the block sizes (|c| : c ∈ 
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), Equation 3.1 is an exchangeable partition probability function (EPPF) in the terminology of Pitman (1995, 2006), since it is a symmetric function of the block sizes. (Some authors also require EPPFs to have self-consistent marginals—see Section 3.3—but we follow the usage of Pitman (2006), who does not require this.) Consequently, 
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 is an exchangeable random partition of [n]; that is, its distribution is invariant under permutations of [n] (alternatively, this can be seen directly from the definition of the model, since Z1, …, Zn are exchangeable). In fact, Equation 3.1 induces an exchangeable random partition of the positive integers; see Section 3.3.Further, Equation 3.1 is a member of the family of Gibbs partition distributions (Pitman, 2006); this is also implied by the results of Gnedin and Pitman (2006) characterizing the extreme points of the space of Gibbs partition distributions. Results on Gibbs partitions are provided by Ho et al. (2007), Lijoi et al. (2008), Cerquetti (2011), Cerquetti (2013), Gnedin (2010), and Lijoi and Prünster (2010). However, the utility of this representation for inference in mixture models with a prior on the number of components does not seem to have been previously explored in the literature.Due to Theorem 3.1, we have the following equivalent representation of the model: 
(3.4) where ϕ = (ϕc : c ∈ 
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) is a tuple of t = |
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="8.481px" height="9.509px" viewBox="7.358 -1.312 8.481 9.509" enable-background="new 7.358 -1.312 8.481 9.509"
xml:space="preserve">
<path d="M15.839-0.604c0,0.784-0.765,1.726-2.294,2.825c-0.798,0.576-1.749,1.05-2.854,1.423c-0.302,0.35-0.625,0.888-0.97,1.614
C9.344,6.046,9.156,6.634,9.156,7.021c0,0.609,0.313,0.914,0.941,0.914c0.746,0,1.442-0.425,2.089-1.274
c0.396-0.524,0.595-1.013,0.595-1.466c0-0.387-0.203-0.581-0.608-0.581c-0.463,0-0.893,0.352-1.289,1.055
c-0.27,0.472-0.488,1.024-0.658,1.656L9.99,7.312c0.118-0.656,0.35-1.27,0.694-1.841c0.443-0.746,0.939-1.119,1.487-1.119
c0.32,0,0.573,0.116,0.757,0.347c0.17,0.212,0.255,0.484,0.255,0.814c0,0.656-0.337,1.272-1.012,1.848
c-0.652,0.558-1.311,0.836-1.976,0.836c-1.034,0-1.551-0.604-1.551-1.813c0-0.646,0.241-1.458,0.722-2.436
C8.774,3.911,8.299,3.743,7.945,3.446c-0.392-0.33-0.587-0.781-0.587-1.352c0-0.788,0.443-1.527,1.33-2.216
c0.728-0.562,1.534-0.958,2.422-1.189l0.057,0.213C10.307-0.807,9.569-0.38,8.95,0.182c-0.756,0.68-1.133,1.414-1.133,2.202
c0,0.363,0.15,0.665,0.453,0.906c0.278,0.227,0.606,0.34,0.983,0.34c0.109,0,0.225-0.01,0.348-0.028c1.18-1.827,2.379-3.16,3.597-4
c0.798-0.552,1.458-0.829,1.982-0.829C15.619-1.227,15.839-1.019,15.839-0.604z M15.521-0.689c0-0.212-0.113-0.318-0.34-0.318
c-0.991,0-2.427,1.421-4.305,4.262c1.185-0.359,2.407-1.147,3.667-2.365C15.195,0.262,15.521-0.264,15.521-0.689z"/>
</svg>
| parameters ϕc ∈ Θ, one for each block c ∈ 
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.This representation is particularly useful for doing inference, since one does not have to deal with component labels or empty components. (If component-specific inferences are desired, a method such as that provided by Papastamoulis and Iliopoulos (2010) may be useful.) The formulation of models starting from a partition distribution has been a fruitful approach, exemplified by the development of product partition models (Hartigan, 1990; Barry and Hartigan, 1992; Quintana and Iglesias, 2003; Dahl, 2009; Park and Dunson, 2010; Müller and Quintana, 2010; Müller et al., 2011) and the loss-based approach of Lau and Green (2007).
	Theorem 3.1: Under the MFM (Equation 2.1), the probability mass function of 
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 is(3.1)where t = |
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| is the number of parts/blocks in the partition, and(3.2)Here, x(m) = x(x+1) ··· (x+m−1) and x(m) = x(x−1) ··· (x−m+1), with x(0) = 1 and x(0) = 1 by convention; note that x(m) = 0 when x is a positive integer less than m. Theorem 3.1 can be derived from the well-known formula for p(
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|k), which can found in, e.g., Green and Richardson (2001) or McCullagh and Yang (2008); we provide a proof for completeness. All proofs have been collected in the supplementary material. We discuss computation of Vn(t) in Section 3.2. For comparison, under the DPM, the partition distribution induced by Z1, …, Zn is  where t = |
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| (Antoniak, 1974). When a prior is placed on α, as in the experiments in Section 7, the DPM partition distribution becomes
(3.3) where 
.Viewed as a function of the block sizes (|c| : c ∈ 
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="8.481px" height="9.509px" viewBox="7.358 -1.312 8.481 9.509" enable-background="new 7.358 -1.312 8.481 9.509"
xml:space="preserve">
<path d="M15.839-0.604c0,0.784-0.765,1.726-2.294,2.825c-0.798,0.576-1.749,1.05-2.854,1.423c-0.302,0.35-0.625,0.888-0.97,1.614
C9.344,6.046,9.156,6.634,9.156,7.021c0,0.609,0.313,0.914,0.941,0.914c0.746,0,1.442-0.425,2.089-1.274
c0.396-0.524,0.595-1.013,0.595-1.466c0-0.387-0.203-0.581-0.608-0.581c-0.463,0-0.893,0.352-1.289,1.055
c-0.27,0.472-0.488,1.024-0.658,1.656L9.99,7.312c0.118-0.656,0.35-1.27,0.694-1.841c0.443-0.746,0.939-1.119,1.487-1.119
c0.32,0,0.573,0.116,0.757,0.347c0.17,0.212,0.255,0.484,0.255,0.814c0,0.656-0.337,1.272-1.012,1.848
c-0.652,0.558-1.311,0.836-1.976,0.836c-1.034,0-1.551-0.604-1.551-1.813c0-0.646,0.241-1.458,0.722-2.436
C8.774,3.911,8.299,3.743,7.945,3.446c-0.392-0.33-0.587-0.781-0.587-1.352c0-0.788,0.443-1.527,1.33-2.216
c0.728-0.562,1.534-0.958,2.422-1.189l0.057,0.213C10.307-0.807,9.569-0.38,8.95,0.182c-0.756,0.68-1.133,1.414-1.133,2.202
c0,0.363,0.15,0.665,0.453,0.906c0.278,0.227,0.606,0.34,0.983,0.34c0.109,0,0.225-0.01,0.348-0.028c1.18-1.827,2.379-3.16,3.597-4
c0.798-0.552,1.458-0.829,1.982-0.829C15.619-1.227,15.839-1.019,15.839-0.604z M15.521-0.689c0-0.212-0.113-0.318-0.34-0.318
c-0.991,0-2.427,1.421-4.305,4.262c1.185-0.359,2.407-1.147,3.667-2.365C15.195,0.262,15.521-0.264,15.521-0.689z"/>
</svg>
), Equation 3.1 is an exchangeable partition probability function (EPPF) in the terminology of Pitman (1995, 2006), since it is a symmetric function of the block sizes. (Some authors also require EPPFs to have self-consistent marginals—see Section 3.3—but we follow the usage of Pitman (2006), who does not require this.) Consequently, 
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 is an exchangeable random partition of [n]; that is, its distribution is invariant under permutations of [n] (alternatively, this can be seen directly from the definition of the model, since Z1, …, Zn are exchangeable). In fact, Equation 3.1 induces an exchangeable random partition of the positive integers; see Section 3.3.Further, Equation 3.1 is a member of the family of Gibbs partition distributions (Pitman, 2006); this is also implied by the results of Gnedin and Pitman (2006) characterizing the extreme points of the space of Gibbs partition distributions. Results on Gibbs partitions are provided by Ho et al. (2007), Lijoi et al. (2008), Cerquetti (2011), Cerquetti (2013), Gnedin (2010), and Lijoi and Prünster (2010). However, the utility of this representation for inference in mixture models with a prior on the number of components does not seem to have been previously explored in the literature.Due to Theorem 3.1, we have the following equivalent representation of the model: 
(3.4) where ϕ = (ϕc : c ∈ 
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) is a tuple of t = |
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| parameters ϕc ∈ Θ, one for each block c ∈ 
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.This representation is particularly useful for doing inference, since one does not have to deal with component labels or empty components. (If component-specific inferences are desired, a method such as that provided by Papastamoulis and Iliopoulos (2010) may be useful.) The formulation of models starting from a partition distribution has been a fruitful approach, exemplified by the development of product partition models (Hartigan, 1990; Barry and Hartigan, 1992; Quintana and Iglesias, 2003; Dahl, 2009; Park and Dunson, 2010; Müller and Quintana, 2010; Müller et al., 2011) and the loss-based approach of Lau and Green (2007).
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	3.1 Basic properties
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	Proposition 3.2: The numbers Vn(t) (Equation 3.2) satisfy the recursion(3.10)for any 0 ≤ t ≤ n and γ > 0.This is easily seen by plugging the identityinto the expression for Vn+1(t + 1). In the case of γ = 1, Gnedin (2010) has discovered a beautiful example of a distribution on K for which both pK(k) and Vn(t) have closed-form expressions.In previous work on the MFM model, pK has often been chosen to be proportional to a Poisson distribution restricted to the positive integers or a subset thereof (Phillips and Smith, 1996; Stephens, 2000; Nobile and Fearnside, 2007), and Nobile (2005) has proposed a theoretical justification for this choice. Interestingly, the model has some nice mathematical properties if one instead chooses K − 1 to be given a Poisson distribution, that is, pK(k) = Poisson(k − 1|λ) for some λ > 0. For instance, it turns out that if pK(k) = Poisson(k − 1|λ) and γ = 1 then .However, to do inference, it is not necessary to choose pK to have any particular form—we just need to be able to compute p(
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), and in turn, we need to be able to compute Vn(t). To this end, note that k(t)/(γk)(n) ≤ kt/(γk)n, and thus the infinite series for Vn(t) (Equation 3.2) converges rapidly when t ≪ n. It always converges to a finite value when 1 ≤ t ≤ n; this is clear from the fact that p(
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) ∈ [0, 1]. This finiteness can also be seen directly from the series since kt/(γk)n ≤ 1/γn, and in fact, this shows that the series for Vn(t) converges at least as rapidly (up to a constant) as the series  converges to 1. Hence, for any reasonable choice of pK (i.e., not having an extraordinarily heavy tail), Vn(t) can easily be numerically approximated to a high level of precision. In practice, all of the required values of Vn(t) can be precomputed before MCMC sampling, and this takes a negligible amount of time relative to MCMC (see the supplementary material).
	Proposition 3.2


	3.3 Self-consistent marginals
	Proposition 3.3: If m < n then qm coincides with the marginal distribution on partitions of [m] induced by qn.In other words, drawing a sample from qn and removing elements m + 1, …, n from it yields a sample from qm. This can be seen directly from the model definition (Equation 2.1), since 
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 is the partition induced by the Z’s, and the distribution of Z1:m is the same when the model is defined with any n ≥ m. This property is sometimes referred to as consistency in distribution (Pitman, 2006).By Kolmogorov’s extension theorem (e.g., Durrett, 1996), it is well-known that this implies the existence of a unique probability distribution on partitions of the positive integers ℤ>0 = {1, 2, …} such that the marginal distribution on partitions of [n] is qn for all n ∈ {1, 2, …} (Pitman, 2006).
	Proposition 3.3



	4 Equivalent representations
	4.1 Pólya urn scheme / Restaurant process
	Theorem 4.1: The following process generates partitions 
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1, 
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2, … such that for any n ∈ {1, 2, …}, the probability mass function of 
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n is given by Equation 3.1.•Initialize with a single cluster consisting of element 1 alone: 
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1 = {{1}}.•For n = 2, 3, …, element n is placed in …an existing cluster c ∈ 
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n−1 with probability ∝ |c| + γa new cluster with probability where t = |
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n−1|.Clearly, this bears a close resemblance to the Chinese restaurant process (i.e., the Blackwell–MacQueen urn process), in which the nth element is placed in an existing cluster c with probability ∝ |c| or a new cluster with probability ∝ α (the concentration parameter) (Blackwell and MacQueen, 1973; Aldous, 1985).
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