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Deep Phenotyping on Electronic Health Records
Facilitates Genetic Diagnosis by Clinical Exomes
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Lulin Huang,2,3 Liwei Wang,4 Feichen Shen,4 Hongfang Liu,4 Karla Mehl,5 Emily E. Groopman,5

Maddalena Marasa,5 Krzysztof Kiryluk,5 Ali G. Gharavi,5 Wendy K. Chung,6 George Hripcsak,1

Carol Friedman,1 Chunhua Weng,1,10,* and Kai Wang1,2,3,7,8,10,*

Integration of detailed phenotype information with genetic data is well established to facilitate accurate diagnosis of hereditary disor-

ders. As a rich source of phenotype information, electronic health records (EHRs) promise to empower diagnostic variant interpretation.

However, how to accurately and efficiently extract phenotypes fromheterogeneous EHR narratives remains a challenge. Here, we present

EHR-Phenolyzer, a high-throughput EHR framework for extracting and analyzing phenotypes. EHR-Phenolyzer extracts and normalizes

Human Phenotype Ontology (HPO) concepts from EHR narratives and then prioritizes genes with causal variants on the basis of the

HPO-coded phenotype manifestations. We assessed EHR-Phenolyzer on 28 pediatric individuals with confirmed diagnoses of mono-

genic diseases and found that the genes with causal variants were ranked among the top 100 genes selected by EHR-Phenolyzer for

16/28 individuals (p< 2.23 10�16), supporting the value of phenotype-driven gene prioritization in diagnostic sequence interpretation.

To assess the generalizability, we replicated this finding on an independent EHR dataset of ten individuals with a positive diagnosis from

a different institution. We then assessed the broader utility by examining two additional EHR datasets, including 31 individuals who

were suspected of having a Mendelian disease and underwent different types of genetic testing and 20 individuals with positive diagno-

ses of specificMendelian etiologies of chronic kidney disease from exome sequencing. Finally, through several retrospective case studies,

we demonstrated how combined analyses of genotype data and deep phenotype data from EHRs can expedite genetic diagnoses. In sum-

mary, EHR-Phenolyzer leverages EHR narratives to automate phenotype-driven analysis of clinical exomes or genomes, facilitating the

broader implementation of genomic medicine.
Introduction

Traditionally, thediagnosticworkupof individualswith sus-

pected monogenic disease has relied on sequential testing

using abatteryof genetic andbiochemical studies, incurring

substantial timeandfinancial costswhile thecausal etiology

remains elusive.1,2 In addition, the diagnostic uncertainty,

ambiguity regarding appropriate clinical management,

and repeated medical evaluations during this ‘‘diagnostic

odyssey’’ pose a weighty emotional and psychosocial

burden on both affected individuals and their families.3,4

Since theywere first reported to resolve a casewith an un-

diagnosed genetic disease,5 next-generation sequencing

(NGS) methods, including whole-exome sequencing

(WES) and whole-genome sequencing (WGS), have been

quickly established as a scalable method for efficiently

generating a molecular diagnosis.6 The diagnostic yield of

WES ranges from 25% to 51%2,4,7–10 and has been shown

to be cost effectivewhen used as a first-line test.2,4,6,11 How-

ever, the challenge of interpreting the vast amount of

sequence data generated by genome-wide testing still hin-

ders the broad clinical utilization of this technology.
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The use of phenotype information has helped empower

the discovery of genes with causal variants and enrich our

understanding of disease pathogenesis.12 Similarly, deep

phenotyping can improve the efficiency of clinical WES

analysis and increase diagnostic yield. Computational

phenotype-based gene-prioritization tools, including Phe-

vor,13 Phen-Gen,14 eXtasy,15 PhenIX,16 Exomiser,17 Phe-

nomizer,18 and Phenolyzer,19 have been demonstrated to

aid NGS analysis pipelines20–22 and improve diagnostic

yields over those of undirected variant analysis alone.23

All these tools require manual entry of an individual’s clin-

ical signs and symptoms (i.e., his or her phenotype) as

input to identify a prioritized list of candidate genes. How-

ever, oftentimes only limited phenotype information

about an individual is provided on a test requisition form.

All these gene-prioritization systems leverage the Hu-

man Phenotype Ontology (HPO), a powerful, robust

ontology that enables computable representations of

phenotype concepts with terms sourced from clinically

oriented medical literature and gene-disease databases,

such as Online Mendelian Inheritance in Man

(OMIM).24,25 Additional efforts such as the Monarch
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Initiative26 and PhenomeCentral27 use high-quality

crowd-sourced phenotype information to further enrich

and refine computational abilities embedded in HPO.28

Regarding this latter aspect, HPO serves as both a standard-

ized terminology and a phenotype-genotype knowledge

database.

Electronic health records (EHRs) are widely adopted and

have the potential to serve as a rich, integrated source of

phenotype information.Automatic extractionand recogni-

tion of phenotypes from EHR narratives can accelerate the

adoption and utilization of phenotype-driven efforts to

improve genomic diagnostics and gene discovery. Such

automation is especiallyneeded in thecontextof diagnostic

sequencing, given that most clinical information is

submitted as a copy of the free-text clinical evaluation

note or as a short, relatively nonspecific clinical description

(such as ‘‘congenital heart disease’’). Moreover, the current

proprietary nature of NGS informatics pipelines imple-

mented in various laboratories impedes standardized

processes for variant interpretation. This deficiency can be

partially addressed via direct, systematic integration of

phenotypes extracted from EHRs, therefore improving

information synthesis at the time of interpretation.

As a first step toward these goals, we present EHR-Pheno-

lyzer, an automated EHR-narrative-based phenotyping

pipeline, to enable phenotype-based gene prioritization.

Notably, the existing tools for phenotype-driven genetic

analysis have been largely validated with either simulated

phenotype data or WES data (e.g., altered VCF files).22,29,30

In this study, our primary goal was to demonstrate the ef-

ficacy of EHR-derived deep phenotyping information in

facilitating genetic diagnosis from WES data. Our second-

ary goal was to perform a comparative analysis of well-

tested natural language processing (NLP) systems in

parsing EHR narratives for phenotype extraction and

normalization and to evaluate the ability of EHR-Pheno-

lyzer to analyze real-world EHR data and prioritize candi-

date genes from WES of positively diagnosed individuals.
Material and Methods

In the following sections, we will introduce the four independent

cohorts used in this study, the process of phenotype extraction by

human experts or by NLP, the methods of performance evalua-

tion, and information on accessing the software and data.
Individuals from Four Cohorts
This study was conducted in accordance with the Declaration of

Helsinki and the national ethical guidelines and was approved

by the institutional review boards of Columbia University and

the Mayo Clinic. In total, we collected 28, 10, 46, and 20 affected

individuals across cohorts 1, 2, 3, and 4, respectively, from two in-

stitutes. For cohorts 1 and 4, written informed consent was ob-

tained from all individuals. For cohorts 2 (Mayo Clinic) and 3,

which involved retrospective re-analysis of EHRs without further

intervention, a waiver of consent in the study protocol was

approved by the corresponding institutional review boards. For
The
the several case studies with exome sequencing data, written

informed consent was obtained. Our primary cohort at Columbia

University consisted of 28 affected individuals, including 16males

and 12 females, with a mean age of 8.2 years (ranging from 0.2 to

53). Diagnostic testing for primary diagnoses was performed by

various commercial and academic labs, including GeneDx, Ambry

Genetics, Invitae, and Columbia University Medical Center’s

Personalized Genomic Medicine Laboratory (Table 1). The clinical

records of these affected individuals were accessed and manually

extracted as needed from our EHRs, Clinical Records On-Line

Web Network (powered by Allscripts). We then manually de-iden-

tified extracted notes to remove all potentially identifiable infor-

mation before using them in our study.

To assess the cross-site validity of our automated pipeline for ex-

tracting phenotype concepts, we applied identical methods by us-

ing the EHR-derived records from the Mayo Clinic. This was to

ensure that our pipeline was not biased toward the lexical similar-

ities attributed to the note-writing styles of individuals and the

practice settings of a given institution. In addition to showing

the external validity of the pipeline, we aimed to evaluate whether

the resultant pipeline could be deployed as created across institu-

tions. Thus, we evaluated ten affected individuals with confirmed

WES results (each with a positive finding) from theMayo Clinic by

using the same pipeline without modifications.

To further validate the clinical utility of the pipeline and to

assess the real-world use of clinical genetics notes, we analyzed

an independent set of clinical notes on 46 pediatric individuals

seen by a genetic counselor at hospitals affiliated with Columbia

University. Unlike the primary cohort, which included only indi-

viduals with positive (diagnostic) results from exome sequencing,

this set of clinical notes together with the corresponding molecu-

lar pathology reports could be informative on the real-world use of

clinical phenotype information in the context of various genetic

testing techniques for a typical hospital in outpatient settings.

For this set of 46 individuals, only 31 underwent genetic diag-

nostic testing, and 11 of this smaller set obtained positive results

via various genetic assays.

Additionally, to evaluate whether our computational methods

can facilitate the detection of specific genetic subtypes for a broad,

clinically heterogeneous category of disease, we analyzed a fourth

set of 20 individuals with chronic kidney disease (CKD). These in-

dividuals were drawn from an exome sequencing study of adults

with CKD of unknown cause or familial nephropathy or hyperten-

sion31 and represented those with diagnostic exome sequencing

results for various monogenic etiologies of CKD.
Extraction of Phenotype Concepts from EHRs by Human

Experts
In the current study, we used two different procedures to compile

phenotype concepts from EHRs by human experts. These two pro-

cedures were (1) heuristic chart review and (2) targeted review of

genetics notes. In brief, trained clinical experts extracted HPO con-

cepts from two EHR data sources; the detailed procedures are

described as follows.

Initially, we requested a domain expert to heuristically extract

HPO concepts with the assistance of an HPO browser by using

routine review of clinical charts. The expert could access any clin-

ical note, lab and imaging results, and reports to help perform this

task and noted the document source for each identified concept

during this process. A second domain expert reviewed these con-

cepts to come up with an agreed set of concepts selected for
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Table 1. List of Affected Individuals at the Primary Site and Number of Phenotype Terms Extracted by Different Methods

Individual Sex
Age
(Years) Phenotype Examples

Primary Genetic
Finding (Gene)

No. of Phenotype Terms

Expert
All
Note

Expert
Single
Note

MetaMap
Single
Note

MedLEE
Single
Note

1 female 10–17 seizures, developmental
regression

SNAP25 (MIM: 600322) 10 22 19 34

2 female 10–17 skeletal dysplasia, short statue COL10A1 (MIM: 120110) 12 16 18 26

3 female 10–17 myopia, hypocalcemia ARID1B (MIM: 614556) 14 8 22 22

4 female 10–17 tremor, atrial septal defect SCN1A (MIM: 182389) 4 5 9 11

5 male 10–17 epilepsy, microcephaly CDKL5 (MIM: 300203) 9 7 17 17

6 male 4–9 strabismus, cognitive impairment MYH10 (MIM: 160776) 14 16 28 23

7 male 18þ atrial cardiomyopathy, dilated
cardiomyopathy

LMNA (MIM: 150330) 3 4 9 11

8 female 4–9 absent speech, encephalopathy ALG13 (MIM: 300776) 7 4 10 9

9 female 4–9 open mouth, protruding tongue EHMT1 (MIM: 607001) 10 15 15 17

10 male 10–17 hypertonia, global developmental
delay

SLC1A4 (MIM: 600229) 3 4 7 8

11 male 4–9 overgrowth, hearing impairment MAN2B1 (MIM: 609458) 7 12 15 16

12 male 18þ visual loss, short stature MYO7A (MIM: 276903) 3 4 17 13

13 female 10–17 lower-limb asymmetry, difficulty
running

TCF4 (MIM: 602272) 12 15 37 36

14 male 0–3 heart murmur, poor weight gain ARID1B (MIM: 614556) 7 10 25 24

15 male 0–3 myopia, mild microcephaly EHMT1 (MIM: 607001) 6 8 19 24

16 male 0–3 large head, noisy breathing PTEN (MIM: 601728) 10 15 23 25

17 male 0–3 clubbing of toes, depressed nasal
bridge

ATRX (MIM: 300032,
300504)

15 17 21 26

18 female 4–9 hypertension, low birth weight TKT (MIM: 606781) 7 8 21 24

19 male 0–3 oral aversion, muscle hypotonia PLA2G4A (MIM: 600522) 9 13 10 19

20 female 4–9 depression, abnormal facial shape DDX3X (MIM: 300160) 10 12 22 14

21 female 4–9 fever, dysmorphic facies HNRNPH2 (MIM: 300610) 6 15 18 22

22 male 0–3 hypovolemia, abnormal T-wave PTPN11 (MIM: 176876) 6 13 18 19

23 female 4–9 scarring, fragile skin COL7A1 (MIM: 120120) 2 17 14 15

24 male 0–3 cupped ear, highly arched
eyebrow

KMT2D (MIM: 602113) 10 12 13 15

25 female 0–3 large forehead, difficulty running SHH (MIM: 600725) 9 13 35 25

26 male 4–9 muscular hypotonia, heterotaxy NAA15 (MIM: 608000) 10 8 11 18

27 male 0–3 premature birth, prelonged
neonatal jaundice

CDKL5 (MIM: 300203) 3 4 6 10

28 male 0–3 myopathy, hypoplasia of penis POMT1 (MIM: 607423) 5 12 14 20
each affected individual. These HPO terms were referred to as

‘‘heuristic chart review’’ terms.

During the above procedure, we noticed that the majority of the

expert-extracted HPO concepts were sourced from consultation

notes authored by a clinical geneticist or genetic counselor. The ge-

netics team typically performs a clinical evaluation before genetic

testing in order to select the appropriate genetic test and ensure

that affected individuals are thoroughly informed about the risks,

benefits, and limitations associated with genetic testing. The re-

sulting documentation of the encounter contains rich and
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descriptive but unstructured phenotype information. Therefore,

this note could serve as the major source of an individual’s pheno-

type information in the context of genomic medicine. For each

individual, we selected a genetic evaluation note that (1) corre-

sponded to the aforementioned encounter available from the

EHR and (2) we believed could reliably represent the individual’s

clinical manifestation, or phenotype. A clinical expert then

created a manually curated, gold-standard list of HPO concept

terms that could be extracted from this note. These HPO terms

were referred to as ‘‘single genetics note’’ terms.



Automated Recognition of HPO Concepts via NLP
We developed and evaluated our pipeline by using two well-re-

garded NLP tools, MedLEE32,33 and MetaMap,34,35 that can be

used for extracting phenotype concepts from genetics counseling

notes. In this subsection, we will describe the pre-processing of the

clinical notes and the detailed configuration of the two NLP

systems.

Pre-processing of Clinical Notes

We selected the most recent clinical genetic consultation notes

before the WES-confirmed genetic diagnoses under the assump-

tion that they weremore complete and accurate than older consul-

tation notes. In the primary cohort, of 28 individuals from

Columbia University, four had genetic evaluation notes, which

included information regarding the diagnostic genetic findings,

because a prior diagnostic workup and/or sequencing from

another institution or laboratory had become available by the

time of their evaluation visit. For these individuals, the evaluation

note included the documentation of genetic test results and a

short description of the genetic diagnosis. To prevent such text

from biasing our phenotyping, we manually removed these por-

tions of the note before applying the NLP parsing.

Additional Pre-processing of Clinical Notes

For MetaMap, we removed the ‘‘review of systems’’ section (if pre-

sent) from the evaluation notes because many of these sections

contained un-parsable, template-based structured tables that

became corrupted or lost during the extraction of EHR data to

plain text. In addition, these sections typically contained tandem

repeats of negated concepts (i.e., ‘‘no lymphadenopathy’’ or ‘‘no

murmurs’’), which add little value to the recognition of pheno-

type concepts. Because HPO concepts aim to represent mostly

pertinent positive findings and only prominently salient negative

findings (i.e., ‘‘absent speech’’), we believe that the removal of

this section was warranted. For MedLEE, such pre-processing

was not necessary because the build-in section-detection

methods were used to systematical delineate the sections via

XML parsing.

Configuration of NLP Systems

ForMetaMap, we used a local installation ofMetaMap by using the

latest supported version of the Unified Medical Language System

(UMLS; 2016AA release). Starting from the UMLS 2015AB release,

the entire HPO database had been integrated into UMLS,25 which

enabled us tomake the configuration to restrict our output to HPO

concepts (command-line parameter ‘‘-R ‘HPO’’’). In addition, our

review of the expert-selected phenotypes revealed that the HPO

phenotype concepts frequently belonged to a limited number of

UMLS semantic types. In order to prevent an excessive number

of non-relevant terms from being mapped, we chose seven

UMLS semantic types that effectively represented the larger

class of expert-curated HPO concepts selected. These included

‘‘congenital abnormality’’ (T019), ‘‘genetic function’’ (T045), ‘‘lab-

oratory procedure’’ (T059), ‘‘laboratory or test result’’ (T034),

‘‘pathologic function’’ (T046), ‘‘disease or syndrome’’ (T047), and

‘‘finding’’ (T033). Specifically, the options ‘‘-I -p -J -K -8 –conj

cgab,genf,lbpr,lbtr,patf,dsyn,fndg -R ‘HPO’’’ were used in our

application of MetaMap.

For MedLEE, the NLP engine’s lexicon was loaded with HPO

terms and synonyms available via UMLS (version 2017AA) for

this task. The text files were processed, outputting an XML file

with tagged tokens regarding information in the clinical note sec-

tion, token information, HPO concept(s) identified, and certainty

and negation information. A Python script using an XML-parsing

library (lxml) was used to extract all HPO concepts. We were able
The
to exclude the concepts found in the ‘‘review of systems’’ section

without pre-processing.

Configurations of all NLP tools were set to allow for multiple

suggestions for a given text phrase as we were performing seman-

tic concept recognition. The scripts for recognition of HPO con-

cepts and output parsing for each NLP tool are accessible at the

EHR-Phenolyzer GitHub repository. The output of each tool is a

list of HPO concepts (via HPO concept IDs and/or preferred terms)

for each given clinical note input as plain text. To handle multiple

instances for each concept within a given note, we selected only

unique HPO concepts.
Performance Evaluation for Relevant Concept

Recognition via NLP
In this subsection, we will describe two types of evaluation

methods used in this study: one based on Phenolyzer analysis of

the phenotype terms and another based on a comparison with

expert-compiled terms.

Currently, there is no standard method for evaluating NLP per-

formance in extracting ontology-based concepts, including evalu-

ating accuracy, relevance, and appropriate granularity of the

extracted concepts. Further complicating this evaluation is that

for different tasks, relevance is a task-dependent concept. To recog-

nize phenotypes pertinent to genomic testing, we evaluated the

performance by using two methods: (1) indirect measurement of

the surrogate performance benchmark via Phenolyzer ranking

and (2) comparison between the NLP-generated term list and the

expert-curated list.

First, these lists of recognized HPO concepts were input into a

computational phenotype-based gene-prioritization tool named

Phenolyzer, whose performance has been superior to that of other

similar tools.19 Although several other phenotype-based tools

(e.g., Exomiser, PhenIX, and Phevor) are reported in the literature

and are actively available, they are designed for different purposes

and have additional requirements, such as concurrent analysis of

VCF files, or produce output that lacks comparable gene ranking.

Subsequently, we chose Phenolyzer as our main evaluation tool.

Second, we also approximated the well-established evaluation

method for NLP systems by considering the expert-curated list of

concepts as a gold standard. We explicitly acknowledge that

manual extraction of phenotype terms is subjective and that

different experts might generate different expert-curated lists,

potentially compromising reproducibility; a reliable way is tomea-

sure inter-rater agreement among multiple domain experts and

use the consensus-based concept sets as the gold standard. After

the NLP tools output a list of HPO concepts (IDs and terms), we

manually matched up semantically similar terms to calculate

and compare precision, recall, and F-scores between the HPO con-

cepts recognized by each NLP tool and the manually extracted

HPO concepts from the same note.
Performance Evaluation of Gene Prioritization
We evaluated the performance of gene prioritization by using Phe-

nolyzer and Phenomizer, which can both accept HPO terms as

input and generate a ranked gene list as output. For Phenolyzer,

we used the command-line tools available at the Phenolyzer

GitHub repository (version v.0.2.0). We used the ‘‘-f -p -ph -logis-

tic -addon DB_DISGENET_GENE_DISEASE_SCORE, DB_GAD_

GENE_DISEASE_SCORE -addon_weight 0.25’’ argument in the

command-line tool to ensure consistency with the Phenolyzer

web server.
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For analysis with Phenomizer, we used the web server available

at the Phenomizer website because a command-line tool is not

publicly available. For each individual, we manually entered

HPO terms into the web interface for analysis. The ‘‘any’’ mode

of inheritance was selected for the diagnosis, and if the number

of input HPO terms was larger than five, we added the ‘‘symmet-

ric’’ mode into the analysis. After Phenomizer generated results

in the web interface, wemanually downloaded the raw text output

file for further processing by a custom Python script to get the

gene rankings. Genes were first ranked by their Phenomizer

p values in ascending order, and those with identical p values

were further ranked by their Phenomizer scores. If one gene

occurred multiple times, then the smallest p value was considered.

If two genes had the same p values and scores, then the ranking

order was randomly determined.

We analyzed the fourth independent cohort containing 20 indi-

viduals with CKD to evaluate whether EHR phenotypes can help

classify disease subtypes. First, we applied EHR-Phenolyzer on

the medical notes to generate HPO terms, and then we used a hi-

erarchical clustering method to study the categorization of indi-

viduals with CKD. In the clustering analysis, we used ‘‘complete

linkage’’ as the agglomeration method and ‘‘Euclidean distance’’

to calculate the distance between any two individuals. Only indi-

viduals with diagnostic genes ranked within the top 50 and with

phenotype terms found in at least two individuals but not all

were used in the clustering analysis.

Statistical Analysis
In this study, R language36 was used for statistical computing. We

used the exact binomial test to calculate the significance of the

gene prioritization and the paired two-sided t test to compare

the ranking efficiency of the gene prioritization among different

methodologies. In the comparison between expert-rated genes

and NLP-rated genes, Pearson’s correlation coefficients and the

related p values were calculated by R functions cor and cor.test,

respectively.

Data Availability
The original clinical notes used for the current study are available

from the corresponding authors upon reasonable requests and

institutional approvals. The processed results generated or

analyzed during this study are included in this published article

(and its Supplemental Data files). The external site’s clinical notes

that support the findings of this study are available from theMayo

Clinic under restrictions. The processed results generated during

this study are included in this published article (and its Supple-

mental Data files).
Results

Selection of Data Source: Comprehensive Chart Review

versus Targeted Review of Genetic Notes

We experimented with two methods of selecting EHR data

for phenotyping: (1) comprehensive chart review (review-

ing the EHRs of each person and synthesizing phenotype

concepts from various clinical notes, laboratory tests, im-

aging results, and pathology reports) and (2) targeted re-

view of genetic notes (retrieving the most recent medical

genetic consultation note before WES and synthesizing

the phenotypes from the note). The latter examines a
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much smaller subset of phenotype concepts than the first

approach but has the clear advantage of being more effi-

cient and more likely to be fully automatable on EHRs.

To evaluate whether targeted review of genetic notes

alone is sufficient in practice, we compared the perfor-

mance of gene prioritization by these two approaches on

28 affected individuals from Columbia University and for

whom diagnostic mutations were identified by WES

(Table 1). For each approach, we generated a list of pheno-

type terms, subjected them to Phenolyzer to generate a

ranked gene list, and then examined where the gene

with causal variants ranked. The rank performance for

the two expert-based approaches is shown in Figure S1.

We divided the results into bins of the top 10, 50, 100,

250, 500, and 1,000 genes to better compare the ranking

performance of the gene prioritization on the basis of the

two different expert methods. We found that the ranking

performances were effectively identical between the two

methodologies (paired t test p¼ 0.44 for testing differences

in performance); more than 50% of confirmed genetic

diagnosis occurred within the top 100 predicted candidate

genes by Phenolyzer. Therefore, we can reliably use the lat-

est genetic notes before diagnostic exome sequencing as

the data source for gene ranking.

Performance Evaluation of NLP Tools in Extracting

Phenotype Terms

An overview of our approach to evaluating the perfor-

mance of different NLP tools is given in Figure 1. We first

identified the types of EHR narratives that contain the

documentation of phenotypes for genetic disorders, espe-

cially the notes authored by medical geneticists or genetic

counselors, and then subjected the text to mature NLP sys-

tems to extract phenotype concepts and normalize them

by using the HPO. Phenolyzer then analyzed these HPO

terms to identify related genes with causal variants.

We adapted two different NLP systems, MedLEE and

MetaMap, to process genetic notes from EHRs and extract

and normalize phenotype concepts by using HPO, as illus-

trated in Figure 2. In general, both NLP systems tend to

generate more terms (on average, 17.6 and 19.4 terms for

MetaMap and MedLEE, respectively) than manual extrac-

tion by human experts (11.0 terms) (Table 2). The tabu-

lated results based on the matching of terms to the

expert-extracted list of HPO terms are shown in Table 3.

MedLEE appears to have better concordance with the

expert-compiled phenotype terms from the same clinical

note. Furthermore, we also compared the phenotype-

derived rankings of the genes carrying causal variants be-

tween those based on experts and those based on NLPs

and found that they were highly correlated (Figure S5).

We next assessed Phenolyzer’s ability to rank genes with

causal variants by using phenotype terms compiled by ex-

perts or extracted by the NLP methods MetaMap and

MedLEE. The ranking performances of these three

methods are shown in Figure 3A. The NLP systems per-

formed similarly to experts, although each NLP system



Clinical NotesClinical Exome
Report

Gene A With
Causal Variants

Expert NLP 

HPO Terms
(Expert)

HPO Terms
(MetaMap)

HPO Terms
(MedLEE)

Ranked Gene List
(Expert)

Ranked Gene List
(MetaMap)

Ranked Gene List
(MedLEE)

G
ene Prioritization

Electronic Health Records

Phenolyzer Phenolyzer Phenolyzer 

Phenotype Extraction
and N

orm
alization

Rank of Gene A
(Expert)

Rank of Gene A
(MetaMap)

Rank of Gene A
(MedLEE)

Comparison

Perform
ance Evaluation

Figure 1. Overview of the Comparative
Analysis for Evaluating Different NLP
Tools
generated more terms than the experts did. The results

showed that 39.3%–57.1% of gene candidates could be

ranked within the top 100 genes and that 71.4%–75.0%

of gene candidates could be ranked within the top 1,000

genes, both on the basis of only the phenotype concepts

derived from the EHR. To evaluate different phenotype-

based gene-prioritization tools, we also included gene-

ranking results from Phenomizer on MetaMap-generated

HPO terms. Our analysis demonstrated that Phenolyzer

performs favorably against Phenomizer on the same set

of HPO terms, most likely because Phenolyzer’s gene-prior-

itization procedures incorporate multiple levels of prior

biological knowledge. However, we acknowledge that Phe-

nomizer was designed for disease diagnosis rather than

gene prioritization, so it might not have performed opti-

mally in our evaluation.

The fact that about 50% of diagnoses can be narrowed to

the top 100 genes on the basis of only phenotype informa-

tion documented in the EHR is remarkable, especially

because this performance can be achieved by completely

automated phenotype-concept-recognition methods (i.e.,

MetaMap or MedLEE). We believe that deep phenotypes

from EHR data are valuable with the increasing adoption

of genomics testing. Improving the prior probability of a

diagnosis increases the positive predictive value of a

test, although current genomic testing methods tend to

forgo this step. Therefore, systematic integration of EHR-

phenotype-based gene prioritization before variant inter-

pretation can potentially improve workflow efficiency
The American Journal of Hu
and help reach clinically valid results

while improving diagnostic yield.

External Validation of Automated

Phenotype Description and Gene

Prioritization

We applied the same pipeline by using

the clinical notes written by genetic

counselors from the Mayo Clinic. In-

formation on ten affected individuals,

together with confirmed genetic

diagnoses in the genes cystic fibrosis

transmembrane conductance regu-

lator (CFTR [MIM: 602421]), periph-

eral myelin protein 22 (PMP22

[MIM: 601097]), DM1 protein kinase

(DMPK [MIM: 605377]), dynamin

1(DNM1 [MIM: 602377]), coagulation

factor VIII (F8 [MIM: 300841]), fibril-

lin 1 (FBN1 [MIM: 134797]), KAT8

regulatory NSL complex subunit

1(KANSL1 [MIM: 612452]), NPC

intracellular cholesterol transporter 1
(NPC1 [MIM: 607623]), sodium voltage-gated channel

alpha subunit 1 (SCN1A [MIM: 182389]), and SOS Ras/

Rac guanine nucleotide exchange factor 1 (SOS1 [MIM:

182530]), was provided. The ranking results are shown in

Figure 3B. The results are comparable to the ranking perfor-

mance obtained at our institution. Therefore, the analysis

on the secondary-site validation data confirmed that the

EHR-Phenolyzer approach can be used in different institu-

tions with diverse sets of informatics infrastructure as long

as an automated procedure for extracting clinical notes can

be implemented in each site.

Additional Analysis on the Use of Phenotype Features in

Real-World Genetic Diagnosis

To examine how clinical phenotypes are currently used in

real-world settings to facilitate genetic diagnosis of people

with rare monogenic diseases, we examined EHR data on

46 affected individuals, all of whomwere assessed by amed-

ical geneticist or genetic counselor at Columbia University-

affiliated hospitals in an outpatient setting. This set of

clinical notes, together with the corresponding molecular

pathology reports, should be highly informative on the

real-world use of clinical phenotype information in the

context of genetic testing. We found that 15 of 46 affected

individuals did not undergo diagnostic genetic testing

(Figure 4A), the reasons for which were lack of known reim-

bursable tests (n ¼ 7), lack of insurance (n ¼ 2), refusal by

family members (n ¼ 2), lack of testing records in EHRs

(n ¼ 1), and other undescribed reasons (n ¼ 3). Among
man Genetics 103, 58–73, July 5, 2018 63
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Figure 2. Illustration of How NLPs Work
to Extract Phenotype Terms from Natural
Language in Clinical Notes
The same clinical note was analyzed by
MetaMap (A) and MedLEE (B) for the gen-
eration of HPO terms.
the 31 affected individuals who underwent genetic testing,

the genetic tests used (Figure 4B) were clinical microarray

(n ¼ 11), PCR (n ¼ 2), single-gene Sanger sequencing

(n ¼ 5), targeted panel (n ¼ 2), clinical exome (n ¼ 9),

and undescribed (n ¼ 2). Diagnostic results were detected

in 11 of the 31 (35.5%) affected individuals; 7 (63.6%) of

these individuals had been diagnosed via clinical WES.

To understand how phenotype information is used in

current clinical practice to assist in genetic diagnosis, we

manually examined the genetic diagnostic reports for

each of the 31 affected individuals (Figure 4C). These diag-

nostic reports were generally provided as scanned PDF files

from the following clinical labs: Ambry Genetics (n ¼ 4),

GeneDx (n ¼ 12), Columbia University Personalized

Genomic Medicine Laboratory Hospital lab (n ¼ 3), Inte-

grated Genetics (n ¼ 5), LabCorp (n ¼ 4), Mayo Clinic

(n ¼ 1), and unspecified (n ¼ 2). We found that 19 (61%)

of the 31 diagnostic reports contained no indication of a

clinical phenotypes, suggesting that clinical phenotypes
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were either not provided to diagnostic

labs or not used by diagnostic labs in

making a diagnosis (we acknowledge

that this situation is quite common

for targeted tests but less likely for

WES). Among the 12 genetic diag-

nostic reports with information about

the indication for testing, the indica-

tion was most commonly listed in an

unstructured sentence or paragraph

format (8/12 [67%]); in the others, it

was listed simply as ICD codes (3/12

[25%]) or as the single general

term ‘‘diagnostic’’ (1/12 [8%]). We

compared the indication with clinical

phenotypes inferred by MetaMap or

MedLEE from clinical notes in EHRs

(Table S1). With the exception of

one individual for whom we do not

have detailed notes by the genetic

counselor, the clinical phenotypes

from EHRs were consistently more

comprehensive and detailed than

those provided in the indication,

which could improve the diagnostic

yield for clinical labs.

For the 11 individuals with positive

results from genetic diagnostic

testing, we next examined whether

deep phenotypes from EHRs can facil-
itate prioritization of candidate genes, similarly to what we

had done on the primary and secondary cohorts described

above. We found that the genes with causal variants were

ranked among the top 100 or top 1,000 genes for over

50% or 91%, respectively, of the affected individuals

(Figure 4D), again suggesting that EHR-derived phenotype

information could greatly increase the efficiency of genetic

diagnosis. Furthermore, similar to previous observations,

we also found that Phenolyzer outperformed Phenomizer

on this set of affected individuals, justifying the use of

computational tools specifically designed for phenotype-

driven gene prioritization.

Analysis of Specific Disease Subtypes within a Broad

Disease Category

We next investigated whether EHR-Phenolyzer can be use-

ful for discerning specific genetic forms of a broader cate-

gory of disease with CKD as amodel. Discerning hereditary

versus acquired etiologies of CKD oftentimes has a



Table 2. Comparisons of Manual Extraction and Two NLP Tools in Terms of the Total and Correct HPO Concepts Recognized from Clinical
Notes

Phenotype Extraction Methods

Expert Manual Extraction NLP

Heuristic Chart Review Single Genetics Note MetaMap MedLEE

Total no. of HPO concepts selected 223 309 493 543

Mean no. of concepts per individual 8.0 11.0 17.6 19.4

Median no. of concepts per individual 8 12 17.5 19.0

Semantically correctly matched concepts – – 199 (64%) 222 (72%)

Mean no. of correctly matched concepts per individual note – – 7.1 7.9

The following abbreviations are used: HPO, Human Phenotype Ontology; and NLP, natural language processing.
substantial impact on clinical prognosis and management;

however, the two can be indistinguishable by traditional

diagnostics alone.37 Because many hereditary nephropa-

thies display substantial genetic and phenotypic heteroge-

neity,38 gene panels or genome-wide testing can help diag-

nose individuals with a suspected monogenic renal

disease. We evaluated the EHRs of a set of 20 individuals

with CKD and confirmed genetic diagnosis.31 We found

that EHR-Phenolyzer (based on either MedLEE or

MetaMap) worked especially well for this set of individuals

in that it ranked the genes with causal variants within the

top ten for nearly half of them (Figure S3A). This observa-

tion can be attributed to two reasons: (1) given that these

individuals were recruited from a large academic referral

center for renal disease, many were already well character-

ized and had been diagnosed by traditional methods (e.g.,

kidney biopsy for Alport syndrome), so genetic testing

served as a merely confirmatory test; and (2) the specificity

of the kidney-related phenotypes listed in these individ-

uals’ EHRs would also restrict the number of candidate

genes. We additionally performed a hierarchical clustering

on this set of individuals on the basis of the presence or

absence of specific phenotype terms. For the 13 individuals

with diagnostic genes ranked within the top 50 by EHR-

Phenolyzer, we found that the individuals with the same

genes with causal variants, such as the two individuals

with uromodulin (UMOD [MIM: 191845]) mutations and

the four individuals with collagen type IV alpha 5 chain

(COL4A5 [MIM: 303630]) mutations, tended to be clus-

tered together according to the phenotype terms

(Figure S3B). Nevertheless, there were also scenarios in

which affected individuals with the same diagnostic genes

had quite distinct phenotypes from each other (such as the

individuals with COL4A4 [MIM: 120131] mutations),

which suggests that EHR-Phenolyzer can tolerate some

noise in the phenotype-extraction procedure, supporting

its utility for genetic diseases that have clinically heteroge-

neous presentations.

Detailed Examination of Selected Case Studies

To understand the degree to which or the contexts in

which the methods work, we performed a detailed exami-

nation of several illustrative cases. We analyzed a 15-year-

old female with multiple organ-system anomalies,
The
including intellectual disability and skeletal dysplasia.

Clinical exome sequencing identified collagen type X

alpha 1 chain (COL10A1 [MIM: 120110]) as the gene

with causal variants, yielding a molecular diagnosis of

Schmid-type metaphyseal chondrodysplasia (MCDS

[MIM: 156500]). MCDS is caused by heterozygous muta-

tions in COL10A1 and is characterized by short stature

and bowing of the long bones.39 For this individual, 15,

25, and 18 phenotype terms were compiled by experts,

MedLEE, and MetaMap, respectively (Figure 5), but only

five terms (spondylometaphyseal dysplasia, skeletal

dysplasia, short stature, intellectual disability, and global

developmental delay) were shared by all three methods.

Nevertheless, this gene was ranked as #4 by Phenolyzer

on all three sets of terms separately, suggesting that Pheno-

lyzer can tolerate inaccuracies in phenotype terms and up-

weight highly specific terms in its scoring scheme. This

example clearly demonstrates that as long as a core set of

highly informative phenotype terms can be identified

from EHR narratives, good ranking performance can

be achieved, even if extra less-relevant terms are also

included.

We further analyzed an individual for whom expert-

compiled terms and MedLEE-generated terms worked

much better than the terms generated by MetaMap. The

affected individual is a 13-year-old female with generalized

seizures and a mutation in SCN1A. SCN1A encodes a

voltage-gated sodium channel essential for the generation

and propagation of action potentials and is associated with

four Mendelian phenotypes in OMIM, including general-

ized epilepsy with febrile seizures plus type 2 (MIM:

604403), early infantile epileptic encephalopathy (MIM:

607208), familial febrile seizures 3A (MIM: 604403), and

familial hemiplegic migraine 3 (MIM: 609634). Surpris-

ingly, although expert-compiled terms and MedLEE-

compiled terms are generally quite broad, this gene ranked

as #1 and #18 on the basis of these terms, respectively

(Figure S4). In comparison, MetaMap generated more spe-

cific phenotype terms such as ‘‘pneumonia’’ and ‘‘hepatic

encephalopathy’’ (which are unrelated to SCN1A), as well

as candidate disease diagnosis ‘‘autism spectrum disor-

ders,’’ but SCN1Awas not ranked within the top 100 genes.

The above analyses highlight that EHR narratives typi-

cally contain concepts that can include both pertinent
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Table 3. Evaluation of Two NLP Tools with Expert-Extracted HPO
Terms as the Gold Standard

Data Source Measure

NLP tools

MetaMap MedLEE

Primary site (n ¼ 28) precision 0.40 0.41

recall 0.64 0.72

F-score 0.50 0.52

Secondary site (n ¼ 10) precision 0.60 0.51

recall 0.58 0.68

F-score 0.59 0.58

The following abbreviation is used: NLP, natural language processing.
and irrelevant signs, symptoms, clinical descriptions, and

clinical histories with variable levels of confidence or rele-

vance. Thus, despite the limitations of NLP systems, the

clinical information contained within the note can be ex-

tracted with the assistance of computationally enabled on-

tologies such as HPO and tools such as Phenolyzer. In a

purely hypothetical example, the two phenotype concepts

‘‘intellectual disability’’ and ‘‘generalized seizure’’ would

ideally strengthen the confidence of the computational

representation of the disorder ‘‘seizure disorder’’ given

these semantically and ontologically related concepts,

improving the confidence score of finding seizure-disor-

der-related genes. Less-relevant concepts identified for

the same individual can be regarded as peripheral to the

main genetic etiology in computational phenotype-based

gene prioritization. Thus, a robust relevance metric is crit-

ical for filtering out irrelevant concepts.

Combined Analysis of Phenotype and Genotype Data

Expedite Genetic Diagnosis

Our analysis above focused on phenotype-driven prioriti-

zation of genes and demonstrated that genes with causal

variants can be ranked much higher than other genes

with the use of phenotype information extracted from

EHRs. To further demonstrate the applicability of this

method in real-world settings to facilitate the identifica-

tion of disease-causing variants, we analyzed several previ-

ously published cases,40,41 for which we performed a

combined analysis of genotype data (VCF files) and clinical

descriptions from the methods sections of the published

manuscripts. We observed that the clinical descriptions

in scientific manuscripts were professionally edited and

could be of higher quality than typical EHR narratives,

but extracting HPO terms from the public case reports

poses challenges similar to those faced in EHR settings.

The first case study was of an individual diagnosed with

KBG syndrome,40 which is a rare autosomal-dominant ge-

netic condition characterized by intellectual disability, sei-

zures, and distinct facial, hand, and skeletal features. We

previously identified a de novo, single-nucleotide insertion

in ankyrin repeat domain 11(ANKRD11 [MIM: 611192]) as

the disease-causing variant through the analysis of trio
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WES data. In the current study, we did not use parental in-

formation to infer de novo variants and instead analyzed

the exome data of the proband only. We identified all

missense, nonsense, stop-gain, frameshift, and splice vari-

ants with an allele frequency < 1 3 10�5 in gnomAD,42 a

publicly available allele-frequency database of 123,136

exomes. There were 459 prioritized variants in this list

(typically <100 variants are identified after filtering, but

these exome data were generated on the Ion Torrent plat-

form, resulting in a large number of potential false-positive

calls). Using phenotype terms derived from the EHR-Phe-

nolyzer pipeline with the MetaMap engine (Table S2),

our method ranked ANKRD11 as #6. After we compared

the overlap between the Phenolyzer list and the prioritized

variant list, ANKRD11 was ranked first, providing a molec-

ular diagnosis of KBG syndrome even without parental in-

formation (Figure 6). We replicated this result by using the

EHR-Phenolyzer pipeline with MedLEE as the NLP engine,

yielding identical results.

The second case study was focused on a sibling pair

(brother and sister) both affected by progressive cognitive

decline starting from 6 years of age. We previously identi-

fied compound-heterozygous mutations in N-acetyl-

alpha-glucosaminidase (NAGLU [MIM: 609701]), leading

to a genetic diagnosis of Sanfilippo syndrome (mucopoly-

saccharidosis IIIB).41 Biochemical tests confirmed the com-

plete loss of activity of alpha-N-acetylglucosaminidase

(encoded by NAGLU) in both individuals. In the current

study, we did not filter for shared variants between the sib-

lings and instead analyzed each individual’s exome sepa-

rately. We used an allele-frequency threshold of 0.01 to

account for the possibility that causal variants for recessive

conditions could be observed in public databases with a

relatively high allele frequency. For the sister, using pheno-

type terms derived from the EHR-Phenolyzer pipeline with

MetaMap engine (Table S3), our method ranked NAGLU as

#42amongall humangenes.Afterwe compared theoverlap

between this list and the prioritized list of 885 variants,

NAGLU was ranked as #1 for the observed phenotypes. For

the brother, NAGLU was ranked as #201, and the intersec-

tion between this list and the prioritized list of 892 variants

increased the rank to #1. Therefore, in both cases, we were

able to easily identify the genewith causal variant and yield

a molecular diagnosis through combined analysis of geno-

types and phenotypes. Similar results were obtained with

the EHR-Phenolyzer pipeline with MedLEE as the NLP en-

gine, confirming that the combination of EHR-Phenolyzer

and exome data can often significantly expedite molecular

diagnosis of monogenic disorders.
Discussion

In this study, we evaluated the clinical validity of auto-

mated extraction of HPO concepts from EHR narratives

for computational phenotype-driven gene prioritization

and demonstrated that the proposed method greatly
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Figure 3. Comparison of Four Methods
of Ranking Genes with Causal Variants
28 individuals in the primary site (A) and
ten individuals in the secondary site (B).
For each individual, three methods were
used to extract phenotype terms and then
used in Phenolyzer or Phenomizer to find
a ranked list of candidate genes. The
MedLEE approach achieved the best per-
formance in ranking the genes with causal
variants within the top 100 of all genes in
both datasets.
facilitates the interpretation of clinical exome sequencing

data. The EHR-Phenolyzer framework operates in two

steps: the first uses NLP-driven HPO-concept recognition

through either the publicly available tool MetaMap or

the proprietary tool MedLEE, and the second utilizes the

open-source computational phenotype tool Phenolyzer

for gene prioritization. Finally, through retrospective case

studies, we demonstrated how combined analyses of geno-

type and phenotype data from EHRs can expedite genetic

diagnoses by using clinical exomes. We conclude that

EHR-Phenolyzer enables comprehensive utilization of

deep phenotypes in EHR narratives, allows for pheno-

type-driven ordering and analysis of clinical exome tests,

and facilitates the implementation of genomic medicine.

Before using NLP systems for phenotype recognition, we

first examined whether expert-curated HPO concepts can
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be derived from EHR narratives to

perform a phenotype-driven gene pri-

oritization task. Upon our discovery

that the majority of the curated

phenotype concepts were sourced

from a single document – the latest ge-

netics evaluation note – a document

authored by a member of the clinical

genetics team,we performed a focused

HPO term recognition of this single

clinical document. We show that the

performance of expert extraction of

the ‘‘heuristic chart review’’ and the

‘‘single genetics note’’ (Figure S1) are

largely comparable for the purposes

of computational phenotype-based

gene prioritization task. However, the

latter approach has the clear advan-

tage of being able to be automated

through NLP approaches, and there-

fore serves as the foundation of EHR-

Phenolyzer framework for phenotype

extraction from EHRs.

Current Issues with Extraction of

HPO Concepts

We have shown that, when used

with computational phenotype-based
gene-ranking tools, automatic recognition of HPO con-

cepts by twoNLP systems,MetaMap andMedLEE, achieves

a gene-ranking performance comparable to that of expert

curation of phenotype terms from EHR narratives, despite

the seemingly modest traditional NLP performance. In our

internal review of the extracted HPO concepts for each

tool, we recognized that many ‘‘non-phenotype’’ concepts,

such as ‘‘left (HP:0012834),’’ were also recognized by

MedLEE and that this most likely affected the NLP evalua-

tion metrics shown in Table 2. MetaMap was able to filter

out these non-phenotype concepts by using the UMLS ‘‘se-

mantic types’’ filter that we applied. This is one of the

inherent limitations of HPO: the expansion of HPO creates

modifiers represented as both pre-coordinated concepts

and post-coordinated concepts, which can be represented

by the integration of multiple smaller concepts. For
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Figure 4. Detailed Analysis of Genetic Counselors’ Notes and Genetic Diagnostic Reports on 46 Affected Individuals from Cohort 3
(A) A breakdown of the affected individuals according to diagnostic genetic testing.
(B) The distribution of various genetic tests that were used on this cohort.
(C) The distribution of the types of phenotype information used in genetic diagnosis.
(D) Performance of EHR-Phenolyzer in ranking the genes with causal variants among all candidate genes.
example, MetaMap recognizes ‘‘severe global develop-

mental delay (HP:0011344)’’ as a pre-coordinated concept,

but MedLEE identifies ‘‘severe’’ as amodifier of the separate

concept ‘‘global developmental delay (HP:0001263).’’ This

is a well-known redundancy issue recognized by the con-

tributors of HPO, and it demonstrates the ongoing work

needed to continue improving HPO.25

Improving Performance and Limitations by Restricting

to OMIM Genes

In our previous analysis, we examined the ranking of

genes with causal variants among the �20,000 human

genes. However, in practice, clinical diagnostic labs

might examine only the subset of genes known to be

associated with monogenic disorders, which would

make gene prioritization somewhat easier. To gain a

deeper understanding of the performance of the EHR-

Phenolyzer approach in clinical settings, we assessed

how our approach can rank genes among a selected list

of about 5,000 OMIM genes that are known to be associ-

ated with Mendelian diseases rather than among all

20,000 genes. Our results showed that restricting the

analysis to OMIM genes further improved the perfor-

mance of EHR-Phenolyzer in detecting genes with causal

variants (Figure S2). However, we also note that two pos-

itive diagnoses were made on myosin heavy chain 10
68 The American Journal of Human Genetics 103, 58–73, July 5, 2018
(MYH10 [MIM: 160776]) and N(alpha)-acetyltransferase

15, NatA auxiliary subunit (NAA15 [MIM: 608000]),

which had not yet been documented in OMIM as being

associated with a Mendelian phenotype, suggesting that

expanded analysis could still be warranted if OMIM-

restricted analyses do not yield positive results. MYH10

and NAA15 were both discovered recently from several

sequencing studies on congenital heart disease and devel-

opmental disorders.43–45

Limitations of the Current Study

The current study has several limitations. First, our evalua-

tion was done retrospectively, whereas ideally we would

apply our pipeline prospectively to investigate whether it

offers higher diagnostic yields, decreases the time for

genomic data analysis, and improves reproducibility. We

also did not directly compare Phenolyzer results against

the pipelines that have already integrated computational

phenotyping for annotations (e.g., Exomiser and Phevor)

because these other tools require more than phenotype

terms in HPO formats. We are currently designing prospec-

tive studies that assess a large number of clinical cases of

suspected monogenetic disease to formally quantify the

impact of EHR-Phenolyzer on a healthcare system to facil-

itate the implementation of genomicmedicine in a stream-

lined, efficient, and scalable manner.
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Figure 5. Phenolyzer Can Tolerate Inaccuracies in the Phenotype-Term Extraction of an Individual Affected by Schmid-type Meta-
physeal Chondrodysplasia
(A) Only five phenotype terms were shared among three different phenotype-extraction methods.
(B) All three methods ranked the gene with a causal mutation as #4.
(C and D) The network of prioritized genes and phenotype terms, where the phenotypes were extracted by an expert (C) or by MedLEE
(D). COL10A1 with a causal mutation is highlighted in the network. The size of each pie section is positively related to the Phenolyzer
ranking.
Several computational tools, including Exomiser, allow

integrated analysis of phenotype and genotype data. In

contrast, EHR-Phenolyzer uses only phenotype data to

rank genes with causal variants among all possible candi-

date genes without considering genotype information.

This design principle of EHR-Phenolyzer allows flexible

downstream variant analysis with various different

computational tools; nevertheless, we will provide helper

scripts that combine results from EHR-Phenolyzer with

ANNOVAR-generated variant annotations (in ‘‘multianno’’

formats) to facilitate users who choose to use ANNOVAR

for analysis of exome data. Similarly, we made EHR-Pheno-

lyzer modular and flexible such that it can interoperate

with many different NLP tools to process clinical notes.

Indeed, besides MetaMap and MedLEE, we have now

incorporated Annotator from the National Center for

Biomedical Ontology46 as another text-mining option.

A third limitation is that we used only a particular type

of EHR narrative, and more studies are warranted for
The
testing the portability of the NLP pipeline to other types

of EHR notes. Our results also contained inaccurately ex-

tracted concepts, especially in the very dense sections of

physical examination, where lack of punctuation rules

and conjunctions caused negated concepts to be falsely re-

called as a concept. Therefore, we advise that as is, the cur-

rent implementations of these NLP methods still need

additional improvements for high-quality phenotyping

curation for phenotype databases. However, we believe

that with appropriate optimization (such as HPO class

filtering or UMLS ‘‘semantic types’’ filtering, as we demon-

strated with MetaMap), our NLP methods can be utilized

for such tasks in the future.

Clinical Significance of the Combined Genotype-

Phenotype Analysis

As shown by the results from four independent cohorts, in

more than half of the individuals, the genes with disease-

causing mutations can be prioritized within the top 100
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Figure 6. Molecular Diagnosis of KBG Syndrome in an Individual with a Frameshift Mutation in ANKRD11 through Combined Geno-
type and Phenotype Analysis
and in some cases even within the top ten. In clinical prac-

tice, this information can greatly reduce the effort in

manually searching for candidate genes when analyzing

WES data. Furthermore, as illustrated in the combined

analysis of genotype and phenotype for genetic diagnosis

of two individuals, the genes with causal variants were

ranked as the top gene, which showcased its practical sig-

nificance in clinical diagnostic settings of joint analysis

of phenotype and genomic data. The validation of our

method in four independent cohorts from two different in-

stitutions also demonstrated the possibility of extending

such approaches to other institutions with different infor-

matics infrastructures. Meanwhile, we acknowledge that

this study did not include large-scale genotypic WES

data; additional studies on more affected individuals with

paired WES data from other institutions are preferred for

the evaluation of the generalization of EHR-Phenolyzer

in the future.

Future Perspectives

In addition to addressing the aforementioned limita-

tions, subsequent research efforts will focus on further

improving the EHR-Phenolyzer framework. These

include exploring concept recognition from structured

EHR data in addition to unstructured clinical narratives,

such as laboratory testing results and radiographic find-

ings. Because HPO already integrates many of these con-

cepts, such procedures can potentially further improve

this process of automated EHR-phenotype-driven gene

prioritization if these concepts are not recorded within

the clinical notes. Mapping from other well-established

standard terminologies, such as Systematized Nomencla-

ture of Medicine – Clinical Terms (SNOMED CT), to HPO

has been shown to be feasible by Dhombres et al.47 Given

that many institutions annotate clinical notes and find-
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ings by using SNOMED CT or terminologies other than

HPO, we will integrate other popular terminologies and

their concept mappings to HPO into EHR-Phenolyzer in

the future.

Another future area that we will explore is evaluating

the transferability of the proposed methods to different

healthcare systems that leverage different EHRs. In the cur-

rent study, we examined and confirmed that the EHR-Phe-

nolyzer method can be utilized in two different healthcare

systems with a relatively small set of samples. We expect to

significantly expand the number of sites to be analyzed by

EHR-Phenolyzer in the future and examine how to adapt

the method to different settings across institutions to

enable the delivery of more benefits to the broader

community.

We also plan to build an individual-facing Phenolyzer

that allows people to enter self-reported phenotypes not

captured in EHRs. With this feature, we will explore

whether individual-provided information can further

improve the accuracy for gene ranking when the genomic

analysts have access to such information. In order to

accommodate users who speak different languages from

all over the world, we might also extend the EHR-Pheno-

lyzer to accommodate phenotypes entered in non-English

languages.

Finally, an effort to curate phenotype data in a system-

atic manner requires the recognition of the importance

of phenotype information. As more high-quality genomic

and phenotype information is collected with collaborative

efforts such as the Monarch Initiative, PhenomeCentral,

and HPO, we believe that approaches driven by phenotype

data will become more robust and effective. With the

continuing growth of HPO, the continued development

of new techniques and optimization of pre-existing NLP

techniques is likely to improve term normalization across



the field of genomic medicine, making these efforts easier

and more effective in the future.
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