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Abstract

We develop a general method to identify gene networks from pair-wise correlations between genes 

in a microarray data set and apply it to a public prostate cancer gene expression data from 69 

primary prostate tumors. We define the degree of a node as the number of genes significantly 

associated with the node and identify hub genes as those with the highest degree. The correlation 

network was pruned using transcription factor binding information in VisANT (http://

visant.bu.edu/) as a biological filter. The reliability of hub genes was determined using a strict 

permutation test. Separate networks for normal prostate samples, and prostate cancer samples from 

African Americans (AA) and European Americans (EA) were generated and compared. We found 

that the same hubs control disease progression in AA and EA networks. Combining AA and EA 

samples, we generated networks for low (<7) and high (≥7) Gleason grade tumors. A comparison 

of their major hubs with those of the network for normal samples identified two types of changes 

associated with disease: (i) Some hub genes increased their degree in the tumor network compared 

to their degree in the normal network, suggesting that these genes are associated with gain of 

regulatory control in cancer (e.g. possible turning on of oncogenes). (ii) Some hubs reduced their 

degree in the tumor network compared to their degree in the normal network, suggesting that these 

genes are associated with loss of regulatory control in cancer (e.g. possible loss of tumor 

suppressor genes). A striking result was that for both AA and EA tumor samples, STAT5a, 

CEBPB and EGR1 are major hubs that gain neighbors compared to the normal prostate network. 

Conversely, HIF-1α is a major hub that loses connections in the prostate cancer network compared 

to the normal prostate network. We also find that the degree of these hubs changes progressively 
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from normal to low grade to high grade disease, suggesting that these hubs are master regulators of 

prostate cancer and marks disease progression. STAT5a was identified as a central hub, with ~120 

neighbors in the prostate cancer network and only 81 neighbors in the normal prostate network. Of 

the 120 neighbors of STAT5a, 57 are known cancer related genes, known to be involved in 

functional pathways associated with tumorigenesis. Our method is general and can easily be 

extended to identify and study networks associated with any two phenotypes.
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1. Introduction

It is estimated that about 1.5 million new cases of cancer will be diagnosed in 2009 in the 

US alone of which about 766,000 will be in men and about 713,000 in women. 25% of all 

male cancers will be in the prostate (www.cancer.org). Improved diagnosis methods and 

effective surgical intervention followed by radiation and/or hormone treatment have reduced 

mortality to ~20%, however, prostate cancer is still second in cancer-related mortality in 

men, after lung/bronchial cancers. Prostate-specific antigen (PSA) is one of the few reliable 

early indicators for prostate cancer and almost half the diagnosed prostate cancers are 

identified due to biopsy following elevated PSA levels. PSA is also used, with significantly 

less success, to monitor progression and recurrence.

A significant concern relates to the fact that prostate cancer is often diagnosed on autopsy in 

young accident victims, suggesting that we might be over diagnosing/treating prostate 

cancer. This suggests that molecular identification of markers associated with aggressive 

tumors may suggest which tumors to treat and which to leave alone. Another concern is that 

once the tumor becomes refractory to hormone treatment, it is very difficult to treat and 

often becomes metastatic. Hence, a major clinical quandary at diagnosis is which tumors to 

treat and which to leave alone? In such a complex clinical setting, identifying the key 

markers which track disease progression becomes an urgent need.

Most clinical assays use single gene markers to track disease stage, grade and progression. 

Gene expression studies on the other hand, generate long lists of genes significantly 

associated with disease but have difficulty identifying biological mechanisms or key genes 

associated with disease progression which might reliably complement PSA and Gleason 

grade (Gleason grade is a measure used to assess disease progression on the basis of 

histology). The goal of our paper is to develop a simple approach which uses correlations 

between genes in expression datasets to identify the network associated with normal prostate 

and low and high grade disease, and to identify the key nodes associated with progression. 

To reduce the number of false positive hubs, we apply the transcription factor binding 

network from VisANT (http://visant.bu.edu) as a filter.

There are two popular approaches to building networks:
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i. knowledge-based networks: These are networks built from mining the literature. 

Some examples are protein-protein interaction (PPI) networks [21], transcription 

factor networks [33], pathways databases (KEGG, BIOCARTA, etc.)

ii. high dimensional data-driven networks: these are networks built from molecular 

or genetic data These methods use correlation [3, 20, 16, 25]. Li and Horvath 

[17] proposed a robust measure called Topological Overlap measure (TOM) for 

identifying modules associated with disease in microarray data. Yeung and 

colleagues [34] built gene networks by reverse engineering methods from 

microarray data and then used these networks as filters for predicting outcome in 

prostate cancer.

Knowledge based networks are generally reliable, but they tend not to suggest novel targets 

or mechanisms because of their bias towards “popular” genes/proteins. Data-driven 

networks use an unbiased approach but tend to be noisy and generate many false positives. A 

possible improved approach to network analysis involves combining knowledge-based and 

data-based networks (see [4], [31] for some examples of this approach). In this paper we 

propose a novel mixed approach which combines knowledge-based and data-driven 

networks to find a small number of reliable and biologically relevant markers of progression 

in high throughput data.

1.1. Methods

1.2. Preprocessing of Microarray data

We used data from previously published molecular profiling of prostate cancer by Ambs et 
al. [2, 32]. The data consisted of expression levels for 69 prostate cancer samples, 18 

adjacent normal samples and 2 pooled normal prostate samples on Affymetrix U133A_2 

chips. The 69 prostate cancer samples consisted of 33 African American (AA) and 36 

European American (EA) patients. CEL files were downloaded from GEO (GSE6569) and 

RMA normalized [15]. Probe annotations were updated using the CDF file provided from 

MBNI version 12, Ensembl gene database [8, 24]. The MBNI algorithm re-annotates the 

Affymetrix probes to the current build of the human genome and retains only those probes 

which map to unique regions. Finally FARMS I/NI filtering [26] was performed to remove 

uninformative and noisy probes.

1.3. Co-regulation of genes

Correlation (co-regulation) between pairs of genes was measured using Spearman Rank 

Correlation Coefficient. We chose this measure because it is more insensitive to noise in the 

data than others (e.g. Pearson correlation coefficient). To assess the significance of the 

correlation, i.e., probability that the correlation is not by chance, we created empirical null 

distributions by randomly permuting the samples for a given pair of genes. These 

permutation tests were run 10,000 times for every pair of genes. The correlation between 

each pair of genes was considered significant if the p-value of finding the same or higher 

correlation in the empirical null distribution were < 0.1, i.e., for each gene-gene pair, less 

than 10% of the correlations in randomized permutation tests are larger than the actual 

correlation. Using such an empirical p-value to assess the significance of the correlation is 
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better than using a threshold on the correlations, because it allows every gene pair to have its 

own significance level based on the noise inherent to that pair. It is also the preferred way to 

compare different datasets.

1.4. Network analysis

The correlations are input into a matrix C, called the “connectivity matrix” of size Ng x Ng 

where Ng = number of genes. The entry Cij was set to 1 if genes i, j interact (using a 

criterion defined below) and 0 otherwise. In our definition, two genes were connected (and 

the corresponding entry in C was 1) if they were significantly co-regulated at p-value < 0.1 

relative to their data-inferred null distribution. Note that we do not distinguish between 

positive and negative correlations or between association and actual (direct physical) 

connections. To distinguish between these, it is necessary to use additional (biological or 

other) information as a filter. In this paper we used the transcription factor networks [12] as 

implemented in VisANT (http://visant.bu.edu; [13]) for this purpose. The transcription factor 

network was overlaid on the co-regulation network obtained from gene expression data, and 

only the intersection was retained. We identified hubs as genes with degree > 15 in the 

resulting networks.

1.5. Stability analysis by bootstrapping

Bootstrap analysis was used to quantify the stability of hubs under sample perturbation. The 

network analysis was repeated 100 times for subsets of 80% of the samples, and the degree 

and connections of the hubs were determined for each subset. This analysis also provided 

the mean and 95% confidence interval for the degree of each hub, which provided a measure 

of significance for changes in the hub degree when comparing between two phenotypes (e.g. 

normal vs. disease).

2. Results

We downloaded gene-expression data from [2], filtered probes using MBNI probe 

annotations, normalized the data using RMA, and filtered the informative genes using 

FARMS I/NI. MBNI retains only those probes which map to a unique region in the human 

genome. This reduced the reduced the number of probes from ~ 22,000 to 11,000. FARMS 

I/NI filtering for informative probes further reduced this number to 5,961 probes. Separate 

networks were built using the genes corresponding to this reduced set of probes for African 

American prostate cancer (AA) samples, and European American prostate cancer (EA) 

samples. Independently, networks were also built from normal prostate, low and high 

Gleason grade tumor datasets. The major hubs in each of these phenotypes were compared 

to the others to understand their role in disease networks.

3.1 Hubs in AA & EA prostate cancer networks are similar

The detailed networks for African American and European American prostate cancer 

samples are shown in Supplementary Figure 1. The reliable hubs in the AA & EA networks 

have similar degrees (Figure 1a) suggesting that at least to the accuracy of this analysis, race 

does not distinguish disease progression in AA or EA patients. This result was validated by 

principal component analysis on the combined dataset (Figure 1b). We see that the AA 
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(blue) & EA (green) samples do not form separate clusters when projected onto their first 

two principle components in Figure 1b. Thus, to the accuracy of this dataset, the network 

structure and topology for both normal prostate and prostate cancer does not depend on 

ethnicity. Consequently, in the subsequent analysis, we combine the AA & EA samples 

within each phenotype when comparing networks associated with progression from normal 

prostate to low and high grade disease.

3.2 Prostate cancer and normal networks show similar genes and structure

The networks for the 18 normal prostate (adjacent tissue) samples, 18 low Gleason grade 

(<7) samples and 51 high Gleason grade (≥ 7) samples are shown in Supplementary Figures 

2a, b and c respectively. Even though these networks were built independently, they show a 

very similar overall structure in terms of the genes involved in the network and the relative 

importance of the hubs. This suggests that progression to prostate cancer does not require a 

complete change in the topology of the normal prostate network. Rather, prostate cancer 

initiation and progression is measured by which how many genes are co-regulated by the key 

hubs active in normal prostate tissue.

3.3 STAT5a is the largest hub in prostate cancer networks

The major result of our analysis is the strong identification of STAT5a as the largest hub 

gene altered in disease and disease progression (Figure 2). STAT5a is a transcription factor 

on chromosome 17 involved in the JAK/STAT pathway and known to be strongly associated 

with the initiation and progression of prostate cancer [6, 27, 29]. The degree of STAT5a in 

the normal, low grade and high grade prostate cancer networks is 81, 116 and 122 

respectively. It has by far the highest degree (number of neighbors) compared to all other 

hubs in the prostate networks. Of the 120 neighbors of STAT5a in prostate cancer networks, 

57 are known cancer related genes, involved in known functional pathways associated to 

tumorigenesis. Interestingly, the levels of STAT5a can distinguish normal samples from low 

grade tumors (p-value = 0.036) and high grade tumors (p-value = 0.016). However, although 

its connectivity changes significantly from low to high grade, STAT5a expression is not 

significantly different between high and low grade tumors. This suggests that the recruitment 

of additional components to the STAT5a node, once the tumor is established, does not 

depend on the level of STAT5a; i.e. prostate cancer requires changes in the level of STAT5a 

to cause the changes in its network which are necessary tumor establishment but loses 

addiction to STAT5a level after the tumor is established. This may mean that any therapy 

based on STAT5a antagonists may be most effective mostly in low grade disease.

3.4 Hubs are associated with progression of prostate cancer

Figure 2 compares the degrees for the significant and highly connected hubs (degree > 15) in 

the normal prostate and low and high Gleason grade tumor networks. The genes at the center 

of these hubs are STAT5a, CEBPB, EGR1, NFIC, STAT3, JUN and HIF1a. There seem to be 

two types of disease associated changes in hubs: (i) Some hubs (e.g. STAT5a, CEBPB and 

EGR1) increase their degree in tumor samples compared to normal samples, suggesting their 

association with gain of regulatory control in cancer (possible turning on of oncogenes or 

other tumorigenic processes). (ii) Some other hubs (we identify HIF-1α as one of these) 

decrease their degree in tumor samples compared to normal samples, suggesting their 
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association with loss of regulatory control in cancer (possible loss of tumor suppressor genes 

or turning off of tumor suppressive processes). Significantly, the degree of these hubs 

changes progressively from normal to low grade to high grade disease, suggesting their 

strong association with disease initiation and progression and identifying them genes as 

potential targets for therapeutic intervention.

3.5 The STAT5a hub gains neighbors in prostate cancer

The STAT5a hub gained 38 connections from normal to low grade tumors (Table 2a). These 

include genes known to be involved in many cancer related pathways: MAPK signaling 

(AKT1, CACNA2D2, FGFR2, DUSP8), ERBB signaling (AKT1, CAMK2B), mTOR 

signaling (AKT1), Wnt signaling (CAMK2B, FZD10), focal adhesion (AKT1, IGF1R), 

autophagy (ATG4B), etc. STAT5a gained another 21 connections when transitioning from 

low grade to high grade tumors (Table 2b), including genes in MAPK signaling 

(CACNA1H, FGFR3), apoptosis and toll-like receptor signaling (IRAK1), TGFβ signaling 

(INHBB), etc. Of these neighbors gained AKT1, FGFR2, FGFR3 are known oncogenes, 

while IGF2 is a known tumor suppressor gene. In Table 2 we also provide the p-value for 

differential expression pair-wise between normal, low grade and high grade tumors. Note 

that not all the genes are differentially expressed between normal samples and low grade 

tumors, suggesting that the complexity of cancer progression is not captured by expression 

analysis alone.

3. Discussion

Cancers are diseases of dysregulated pathways. Disease initiation is triggered by multiple 

changes in the wiring of the homeostatic network of normal tissue and disease progression 

caused by further changes which allow the cancer to evade regulatory pathways and drugs, 

spread outside its tissue of origin and establish in other organs. In spite of this well known 

model for cancer and the knowledge that genes do not act independently, most laboratory 

studies as well as studies of high throughput cancer data try to identify individual genes to 

understand disease initiation, progression and metastasis. In this paper we develop a 

complementary approach to infer the network of co-regulated genes which is dysregulated 

when normal tissue transforms to low grade cancer and when the low grade cancer 

progresses to high grade disease.

By using co-regulation of genes in microarray data to define a preliminary network, 

reducing the noise using strict statistical tests and retaining only biologically significant 

hubs using transcription factor information, our method successfully identified robust hubs 

in the gene networks of normal prostate and low/high grade prostate cancer. We consider our 

method as complementary and orthogonal to single gene analysis or analysis from pathways 

identified based on aggregates of single gene based results. The method we propose is 

general and can be used to analyze in a host of other contexts (such as protein-protein 

interaction networks, etc). It can also be extended to different data modalities (copy number 

variation data, single nucleotide polymorphisms, microRNA expression etc.). With 

additional data and other data modalities it should be able to address more complex 

biological questions. Changing the measure we use (co-regulation of genes) to identify 
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genes with high centrality measure (genes with highest number of shortest paths going 

through it) would suggest how the pathway changes might affect tissue function. It is also 

possible to define measures to identify modules or sub-networks characteristic of disease or 

progression. Other extensions involve comparing groups of samples to identify similarities 

and differences. Cell line and animal studies and data are often used to model human 

tumors. Our method should be useful on such data to quantify the similarities and 

differences between the phenotypes in these studies to generate hypotheses for further 

testing.

To assess the significance of co-regulation identified we used the p-value of an empirically 

derived null distribution instead of using a threshold on the correlation coefficient. The 

advantages of this are: (a) threshold selection is often arbitrary and is imposed globally for 

all genes pairs, while in fact each gene should have its own threshold (b) selecting p-value 

threshold in this way is independent of the sample size (c) comparing p-values across dataset 

is now meaningful.

Using only data driven networks, we cannot distinguish between correlations which are just 

associations from those that are likely to be functionally relevant connections. When we 

used only correlation networks, we identified FGF2 as a major hub (with ~1000 

connections). On further analysis we found that the reason for this is probably because FGF2 

is upstream of the FGF signaling pathways in prostate cancer, and the correlations that we 

observe in the data are mainly associations. To distinguish between associations and actual 

connections we added the transcription factor network as a biological filter. This increased 

both the robustness of the underlying network and also identified potentially relevant 

(possibly mechanistic) connections.

Our analysis identified STAT5a as a major hub in the disease initiation and progression 

network of prostate cancer. Signal transducer and activator of transcription 5a and 5b 

(STAT5a/b) belong to the seven-member STAT gene family of transcription factors [30, 14]. 

STAT5a and STAT5b, encoded by two separated genes at chromosome 17q21, are latent 

cytoplasmic proteins that act as both cytoplasmic signaling proteins and nuclear 

transcription factors. Activations of STAT5a/b are mediated by phosphorylation of a 

conserved tyrosine residue (Y694 for STAT5a and Y699 for STAT5b) in the carboxy-

terminal domain by a tyrosine kinase typically of the JAK protein family [22, 23]. The 

phosphorylated STAT5a and STAT5b dimerize, translocate into the nucleus and bind to 

specific STAT5 response elements of target gene promoters [9].

STAT5 activation is known to be strongly associated with high histological grade of prostate 

cancer [18, 19], and STAT5 activation in primary prostate cancer predicts development of 

castration-resistant recurrent prostate cancer [19]. STAT5 critically regulates growth and 

viability of human prostate cancer cells in culture and prostate cancer xenograft tumor 

growth in nude mice [1, 5, 7, 10]. Specifically, adenoviral expression of a dominant-negative 

(DN) mutant of STAT5, antisense oligonucleotide or siRNA inhibition of STAT5 all induce 

massive and rapid apoptotic death of human prostate cancer cells in culture [1]. In addition, 

inhibition of STAT5 blocked human prostate cancer xenograft tumor growth (both 

subcutaneous and orthotopic) in nude mice and down-regulated BclXL and Cyclin-D1 
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protein levels in prostate cancer cells [7]. Nuclear STAT5a/b is over-expressed in castration-

resistant clinical prostate cancers [28, 30], and STAT5a/b transcriptionally synergizes with 

androgen receptor [28]. Given that STAT5a/b and AR are both anti-apoptotic and growth-

promoting transcription factors in prostate cancer cells and expressed at high levels in 

castration-resistant prostate cancers, induction of AR transcriptional activity by STAT5a/b in 

the presence of low levels of androgens may contribute to castration-resistant growth of 

prostate cancer. AR, in turn, by promoting transcriptional activity of STAT5a/b, may 

critically support viability of prostate cancer cells in growth conditions where prostate 

cancer cells would normally undergo apoptosis. In summary, there is accumulating evidence 

supporting a key role for STAT5 in prostate cancer progression.

We also find strong evidence for cross-talk between the STAT5a and STAT3 signaling 

pathways. It is known that STAT5a is required for the survival of prostate cells, while STAT3 

is involved in metastasis [11]. Our data supports this claim – the expression of STAT5a is 

high in normal adjacent prostate tissue (which can be considered to be premalignant 

samples). However, once the tumor progresses, STAT3 expression is high (involved in 

metastasis) showing that STAT5a and STAT3 play key but complementary roles in tumor 

initiation and progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The degree of key hubs in African American (AA), European American (EA) and 
normal prostate networks
(a) The degree of the hubs for AA (blue) & EA (red) networks are not significantly different. 

This means that that race is not a confounding issue in tumor progression. (b) PCA plot of 

AA and EA prostate cancer samples. AA & EA samples cluster together in the projection of 

their first two PCs.
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Figure 2. Hubs associated with initiation and progression of prostate cancer
Key gene hubs were identified for normal prostate (green), low (< 7) Gleason grade tumors 

(orange) and high (> 7) Gleason grade tumors. Hubs define highly co-regulated genes which 

had more than 15 other genes significantly associated with them determined by a 

combination of expression and transcription factor data. The plot shows the mean degree 

(number of co-regulated genes) of highly connected hubs. The error bars are 95% 

confidence intervals using sample bootstrap experiments. Note that the degree of some of the 

hubs is monotone with respect to progression of disease, i.e. the degree in low grade tumors 

is between the degree in high grade tumors and normal prostate. STAT5a, CEBPB, EGR1 

are “gain hubs”, where the tumor progressively gains connections compared to normal 

prostate. HIF-1a is a “loss hub”, where the tumor progressively loses connections compared 

to the normal prostate.
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Figure 3. STAT5a hub in prostate cancer
(a) Venn diagram showing the number of genes connected to STAT5A in normal, low grade 

and high grade tumors and their intersections. (b) Network connections gained by STAT5a in 

transformation from normal prostate and low or high grade tumors. (c) Network connections 

gained by STAT5a in progression from low grade to high grade prostate cancer.
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Table 1
Differential expression of hubs identified in regulatory networks

Significance level of hubs associated with low and high grade tumors using single-gene analysis only. 

Student’s t-test p-values for differentiating pair-wise between normal prostate, low grade tumor and high grade 

tumor are shown with those significant at p-value <0.05 shown in red (these hubs can be identified by single 

link analysis using the t-test). However, the rest of the hubs (those with poor p-values) can only be identified 

by the co-regulation analysis we present here. They are not identifiable using single gene analysis. The 

functional pathways associated with these genes are presented in Supplementary Table 1.

Gene Name Type of hub

Normal vs. Low 
grade tumors

Normal vs. High 
grade tumors

Low vs. High 
grade tumors

t-test p-value

STAT5a
signal transducer and activator of transcription 5A Gain 0.036 0.016 0.819

CEBPB CCAAT/enhancer binding protein (C/EBP), beta Gain 0.570 0.041 0.237

EGR1
early growth response 1 Gain 0.601 0.362 0.142

NFIC
nuclear factor I/C (CCAAT-binding transcription factor) 0.897 0.820 0.776

STAT3
signal transducer and activator of transcription 3 0.001 0.005 0.002

JUN
jun oncogene 0.173 0.070 0.707

HIF-1a
hypoxia inducible factor 1, alpha subunit Loss 0.026 0.050 0.464
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Table 2
Gene connections gained by STAT5a from (a) normal prostate to low grade tumor and (b) 
in low grade to high grade progression

The p-values shown are from using single gene analysis and the Student’s t-test, with significant p-values (< 

0.05) marked in red. Note again that single gene analysis is unable to identify all these associations (some of 

the p-values are not good). However, the co-regulation analysis and transcription factor filter used in our 

method readily identified all these links. The functional pathways associated with these genes are shown in 

Supplementary Table 2.

Table 2a

Gene name

Normal vs. low 
grade tumor

Normal vs. high 
grade tumor

Low vs. high 
grade tumor

Student’s t-test p-value

AKT1
v-akt murine thymoma viral oncogene homolog 1

0.001 0.001 0.770

RAP1GAP
RAP1 GTPase activating protein

0.001 0.000 0.251

APBA2BP
N-terminal EF-hand calcium binding protein 3

0.001 0.001 0.626

ARID1A
AT rich interactive domain 1A (SWI-like)

0.001 0.001 0.047

CACNA2D2
calcium channel, voltage-dependent, alpha 2/delta subunit 2

0.002 0.022 0.143

ATG4B
ATG4 autophagy related 4 homolog B (S. cerevisiae)

0.002 0.001 0.638

SPINT1
serine peptidase inhibitor, Kunitz type 1

0.002 0.001 0.465

GMPPA
GDP-mannose pyrophosphorylase A

0.003 0.009 0.169

CAMK2B
calcium/calmodulin-dependent protein kinase II beta

0.003 0.000 0.999

AMZ2
archaelysin family metallopeptidase 2

0.003 0.002 0.516

TTLL12
tubulin tyrosine ligase-like family, member 12

0.004 0.000 0.195

MSH5
mutS homolog 5 (E. coli)

0.005 0.001 0.169

FGFR2
fibroblast growth factor receptor 2

0.008 0.114 0.161

REPIN1
replication initiator 1

0.013 0.002 0.047

LSS
lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)

0.014 0.159 0.023

TSPAN4
tetraspanin 4

0.016 0.038 0.266

KLF10
Kruppel-like factor 10

0.020 0.011 0.371

PYCR1
sirtuin (silent mating type information regulation 2 homolog) 7 (S. cerevisiae)

0.023 0.005 0.586
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Table 2a

Gene name

Normal vs. low 
grade tumor

Normal vs. high 
grade tumor

Low vs. high 
grade tumor

Student’s t-test p-value

CTSH
cathepsin H

0.039 0.007 0.526

MGLL
monoglyceride lipase

0.050 0.208 0.112

CENTG2
ArfGAP with GTPase domain, ankyrin repeat and PH domain 1

0.051 0.007 0.175

TEAD3
TEA domain family member 3

0.052 0.135 0.148

IGF1R
insulin-like growth factor 1 receptor

0.053 0.050 0.823

MYL9
myosin, light chain 9, regulatory

0.065 0.542 0.075

GABRE
gamma-aminobutyric acid (GABA) A receptor, epsilon

0.073 0.061 0.918

SIM2
single-minded homolog 2 (Drosophila)

0.083 0.001 0.186

NRP1
neuropilin 1

0.096 0.189 0.656

PAQR4
progestin and adipoQ receptor family member IV

0.211 0.944 0.052

PER2
period homolog 2 (Drosophila)

0.250 0.532 0.525

ECGF1
sphingosine-1-phosphate receptor 1

0.272 0.086 0.710

FZD10
frizzled homolog 10 (Drosophila)

0.310 0.049 0.404

LMNA
lamin A/C

0.406 0.085 0.427

PAOX
polyamine oxidase (exo-N4-amino)

0.422 0.470 0.858

RASSF7
Ras association (RalGDS/AF-6) domain family (N-terminal) member 7

0.439 0.031 0.065

SECTM1secreted and transmembrane 1 0.513 0.030 0.068

DUSP8
dual specificity phosphatase 8

0.666 0.542 0.966

FOSL2
FOS-like antigen 2

0.776 0.809 0.605

CRYBA2
crystallin, beta A2

0.787 0.934 0.663

Table 2b

Gene name

Normal vs. low 
grade tumor

Normal vs. high 
grade tumor

Low vs. high 
grade tumor

Student’s t-test p-value

EFS
embryonal Fyn-associated substrate

0.009 0.147 0.000

NBL1
neuroblastoma, suppression of tumorigenicity 1

0.026 0.179 0.000
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Table 2b

Gene name

Normal vs. low 
grade tumor

Normal vs. high 
grade tumor

Low vs. high 
grade tumor

Student’s t-test p-value

GPC1
glypican 1

0.028 0.868 0.003

SCRIB scribbled homolog (Drosophila) 0.035 0.007 0.005

EML3
echinoderm microtubule associated protein like 3

0.001 0.000 0.025

IRAK1
interleukin-1 receptor-associated kinase 1

0.392 0.049 0.100

SS18L1
synovial sarcoma translocation gene on chromosome 18-like 1

0.010 0.003 0.130

DLK2
delta-like 2 homolog (Drosophila)

0.840 0.179 0.171

BCOR
BCL6 co-repressor

0.089 0.018 0.209

C20orf149
pancreatic progenitor cell differentiation and proliferation factor homolog 
(zebrafish)

0.074 0.173 0.223

IGF2
insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough 
transcript

0.076 0.317 0.247

CACNA1H
calcium channel, voltage-dependent, T type, alpha 1H subunit

0.037 0.172 0.249

IRX5
iroquois homeobox 5

0.076 0.220 0.300

MDK
Mesomelic dysplasia, Kantaputra type

0.128 0.216 0.465

SALL1
sal-like 1 (Drosophila)

0.697 0.623 0.511

FGFR3
fibroblast growth factor receptor 3

0.047 0.103 0.548

INHBB
inhibin, beta B

0.938 0.588 0.585

BCL11A
B-cell CLL/lymphoma 11A (zinc finger protein)

0.791 0.618 0.796

GATA3
GATA binding protein 3

0.617 0.468 0.801

MFAP2
microfibrillar-associated protein 2

0.007 0.002 0.909

SH3BP4
SH3-domain binding protein 4

0.167 0.165 0.989
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