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Abstract

Physiologically appropriate levels of matrix metalloproteinases (MMPs) are likely important to 

varied aspects of CNS function. In particular, these enzymes may contribute to neuronal activity 

dependent synaptic plasticity and to cell mobility in processes including stem cell migration and 

immune surveillance. Levels of MMPs may, however, be substantially increased in the setting of 

HIV infection with methamphetamine abuse. Elevated MMP levels might in turn influence 

integrity of the blood brain barrier, as has been demonstrated in published work. Herein we 

suggest that elevated levels of MMPs can also contribute to microglial activation as well as 

neuronal and synaptic injury through a mechanism that involves cleavage of specific cell and 

synaptic adhesion molecules.
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I. INTRODUCTION

Matrix metalloproteinases (MMPs) are a family of zinc dependent endoproteases with 24 

expressed in humans [1, 2]. The majority are released from cells in a regulated manner. 

These soluble MMPs typically contain a pro- domain, a catalytic domain and a hemopexin-

like domain which can function in binding interactions. Chromosomal loci vary though a 

cluster is localized to chromosome 11 [3, 4]. Molecular weights also vary and range from 

approximately 20 kDa for active MMP-7, which lacks a hemopexin-like domain, to 92 kDa 

for the gelatinase MMP-9. Following their release, MMPs are activated by removal of their 

pro domain or by factors that influence tertiary structure including oxidation and 

*Address correspondence to this author at the Department of Neuroscience, Georgetown University Medical Center, Research Building 
EP-16, 3970 Reservoir Rd, Washington, DC 20007, USA; Tel: 202 687 8614; Fax: 202 687 0617; kec84@georgetown.edu. 

The authors have no conflicts of interest to declare.

HHS Public Access
Author manuscript
Curr HIV Res. Author manuscript; available in PMC 2018 July 07.

Published in final edited form as:
Curr HIV Res. 2012 July ; 10(5): 384–391.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nitrosylation [5]. Reductions in soluble MMP activity can also be affected by interactions 

with endogenously expressed inhibitors known as tissue inhibitors of metalloproteinases 

(TIMPs)[6]. The MMP family also includes membrane-type MMPs (MT-MMPs), which 

possess a transmembrane domain as do the related “a disintegrin and metalloproteinase[s]” 

or ADAMs. The latter may be activated by intracellular signaling molecules including 

protein kinase C [7].

MMPs were named for their ability to process proteins of the extracellular matrix but are 

now appreciated to act on a variety of soluble molecules and cell surface receptors as well 

[8, 9]. These enzymes are expressed in the brain by varied cell types including neurons and 

glial cells [10, 11], and their expression, release and/or activity may be greatly enhanced in 

the setting of CNS infection or injury. MMPs typically have AP-1 and NF-κB transcription 

factor binding sites within their promoters, and their expression may also be regulated by 

hypoxia inducible transcription factor signaling [10]. MMPs have also been localized to 

preformed vesicular stores [12] from which their release may be facilitated by stimuli that 

increase intracellular calcium [13]. In addition, activation of released MMPs may be 

facilitated by injury-associated stimuli including serine proteases [14] and nitric oxide [5].

MMPs can overlap in terms of substrate specificity [15], though specificity for select 

substrates has been observed and the efficacy with which individual MMPs can act on 

specific substrates can vary. For example, one study noted relative selectivity of MMP-1 in 

terms of MMP dependent activation of the thrombin receptor protease activated 

receptor-1[16].

Studies of MMPs in the CNS have generally focused on their ability to target extracellular 

matrix proteins of the blood brain barrier [BBB]. Inflammatory cells may release MMPs to 

facilitate their transmigration through the blood brain barrier, and high levels of CNS derived 

MMPs likely diminish BBB integrity as well. Consistent with this, tight junction proteins are 

targeted by MMPs in the background of stroke [17], and CNS infiltration of inflammatory 

cells is reduced in MMP knockout animals [18]. MMPs have also been shown to target 

myelin proteins, and MMP inhibitors have thus been considered for the treatment of specific 

demyelinating disorders [19]. This review will, however, focus on another important target 

of MMP activity- cell adhesion molecules [CAMs].

CAMs are ideally positioned to be cleaved before MMP activity is squelched by endogenous 

soluble inhibitors. In addition, while basal shedding of CAMs occurs, CAM cleavage may 

be substantially increased in the setting of HIV infection and psychostimulant abuse. 

Moreover, as will be discussed, shed CAMs may interact with integrins to profoundly 

influence neuronal and glial function.

II. MMP LEVELS MAY BE SUBSTANTIALLY ELEVATED IN THE SETTING OF 

HIV INFECTION AND PSYCHOSTIMULANT USE

MMPs are elevated in association with HIV associated neurological disorders (HAND) [20–

22]. CSF levels of MMP-2 and -9 in particular are increased. Moreover, HAND relevant 

stimuli including HIV proteins and TNF-α, can increase MMP release from CNS derived 

Conant et al. Page 2

Curr HIV Res. Author manuscript; available in PMC 2018 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells [20–23]. For example, injection of gp120 into rat caudate-putamen leads to increases in 

MMP-2 and -9 [24]. Stimulation of cultured cells with viral proteins is also linked to 

increases in MMP-2 and -9 [23, 25]. Moreover, HIV-1 Tat stimulates MMP-1 and -2 release 

from cultured neural cells [23] as well as MMP-9 from monocytes [26].

Similarly, methamphetamine (MA) has been associated with increase MMP levels in the 

CNS [27]. For example, chronic MA (2 mg/kg/day for five days) is associated with 

increased MMP-2 and -9 protein in the frontal cortex and nucleus accumbens of rats, and an 

acute high dose of MA (40 mg/kg) is followed by increased mRNA expression of MMP-9 in 

the CNS of mice [28]. We have also observed that acute MA increases MMP-9 levels in 

murine striatum and hippocampus [29].

MA is thought to increase extracellular monoamines [dopamine, serotonin and 

norepinephrine] through mechanisms that include a redistribution from synaptic vesicles to 

the cytoplasm and reverse flux through cell surface transporters [30, 31]. MA can also lead 

to an increase in extracellular glutamate levels [32]. MA associated increases in 

neurotransmitters may in turn lead to transmitter receptor dependent increased gene 

transcription. This mechanism is supported by published studies in which catecholamines 

have been shown to increase MMP expression [33–36].

Since recent studies also suggest that MMPs exist in perisynaptic vesicular stores [12], and 

that release of vesicular MMPs may be soluble NSF attachment protein receptor (SNARE) 

dependent [13], MA dependent changes in neurotransmitter levels might also stimulate 

SNARE dependent release of MMPs from vesicular stores. Consistent with this, a glutamate 

receptor agonist is associated with rapid MMP dependent substrate cleavage [37].

III. SPECIFIC CAMS, WITH KNOWN INTEGRIN BINDING MOTIFS, 

REPRESENT AN IMPORTANT CLASS OF MMP SUBSTRATES

CAMs represent an important class of MMP substrates, and CAM cleavage has been 

extensively investigated in the setting of cell migration and cancer biology. Though CAM 

cleavage has been less well studied in the CNS, the brain is rich in these molecules. Many 

are highly expressed in areas critical to brain function, including the neuronal synapse. 

Neuronal and glial CAMs include specific cadherin [Cdh] family members as well as CAMs 

with Ig-like domains. Among the latter are intercellular adhesion molecule- and -5 (ICAM-1 

and ICAM-5), neural cell adhesion molecule (NCAM), and vascular cell adhesion molecule 

(VCAM). Shedding of these substrates can occur to a substantial extent, in that soluble shed 

forms of many CAMs can be detected in blood, brain, and CSF [38–41]. Shed forms of 

select CAMs including ICAM-5 have been described in control specimens, consistent with 

baseline shedding [29, 40, 41], and levels in blood or CSF are increased with CNS 

inflammation or other forms of neurological disease [38–41]. For a list of CAMs that are 

expressed in the CNS and targeted by MMPs, please see Table 1.

CAM cleavage may have important consequences with respect to CNS function. Loss of 

adhesive contacts may impair cell or synaptic signaling or stability, with effects on cell 

survival. In addition, MMP dependent cleavage is often followed by intramembranous 
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proteolysis mediated by gamma secretase, leading to the generation of specific CAM 

intracellular domains (ICDs). While these may be degraded by the proteosome system, some 

have the potential to alter cellular transcription. An example is provided by ICDs generated 

following cleavage of N-cadherin. Ectodomain shedding of N-cadherin is followed by 

intramembranous proteolysis which generates a C-terminal fragment known as CTF-2. This 

fragment binds the transcription factor CREB-binding protein (CBP) and promotes its 

proteosomal degradation so that CREB-mediated transcription is repressed [42].

A third consequence of CAM shedding relates to the generation of shed N-terminal domains 

that are bioactive. As mentioned, these shed domains are stable enough to be detectable in 

CSF. As we will discuss, many can also interact with integrins that play an important role in 

microglial activation and synaptic function.

Integrins are heterodimeric cell surface proteins containing two distinct subunits. These 

dimers represent an especially important receptor class for shed CAMs. For example, nectin 

[43], E-cadherin, VCAM (VLA4), ICAM-1 (LFA-1 and Mac-1), and ICAM-5 (LFA-1 and 

β1) [29, 44, 45] can all interact with integrins in cis or trans. Members of the 

immunoglobulin superfamily such as ICAMs and VCAMs in particular have been referred 

to as a main class of integrin binding ligands [45]. The binding of full length CAMs to 

integrins might promote stable cell-cell interactions, while the binding of shed CAM 

ectodomains to unengaged integrins might allow for rapid changes in integrin signaling. In 

studies focused on ICAM-5, both full length and shed forms were found to co-

immunoprecipitate with β1 integrins. In addition, we have observed that soluble ICAM-5 

stimulates integrin dependent phosphorylation of cofilin in neuronal cells, an event which 

typically allows for actin polymerization [29].

Integrin dependent effects mediated by soluble CAMs are not without precedent. For 

example, in one report focused on L1CAM shedding, soluble L1 ectodomain stimulated cell 

migration in an integrin dependent manner. The authors suggested that L1 shedding might 

influence cell migration in both an autocrine and paracrine manner [46].

IV. MMPS, CAM CLEAVAGE, AND MICROGLIAL ACTIVATION

Classical microglial activation, in which release of specific proinflammatory molecules is 

increased [47, 48], occurs in the setting of HAND with substance abuse and likely plays a 

role in associated neuropathology. In several studies, HIV infection has been associated with 

an increase in the products of classically activated microglia, and it has been suggested that 

microglial activation may be an important mediator of CNS injury in the setting of both 

simian immunodeficiency virus encephalitis (SIVE) and HAND [49–51]. Minocycline has 

been linked to reduced microglial activation and disease severity with SIV infection, and 

SIV disease progresses more rapidly in animals showing an increase in markers of 

microglial activation. Increased activation of microglial cells has also been linked to the 

severity of HAND. Markers of macrophage/microglial cell activation are increased in 

association with disease severity, and apoptotic neurons are closely associated with markers 

of microglial activation [52]. Microglial activation also occurs with MA. Dopamine release 

and dopamine quinones in particular may be contributory [53]. Increased levels of reactive 
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oxygen and nitrogen species may also play a role in that MA toxicity is reduced in copper/

zinc superoxide dismutase transgenic mice [54].

Varied neuronal subpopulations may be vulnerable to neurotoxicity occurring as a result of 

microglial activation. These include glutamatergic neurons of the cortex and dopaminergic 

neurons of the substantia nigra. In animal models of Parkinson’s disease, microglial 

activation has been well linked to dopaminergic cell loss [55, 56]. Bacterial 

lipopolysaccharide, the prototypical inducer of strong microglial activation, also stimulates 

dopaminergic cell loss [57].

Studies suggest that MMP activity plays an important role in microglial activation. This 

claim is supported by studies in varied disease models. In a model of Parkinson’s disease, 

microglial activation, superoxide production and dopaminergic neuronal cell death were 

largely attenuated in MMP-3 null mice [55]. It has also been shown that inhibition of 

MMP-3 and -9 decreases LPS associated microglial activation [58]. Additional evidence for 

the importance of MMPs to microglial activation comes from studies with minocycline. In 

studies related to varied diseases and disease models, including Parkinson’s disease and 

multiple sclerosis, minocycline has shown neuroprotective effects [59]. Minocycline and 

other tetracycline derivatives can reduce MMP activity by at least two mechanisms including 

inhibition of microglial activation [49], which would reduce expression of microglial-

derived MMPs, and direct inhibition of preformed MMPs via chelation of the active site zinc 

atom [60].

While the mechanisms by which MMPs activate microglia have not been well characterized, 

their ability to generate soluble integrin binding ligands may be particularly important. 

Microglia abundantly express varied integrins including the β2 integrins αLβ2 (LFA-1) and 

αMβ2 (Mac-1). Microglia also express β1 integrins α4β1 (VLA-4), α5β1, and α6β1 as well 

as the αv integrin αvβ6. Expression of α1, α2, αx, β4, and β7 has not been detected [61]. In 

terms of integrins that play a role in microglial activation, β2 containing integrins may be 

particularly important. A recent study showed that Mac-1 [αMβ2] was critical to the 

microglial activation of in a Parkinson’s Disease model. Activation of Mac-1 was associated 

with neurotoxin release and inhibition of Mac-1 signaling prevented neurodegeneration [62]. 

In a related study, Mac-1 was essential to β-amyloid induced microglial activation, 

production of superoxide, and neurotoxicity [63]. LFA-1 [αLβ2] also plays an important role 

in microglial activation. Microglial cells are the principal resident cells of the CNS to 

express LFA-1 [64]. Engagement of LFA-1 has been linked to microglial spreading and to 

transcription of AP-1 responsive genes [64], which may lead to an activated phenotype. 

Similar to β2 containing integrins, those containing β1 might also be important to microglial 

activation. β1 ligands can stimulate microglial cell activation and expression of pro-MMP-9 

[65].

Shed CAMs interact with β integrins expressed on microglia. For example, VCAM has been 

shown to engage α4β1/VLA4, ICAM-1 has been shown to interact with LFA-1 and Mac-1, 

and ICAM-5 to interact with both both LFA-1 and β1 [29, 44, 45]. As stated earlier, in 

recently published work, we have observed that soluble ICAM-5 stimulates integrin 

dependent phosphorylation of cofilin, an event which allows for actin polymerization. Actin 
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polymerization occurs with microglial activation and, as will be discussed, is also thought to 

occur with changes in the structure of postsynaptic structures known as dendritic spines.

The expression of microglial integrins may be upregulated by inflammatory stimuli known 

to be elevated with HAND. Thus, an increase in MMP generated integrin binding ligands 

might assume greater significance in the setting of HAND. TNF-α can enhance surface 

expression of α4 and LFA-1, while both IL-1 and TNF-α can increase expression of Mac-1 

[61]. Moreover, integrin affinity for ligands is regulated by “inside out signaling” in which 

select stimuli influence the intracellular milieu to increase an integrin’s ability to engage its 

ligand [45]. Like expression, integrin affinity may also be increased in the setting of 

inflammation [66]. For a schematic depicting CAM cleavage and subsequent effects on 

microglia, please see Fig. (1).

V. MMPS, CAM CLEAVAGE, AND SYNAPTIC FUNCTION

While studies of MMPs in the CNS have generally focused on CNS inflammation and 

injury, recent evidence suggests that MMPs play a critical role in normal CNS physiology 

[67].

Neuronal activity has been linked to increased MMP release [37, 68–70] and in recent 

experiments, we have detected MMP dependent shedding of a neuronal substrate within 5 

minutes of N-methyl-D-aspartic acid (NMDA) treatment [70]. Recent studies suggest that 

MMPs exist in perisynaptic vesicular stores [12] and that vesicular MMPs from fibroblasts 

may be soluble NSF attachment protein receptor [SNARE] dependent [13]. As suggested 

above, if neuronal release is also SNARE dependent, it may occur with select stimuli such as 

neurotransmitters that increase intracellular calcium.

While a relatively new area of investigation, MMP activity has been shown to influence 

dendritic spine morphology as well as learning and memory [71–75]. An increase in the size 

of spines, allowing for increased post synaptic neurotransmitter receptor abundance, occurs 

in many studies of long-term potentiation (LTP). Though effects may be influenced by MMP 

dose/duration, and the developmental stage of neurons, these enzymes have the potential to 

increase spine size and hippocampal dependent memory. For example, MMP inhibition has 

been shown to reduce multiple forms of hippocampal CA1 plasticity [76], and MMP-9 

activity has been implicated in the maintenance of late LTP [73]. In addition, MMP 

antisense constructs have been shown to prevent acquisition in the Morris water maze test 

[74], and at least one MMP can increase dendritic spine size in a manner that is temporally 

coordinated with LTP [72].

MMPs may also play a role in the maladaptive sort of learning that underlies addiction. That 

MA associated changes in MMPs contribute to addiction is supported by behavioral studies. 

For example, MA-induced behavioral sensitization and conditioned place preference, a 

measure of the rewarding effect of a drug, is reduced in mice lacking MMP-2 or MMP-9 

[77]. Of interest, MMPs also play a critical role in cocaine associated conditioned place 

preference [78–80].
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Though the mechanisms by which MMPs affect synaptic structure and function are not well 

understood, it is tempting to speculate that CAM cleavage plays a role. For example, 

ICAM-5 is highly expressed on thin dendritic spines and MMP dependent ICAM-5 shedding 

has been linked to spine maturation. Shedding of specific CAMs may allow for spine 

expansion. A non-mutually exclusive possibility that we have investigated is the possibility 

that the shed ectodomain can bind to unengaged postsynaptic integrins to stimulate dendritic 

actin polymerization and spine expansion. Integrin signaling is critical during developmental 

changes in spine morphology [81], and multiple forms of learning associated plasticity, 

including that mediated by MMPs, are thought to be integrin dependent [73, 76].

While relatively low levels of MMPs and/or MMPs released in a physiologically localized 

manner may enhance learning and memory, it should be noted that in HAND with 

superimposed substance abuse, levels of these enzymes may be pathologically elevated. This 

could stimulate excessive cleavage of CAMs that otherwise maintain synaptic structure and 

neuronal survival. It could also lead to a situation in which processes governed by 

physiologically appropriate MMP release go awry.

Several publications support the possibility that high levels of MMPs may be toxic. While 

this can occur by indirect mechanisms, in which BBB integrity is first disrupted, relatively 

direct mechanisms occur as well. For example, exogenous MMP-1 has been linked to 

neuronal death in dissociated and organotypic neuronal cultures. MMP-9 has also been 

shown to be directly neurotoxic. Moreover, high levels of exogenous MMP-7, which has a 

broad substrate range and cleaves varied synaptic CAMs, can stimulate synaptic injury as 

detected by changes including a reduction in the area of the post synaptic density [82]. 

Consistent with this, synaptic injury in the setting of brain trauma has been observed with 

increased MMP levels, and trauma associated reduction in synaptophysin immunoreactivity 

were diminished by MMP inhibition [11]. Synaptic injury occurs in HIV with substance 

abuse [83, 84], and it is tempting to speculate that MMPs, and the cleavage of specific 

CAMs in particular, play a role. This could occur both through the activation of microglia 

and possibly, by excessive proteolysis of neuronal and synaptic CAMs. Cell death has 

indeed been observed as a result of a disruption in adhesion, a process known as anoikis 

[85].

VI. CONCLUSIONS

MMP levels may be elevated with HIV infection and MA abuse. CAMs represent an 

important class of MMP substrates, which are ideally positioned to be processed by cell 

surface and secreted MMPs. Since the integrity of CAMs is critical to synaptic stability, 

excess cleavage of synaptic adhesion molecules may play a role in HIV/MA associated 

synaptic and neuronal injury. In addition, shed CAM fragments may interact with microglial 

integrins to stimulate classical activation of this cell type. The products of classically 

activated microglia can in turn compound neuronal injury. Future studies are warranted to 

determine whether MMP inhibitors or specific microglial integrin antagonists might be 

beneficial for the treatment of CNS inflammation occurring with HIV and MA.
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Fig. (1). MMPs generate integrin binding ligands to activate microglia
Schematic diagram showing: 1. Increased MMP activity in the setting of HAND with 

substance abuse; 2. MMP- dependent shedding of CAM ectodomains. Note that following 

CAM shedding, remaining C-terminal fragments may be further processed by 

intramembranous proteolysis and degradation; 3 and 4. CAM ectodomain engagement of 

microglial integrins to stimulate classical activation with 5. increased release of potentially 

neurotoxic molecules.
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Table 1

Partial List of CNS CAMs Processed by Metalloproteinases

Cell Adhesion Molecule Cell Types for which Expression has been Reported Metalloproteinase(s) that Mediate 
Shedding

Reference(s)

ICAM-1 Astrocytes, oligodendrocytes, leukocytes, endothelial 
cells

ADAM-17 [86–90]

ICAM-5 Glutamatergic neurons of the telencephalon MMP-2,-3,-7,-9 [37, 75]

NCAM Neurons, astrocytes, oligodendrocytes, microglia, 
endothelium

ADAM protease [91–95]

L1-CAM Neurons, oligodendrocytes, endothelial cells ADAM-10, ADAM-17 [96–99]

VCAM Neurons, astrocytes, microglia, endothelial cells ADAM-9 [100–104]

N-Cadherin Astrocytes, oligodendrocytes ADAM-10, MMP-7 [7, 105–108]

E-Cadherin Neurons and endothelial cells MMP-7, ADAM-10, ADAM-15 [109–114]

VE-Cadherin Neuronal stem cells, astrocytes and endothelial cells MMP-7 [115]

Nectin-1 Neurons ADAM-10 [116–118]

Syndecan-1 Neurons and astrocytes [expression upreulated with 
injury], endothelial cells

MT1-MMP, MMP-7, MMP-9 [119–125]

SIRP-1α Neurons, astrocytes, microglia, endothelial cells Unknown metalloproteinase[s] [126–130]
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