Skip to main content
. 2018 Jul 6;8:10257. doi: 10.1038/s41598-018-28592-7

Figure 1.

Figure 1

Experimental design. (A) Surface reconstruction of an adult human bony labyrinth based on CT images illustrating the oval window (OW) where sound enters the inner ear, round window (RW), lateral canal (LC), posterior canal (PC), superior canal (SC) and location of dehiscence (D)59. (i) Navier-Stokes simulation with simplified toroidal canal geometry where sinusoidal pressure Po is applied at the outer tube (black arrows) and pressure is relieved at the dehiscence (D). The bony labyrinth was modeled as a perilymph-filled rigid tube (black outlines), and the membranous labyrinth was modeled as an endolymph-filled elastic tube. Color bar indicates the displacement magnitude of the membranous duct (white is zero, black is maximum). The maximum displacement occurs at the location of the dehiscence (D) and waves propagate away from the dehiscence towards the oval window stimulus site. (B) Membranous labyrinth of the experimental animal model (oyster toadfish), showing the location of the simulated dehiscence (SD) in the lateral canal (LC) and location of single-unit afferent neuron recordings in the LC nerve branch (E) (Adapted in part from Iversen et al.14 with the permission of the Acoustical Society of America). (ii) The inverse of the inter-spike-interval, Spk-s−1, was recorded. (iii) Close-up of the lateral canal ampulla at the location where velocity fields were measured using PIV.