
ARTICLE

Estimating SNP-Based Heritability
and Genetic Correlation in Case-Control Studies
Directly and with Summary Statistics

Omer Weissbrod,1,2,4,* Jonathan Flint,3 and Saharon Rosset1,*

Methods that estimate SNP-based heritability and genetic correlations from genome-wide association studies have proven to be powerful

tools for investigating the genetic architecture of common diseases and exposing unexpected relationships between disorders. Many

relevant studies employ a case-control design, yet most methods are primarily geared toward analyzing quantitative traits. Here we

investigate the validity of three common methods for estimating SNP-based heritability and genetic correlation between diseases. We

find that the phenotype-correlation-genotype-correlation (PCGC) approach is the only method that can estimate both quantities

accurately in the presence of important non-genetic risk factors, such as age and sex. We extend PCGC to work with arbitrary genetic

architectures and with summary statistics that take the case-control sampling into account, and we demonstrate that our new

method, PCGC-s, accurately estimates both SNP-based heritability and genetic correlations and can be applied to large datasets without

requiring individual-level genotypic or phenotypic information. Finally, we use PCGC-s to estimate the genetic correlation between

schizophrenia and bipolar disorder and demonstrate that previous estimates are biased, partially due to incorrect handling of sex as a

strong risk factor.
Introduction

Much of the theory underlying methods for estimating

two key measures of disease genetic architecture, SNP-

based heritability and genetic correlation, was designed

for cohort studies of quantitative phenotypes. Conse-

quently, when applied to studies of categorical traits, these

methods may contain unacknowledged biases that may

affect estimation accuracy.

The problem of accurately estimating SNP-based herita-

bility and genetic correlation is usually translated into

questions about variance and covariance components in

properly defined mathematical models. A commonly

held misconception states that variance components can

be accurately calculated in case-control studies by virtue

of applying a correction factor to results derived under a

quantitative trait framework.1–4 However, this is not true

when risk factors (including risk variants) exert a strong

influence on disease risk. In this paper we examine the val-

idity of approaches for estimating heritability, genetic

covariance, and correlation (covariance standardized to a

[�1, 1] scale) in case-control studies of disease.

Broadly speaking, there are three common approaches

for carrying out these tasks. The first is based on restricted

maximum likelihood estimation (REML) in the linear

mixed model (LMM)5 framework and is implemented in

some widely used tools.6–8 This approach has been exten-

sively applied to heritability estimation1,5,7 and to genetic

correlation estimation.7,9–11

The second approach is based on regression of pheno-

type correlations on genotype correlations and relies on
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less restrictive assumptions than the LMM approach.

This approach was originally designed for quantitative

phenotypes, in which case it is known as Haseman-Elston

(HE) regression.12,13 It has recently been adapted for case-

control studies, in which case it is called PCGC.14,15 A com-

mon misconception states that PCGC is the same as HE

regression (up to a scaling factor), but this equivalence

holds only in the absence of covariates.14 Rather than be-

ing an extension of HE regression, PCGC was carefully

derived from first principles to apply to all relevant situa-

tions in case-control studies. In this paper we extend

PCGC to also estimate genetic correlation and to accom-

modate arbitrary genetic architectures.

The third approach is the family of linkage disequilib-

rium score regression (LDSC) methods, which estimate

heritability and genetic correlation while accounting for

LD,2,16 and have recently been applied to numerous

large-scale studies.17–33 LDSC is attractive because it re-

quires only publicly available summary statistics from ge-

netic studies, thereby avoiding privacy and logistical

concerns.34 Other summary-statistics-based methods

have also been proposed recently but we focus on LDSC,

as alternative methods cannot be applied in the presence

of LD3 or are not directly designed for categorical pheno-

types.4,35,36

Here we examine all three approaches under a common

set of assumptions that is shared by all of them. We

demonstrate that even when these assumptions hold,

LDSC and REML yield biased estimates in the presence

of covariates representing major risk factors such as

sex and age, due to incorrect modeling of case-control
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ascertainment. In contrast, PCGC remains unbiased

under all settings. We further develop a new version of

PCGC, called PCGC-s, that can work with summary statis-

tics that explicitly take the case-control sampling into

account.

We demonstrate the value of PCGC-s by investigating

the genetic correlation between schizophrenia and bipo-

lar disorder and between type 1 diabetes and coronary

artery disease. We demonstrate that the estimates of

both quantities are severely biased under alternative

methods, partially due to incorrect handling of sex—an

important risk factor. Finally, we provide best practice rec-

ommendations depending on the available data and the

trait characteristics.
Material and Methods

Underlying Mixed Effects Model
We adopt the theoretical framework of the liability threshold

model,37,38 which is the same model assumed by REML1 and

LDSC2 for analysis of case-control studies. This model assumes

that every individual i has a latent normally distributed liability

value for trait t, ait , such that case subjects of trait t are individuals

whose liability exceeds a given cutoff.

We additionally assume that the liability of trait t can be decom-

posed into three terms corresponding to a covariates effect qit , a ge-

netic effect git , and an environmental effect eit , a
i
t ¼ qit þ git þ eit ,

such that the vectors of covariate effects qt ¼ ½q1t ;.; qnt �
T
, of

genetic effects g t ¼ ½g1t ;.; gnt �
T
, and of environmental effects

et ¼ ½e1t ;.; ent �T are given by:

qt ¼ Ctbt

g t � N
�
0;s2

gtGt

�

et � N
�
0;

�
1� s2

gt

�
I
�
:

Here, Ct is a design matrix of covariates, bt is a column vector of

fixed effects, Gt is a matrix of genetic similarity coefficients

(defined below), s2gt is a genetic variance parameter, and I is

the identity matrix. The matrix Gt is typically given by

Gt ¼ XtWXT
t ; where Xt is an n3m matrix of m standardized sin-

gle-nucleotide polymorphisms (SNPs), andW is anm3m diagonal

weighting matrix, which assigns different weights to different

SNPs. This definition can accommodate any linear genetic archi-

tecture; it includes the standard model used by common REML

software packages6,7 and by LDSC2,16 under the special case

W ¼ ð1=m ÞI. However, it can also accommodate minor allele fre-

quency (MAF)-dependent and LD-dependent architectures,8,39

which correspond to a suitable choice of W (Supplemental

Methods).

Under these assumptions, every individual i has an observed

affection status indicator for trait t, yit , such that yit ¼ 1 if and

only if ait > tt , where tt ¼ F�1ð1� KtÞ þ E½Ct �Tbt is the affection

cutoff for trait twith prevalence Kt , andwhereF�1ð,Þ is the inverse
cumulative standard normal density.

For a pair of traits t1, t2, the concatenated liabilities vector fol-

lows a multivariate normal distribution,
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where Gt1 ;t2 ¼ Xt1WXT
t2

is the matrix of between-study genetic

similarity coefficients (i.e., the genetic similarity coefficients

between each individual in study 1 and each individual in study 2),

rt1 ;t2 is the genetic covariance, and I t1; I t2 are identity matrices of

suitable dimensions.

The quantities we investigate in this paper are defined as

follows:

(a) The SNP-based heritability of trait t, defined as

h2
t bvarðgitÞ=varðait Þ.

(b) The SNP-based genetic covariance of two traits t1, t2,

defined as rt1 ;t2bcovðgit1 ;git2 Þ.
(c) The SNP-based genetic correlation of two traits t1, t2,

defined as rgbrt1 ;t2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgit1 Þvarðgit2 Þ

q
.

In the remainder of this article we use the shortened terms ‘‘her-

itability,’’ ‘‘genetic covariance,’’ and ‘‘genetic correlation’’ for

brevity.
The Effect of Ignoring Covariates
The main contribution of PCGC-s over LDSC is its ability to ac-

count for covariates. Although it is rarely possible to measure

all covariates affecting the trait of interest, covariates with

a strong effect (such as the effect of sex on coronary artery dis-

ease) are often measured. This raises the question of whether

omission of such important covariates affects heritability and ge-

netic correlation estimates. We prove in the Supplemental

Methods that if a method can provide unbiased estimates in

settings with no covariates, it can also provide unbiased estimates

in settings with covariates by simply ignoring these covariates,

assuming that the covariate effects are (1) normally distributed

and (2) uncorrelated with the genetic effect. The main idea

behind the derivation is that the environmental effect represents

the aggregated effect of unmeasured covariates and can thus

absorb the effect of omitted covariates when these assumptions

hold.

The assumption of normality approximately holds if a trait is

influenced by a large number of covariates with small effects,

owing to the central limit theorem. However, many traits

are strongly influenced by a small number of non-normally

distributed covariates, such as sex. Heritability estimates with

omitted covariates can become inaccurate in the presence of

such strong covariates. In contrast, genetic correlation is accu-

rately estimated in the simulations even in the presence of

strong non-normal covariates, suggesting that the errors in

the estimation of genetic covariance and genetic variance

approximately cancel out when dividing one by the other.

However, this observation is currently unsupported by statistical

theory.

The assumption that covariates are uncorrelated with the ge-

netic effect is often violated when using heritable covariates,

such as genetic principal components. This problem can be

circumvented by regressing the omitted covariates out of the



genotypes and correcting the individual-level affection cutoffs

prior to parameter estimation or to computing summary statistics

(Supplemental Methods). We caution that regression of covariates

out of binary phenotypes as suggested in Bulik-Sullivan40 can

yield incorrect estimates in case-control studies, even for genetic

correlation (as verified in the Results).
Marginal and Conditional Heritability
An important point often overlooked in heritability estimation is

that covariates such as sex and age also contribute to the liability

variance. Since the liability is non-identifiable, it is typically

assumed to have a unit variance when conditioning on measured

covariates. The liability is defined as ait ¼ git þ eit þ ðCi
tÞ

T
bt , and

thus its marginal variance is given by var½git þ eit � þ var½ðCi
tÞ

T
bt � ¼

1þ var½ðCi
t Þ

T
bt � (assuming that covariates are uncorrelated with

the genetic effects). Consequently, heritability is given by

s2gt= 1þ var Ci
t

� �T
bt

	 
	 

(Supplemental Methods). Alternatively,

one could assume that the marginal variance is 1, in which case

the conditional variance is smaller than 1.

In practice, many studies define the genetic variance s2gt as the

heritability, even in the presence of covariates. We therefore

denote the former definition as marginal heritability and the latter

definition as conditional heritability, because the latter definition

uses the variance of the liability conditional on measured

covariates.

In this paper we consider marginal heritability for two rea-

sons: (1) this definition is arguably more natural, as different

studies using different covariates are ultimately interested in esti-

mating the same quantity; and (2) LDSC tends to severely under-

estimate the conditional heritability (as compared to less severe

overestimation of marginal heritability). Therefore, we do not

consider estimation of conditional heritability further in this

paper.
PCGC-s with No Covariates
PCGCwith no covariates estimates rt1 ;t2 by regressing standardized

phenotypic correlations ~yit1~y
j
t2

on genetic similarity coefficients

G
i;j
t1;t2

and then dividing the resulting estimator by a constant

f ðt1; t2Þ (Supplemental Methods). This estimation encapsulates

both genetic covariance and heritability, which for a trait t with

no covariates is given by rt;t.

The PCGC estimator can be computed without individual-level

data by using the following two summary statistics:

zktb
1ffiffiffiffiffi
nt

p
Xnt
i¼1

~yitX
k;i
t

br k;ht b
1

nt

Xnt
i¼1

Xk;i
t Xh;i

t ;

where nt is the sample size of study t and Xk;i
t is the value of the kth

variant of individual i in study t, after standardization. It is also

possible to use logistic regression-based or other types of summary

statistics, but this constitutes an approximation (Supplemental

Methods).

Using these quantities and denoting St1 ;t2 as the set of all pairs of

indices i, j that refer to the same individual shared between the two

studies, the PCGC estimator can be written as:
The
brpcgc�s
t1 ;t2

b
1

f ðt1; t2Þ

ffiffiffiffiffiffiffiffiffiffiffi
nt1nt2

p
m

Xm

k¼1
zkt1z

k
t2
�
X

ði;jÞ˛St1 ;t2
G
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t1 ;t2

�
~yit1~y
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t2

�
nt1nt2

m2

Xm

k;h¼1
brk;ht1

brk;ht2
�
X

ði;jÞ˛St1 ;t2

�
Gi;j
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�2
;

where m is the number of variants and f ðt1; t2Þ is given by:

f ðt1; t2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pt1ð1� Pt1ÞPt2ð1� Pt2Þ

p
fðtt1Þfðtt2Þ

Kt1ð1� Kt1ÞKt2ð1� Kt2Þ
:

Here, Kt and Pt are the prevalence of trait t and the case-control

proportion of study t, respectively, tt ¼ F�1ð1� Kt Þ is the liability

cutoff, and fð,Þ, Fð,Þ are the density and cumulative distribution

of the standard normal distribution, respectively.

The resulting estimator approximately coincides with the

LDSC estimator if there are no overlapping individuals (i.e.,

individuals that are included in both studies) and the in-

sample LD estimates in both studies are the same as in the refer-

ence population used by LDSC.40 The extension to estimating

multiple variance components or for using MAF and LD-

dependent genetic architectures is straightforward (Supplemental

Methods).

The second term of the numerator and of the denominator can

be computed by research groups with access to the genotypes and

phenotypes of overlapping individuals, which often consist of

control cohorts, or can be approximated via the approximation

G
i;j
t1 ;t2

z1:0 for overlapping individuals, as done implicitly in

LDSC.2 However, we caution that even minor deviations (which

can occur for example by regressing principal components

out of genotypes) can affect the approximation (Supplemental

Methods).

A particularly convenient property of brpcgc�s
t1 ;t2

in the absence of

covariates is that when estimating the genetic correlation, all

terms dependent on the trait prevalence vanish. This is conve-

nient because the true trait prevalence is often not known with

certainty.

PCGC-s with Covariates
In the presence of covariates, PCGC estimates rt1;t2 by regressing

~yit1~y
j
t2
on G

i;j
t1 ;t2

Q
i;j
t1 ;t2

, where Q
i;j
t1 ;t2

is a quantity that depends on the

covariates of individuals i and j, and so the regression constant is

different for every pair of individuals.14 The corresponding

PCGC-s estimator is given by:

brpcgc�covar�s
t1 ;t2

b

1

m

Xm

k¼1
zk;covart1

zk;covart2
�
X

ði;jÞ˛St1 ;t2
~yit1~y

j
t2
Gi;j

t1 ;t2
Qi;j

t1 ;t2

1

m2

Xm

k;h¼1
br k;h;covart1

brk;h;covart2
�
X

ði;jÞ˛St1 ;t2

�
Gi;j

t1 ;t2
Qi;j

t1 ;t2

�2
:

The above quantities are defined as follows:

zk;covart b
Xnt
i¼1

~yitX
k;i
t

X1

a¼0

ui
t;a

br k;h;covart b
Xnt
i¼1

Xk;i
t Xh;i

t

X1
a;b¼0

ui
t;au

i
t;b

Qi;j
t1 ;t2

b
X1

a;b¼0

ui
t1 ;a

uj
t2 ;b

;where ui
t;0; u

j
t;1are given by :

ui
t;0b

f
�
tit
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi
t

�
1� Pi

t

�q 	
Ki

t þ
�
1� Ki
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�Ktð1� PtÞ
Ptð1� KtÞ
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i
t
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uj
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f
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t
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�
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Pj
t 1� Pj

t

� �r
Kj

t þ 1� Kj
t

� �Kt 1� Ptð Þ
Pt 1� Ktð Þ

	 
 1� Pj
t

� �
:

Here, Ki
t is the probability of individual i being a case conditional

on her covariates, Pi
t is the probability of individual i being a case

conditional on her covariates and on being ascertained into the

study, and tit ¼ F�1ð1� Ki
t Þ is the liability cutoff of individual i

conditional on her covariates.

The full derivation, extensions for multiple variance compo-

nents and for MAF and LD-dependent architectures, and an

approximation that requires a single summary statistic instead of

using brk;h;covart (which requires a number of statistics equal to the

number of pairs of variants) are provided in the Supplemental

Methods.

As in the case of no covariates, the second term of the numerator

and denominator can be computed by research groups with access

to overlapping individuals, which often consist of control cohorts.

Third parties with no access to overlapping individuals can

approximate the terms on the right-hand sides of the numerator

and the denominator given appropriate summary statistics (Sup-

plemental Methods).
Results

We are interested in estimating the following quantities

(see Material and Methods for exact definitions): (a) herita-

bility, the fraction of liability variance explained by ge-

netics; (b) genetic covariance, the covariance between the

genetic components of two traits on the liability scale;

and (c) genetic correlation, the genetic covariance stan-

dardized to a [�1,1] scale.

We are concerned with the three following questions:

1. Can quantities (a)–(c) be estimated reliably given

genotypic and phenotypic data?

2. Can quantities (a)–(c) be estimated reliably given

summary statistics via LDSC?

3. Can quantities (a)–(c) be estimated reliably given

summary statistics via an alternative method?

The answers to questions 1 and 2 are summarized in

Table S1. Briefly, PCGC is the only method that can esti-

mate all quantities of interest under all investigated set-

tings. REML provides inconsistent estimates of quantities

(a) and (b) and empirically provides consistent estimates

of quantity (c). LDSC can provide consistent estimates of

quantities (a) and (b) in the absence of covariates and pro-

vides consistent estimates of quantity (c) when no covari-

ates are included in the analysis. To answer question 3, we

present a reformulation of PCGC called PCGC-s that can

estimate quantities (a)–(c) reliably using only summary sta-

tistics, both with and without covariates (Supplemental

Methods).

Simulation Studies

We conducted simulation studies to investigate the

behavior of the evaluated methods in case-control studies;
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such simulations require first obtaining a very large pool

with hundreds of thousands of individuals, and then sam-

pling a small fraction of case subjects according to the trait

prevalence.1,14,16,41

Our simulations were based on the liability threshold

model. Briefly, for every non-genetic covariate k we

sampled two independent effect for two different traits

(t1 and t2), denoted as bkt1 ; b
k
t2
, from a normal distribution.

In addition, for every SNP j we sampled two correlated ef-

fect sizes, b
j
t1
; b

j
t2
. A subset of these effects were equal to

zero (determined according to the desired trait polygenic-

ity). Every other pair of effects was sampled independently

from a bivariate normal distribution, whose covariance

matrix was determined according to the desired heritabil-

ities and genetic correlation of the two traits. In most sim-

ulations the variance of all pairs of effects was the same,

though we also evaluated MAF and LD-dependent archi-

tectures, as described below.

For every individual i, we generated a vector of uni-

formly spaced SNPs whose LD decays exponentially with

distance, denoted as xi, and a vector of independent cova-

riates denoted as ci. Finally, for every individual i and for

every trait t˛ft1; t2g, we generated (1) a normally distrib-

uted environmental effect eit ; (2) a liability given by ait ¼
ðxiÞTbt þ ðciÞTbt þ eit ; and (3) a case/control label, where

case subjects are individuals with ait > tt , with tt being

the empirical 1 � Kt percentile of the liabilities in the pop-

ulation, and Kt is the prevalence of trait t. We kept on sam-

pling individuals until obtaining the desired number of

case and control subjects. The full simulation details are

provided in the Supplemental Methods.

Our simulations span a wide range of scenarios, with

various levels of prevalence, heritability, genetic correla-

tion, sample sizes, number of SNPs, number of covariates,

LD patterns, fraction of shared controls, and trait polyge-

nicity. In each experiment we varied one or more of the

above parameters while keeping the others fixed. The

default simulation parameters used 1% prevalence, 50%

heritability, and 50% genetic correlation, with each study

having 2,000 case subjects, 1,000 unique and 1,000 over-

lapping control subjects, and 10,000 SNPs whose LD de-

cays exponentially with distance, and with a correlation

of between 25% and 90% between consecutive SNPs

(consequently, the correlation between every pair of

SNPs separated by at least 25 SNPs is<0.001 in all settings).

In most simulations all SNPs influenced the phenotype,

though we verified that relaxing this assumption does

not affect the results (see details below). 100 simulations

were conducted for each unique combination of settings.

The examined methods included (1) PCGC-s; (2) PCGC-

s-LD, which is an approximate version of PCGC-s that uses

external LD estimates (but uses data about overlapping in-

dividuals; Supplemental Methods); (3) LDSC with omitted

covariates (LDSC-omit); and (4) REML, using the imple-

mentation in GCTA6 (exact execution details are provided

in the Supplemental Methods). Note that PCGC-s is

exactly equivalent to PCGC when all required summary
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Figure 1. The Effect of Covariate Strength
PCGC-s and PCGC-s-LD estimate all param-
eters accurately under all settings; LDSC-
omit estimates of heritability and genetic
covariance become increasingly inaccurate
as the covariates strength increases; REML
misestimates heritability and genetic covari-
ance under all settings. All methods esti-
mate genetic correlation accurately. The
black horizontal lines indicate the true
parameter values. 100 experiments were
performed for each unique combination of
settings, and each study included 2,000
case subjects and 2,000 control subjects.
statistics are provided. LDSC-omit refers to LDSC that does

not include any covariates in the analysis and was used

because explicit inclusion of covariates can lead to highly

biased estimates, as demonstrated below. In most simula-

tions LDSC-omit was based on our own implementation,

to avoid confounding the analysis by implementation de-

tails. Specifically, our implementation of LDSC-omit used a

predetermined intercept and did not weight summary sta-

tistics by their posterior variance, similarly to PCGC-s-LD

(see Discussion for elaboration on these issues). In addi-

tional simulations described below, we demonstrated that

when using the ldsc software instead of our own imple-

mentation, LDSC-omit became less accurate.

Our first experiment examined the impact of covariate

effect magnitude on the estimation of heritability, genetic

covariance, and genetic correlation. We simulated datasets

with five binary covariates that explained various fractions

of the liability variance, where the first covariate accounted

for 95% of the aggregated covariates effect. All methods

estimated correlation well, but PCGC-s and PCGC-s-LD

were the only methods that estimated the two other quan-

tities accurately (Figure 1). Both PCGC-s and PCGC-s-LD

estimated heritability significantly more accurately than

LDSC-omit (p < 2.1 3 10�2, p < 1.7 3 10�6, p < 6.5 3

10�24 for covariates explaining 12.5%, 25%, and 50% of

the liability variance, respectively; binomial test for

PCGC-s-LD; PCGC-s results were effectively the same).

The accuracy of LDSC-omit improved as effect sizes

became smaller; LDSC-omit and PCGC give very similar es-

timates in the absence of covariates, as expected from

theory (Supplemental Methods). REML consistently

underestimated heritability despite using the correction

for case-control ascertainment implemented in GCTA.1

We note that the extent of under-estimation by REML is

not fixed with a known ratio but depends on various un-

known parameters.14 We also obtained similar results

when ignoring the contribution of covariates to the liabil-

ity variance (Material and Methods, Figure S1).
The American Journal of H
The next experiment examined the

implications of having normal versus

non-normal covariate effects, by

considering three settings: (1) a single

binary covariate, (2) a single normally
distributed covariate, and (3) 20 equally strong binary co-

variates. In all settings the covariates jointly explained

40% of the liability variance. Setting 1 encodes a non-

normal aggregated effect, whereas settings 2 and 3 encode

a normal and an approximately normal effect (owing to

the central limit theorem), respectively. In setting 1,

LDSC-omit was substantially less accurate than PCGC-s

(p < 3.21 3 10�19; binomial test) and PCGC-s-LD

(p < 2.73 3 10�20; binomial test), because its underlying

model is violated in the presence of strong non-normally

distributed covariates (Figure 2, Material and Methods).

The bias of LDSC-omit decreased when decreasing the

magnitude of the covariate effects, similarly to the results

shown in Figure 1.

In additional experiments, we simulated data with one

strong and four weak binary covariates as in the first exper-

iment, where the covariates jointly explained 25% of the

liability variance, and verified that the results remained

similar under various levels of heritability (Figure S2), ge-

netic correlation (Figure S3), prevalence (Figure S4), LD

(Figure S5), fraction of shared controls (Figure S6), numbers

of covariates (Figure S7), sample sizes (Figure S8), numbers

of simulated causal SNPs (Figure S9), and trait polygenicity

(Figure S10). We also explored running LDSC-omit using

the ldsc software (Figure S11) and using logistic regres-

sion-based summary statistics (Figures S12 and S13).

We also examined the effect of using LDSC without

omitting covariates, by regressing measured covariates

out of the phenotypes and genotypes prior to computing

summary statistics, as previously recommended.16,40 Our

results demonstrate that LDSC estimates are severely

down-biased in this setting, with an average bias of more

than 10% in heritability and covariance estimation, and

of more than 5% in correlation estimation, under realistic

settings (Figures S14 and S15).

Next, we performed a set of experiments with aMAF and

LD-dependent genetic architectures. Specifically, we simu-

lated phenotypes according to the LDAK model,8 which
uman Genetics 103, 89–99, July 5, 2018 93
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Figure 2. The Effect of the Covariate
Effects Distribution
Setting (a) includes a single binary covari-
ate; setting (b) includes a single normally
distributed covariate; setting (c) includes
20 binary variables with equal strength,
yielding an approximately normal aggre-
gated effect owing to the central limit theo-
rem. PCGC-s and PCGC-s-LD are the only
methods that accurately estimate heritabili-
ty and genetic covariance in setting (a),
where the covariates effects distribution is
far from normal. 100 experiments were per-
formed for each unique combination of set-
tings, and each study included 2,000 case
subjects and 2,000 control subjects.
replaces the standard genetic similarity matrix Gt ¼
XtX

T
t =m with the matrix Gt ¼ XtWXT

t =M, where W ¼
diag½ðpjð1� pjÞÞ0:75wj �, pj is the MAF of SNP j, wj minimizes

the L2 norm of ð1� Pm
k¼1ðrk;jÞ2wkÞ, and M ¼ P

kWkk. All

methods yielded biased estimates of heritability and ge-

netic covariance when using the incorrect genetic similar-

ity matrix Gt ¼ XtX
T
t =m (Figure S16). However, PCGC-s

and PCGC-s-LD became unbiased when using the correct

genetic similarity matrix, whereas the other methods

remained biased even when using the correct genetic sim-

ilarity matrix (Figure S17). Interestingly, all methods

yielded empirically unbiased estimates of genetic correla-

tion even when using an incorrect model, suggesting

that the approximation errors cancel themselves out,

similarly to the patterns observed when not correctly

modeling case-control ascertainment. A numerical sum-

mary of all the results reported in this section is provided

in Table S2.

Finally, we note that PCGC-s-LD is highly computation-

ally efficient. Since PCGC-s-LD uses only summary statis-

tics, it can perform estimation for data with millions of

variants and hundreds of thousands of individuals in less

than 1 hr (results not shown).

Estimating the Genetic Architecture of Schizophrenia

and Bipolar Disorder

To demonstrate the behavior of the methods on real data,

we studied the heritability and genetic correlation of

schizophrenia (SCZ)42 and bipolar disorder (BP).43 To pre-

vent confounding due to population stratification,44 we

restricted the analysis to two highly concordant Swedish

datasets consisting of 1,745 SCZ-affected case subjects,

1,268 BP-affected case subjects, and 6,293 control subjects,

2,566 of which are shared between the studies42,43 (Supple-

mental Methods). The covariates included 10 principal

components and sex, which is a major risk factor for

both diseases.
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The PCGC-s heritability estimates for

SCZ and BP were 39.2% and 41.7%,

respectively. The estimated genetic cor-

relation was 42.4%, which is substan-
tially lower than previous estimates of 68% using REML10

and 79% using LDSC.2We further verified that when omit-

ting covariates, thePCGC-s estimates increased to60%, sug-

gesting that incorrect treatment of non-genetic risk factors

can lead to inflated estimates.When invoking LDSC on the

same data using the ldsc software, the estimated correlation

could not be computed when omitting covariates due to

negative estimated heritabilities and was 15.8% when re-

gressing the covariates out of the phenotypes (Table 1).

We also estimated the heritabilities and genetic correlation

under theLDAKmodel8 andobtainedvery similar estimates

(Table S3).Namely, theheritability estimates for SCZ andBP

were 40.0% and 46.1%, respectively, and the estimated ge-

netic correlation was 43.8%. Overall, we conclude that

improper handling of covariates and of sample overlap in

case-control studies can lead to substantially biased esti-

mates and to incorrect conclusions regarding the genetic ar-

chitecture of genetic diseases.

Estimating the Genetic Architecture of Type 1 Diabetes

and Coronary Artery Disease

To further evaluate PCGC-s, we studied the correlation be-

tween type 1 diabetes (T1D) and coronary artery disease

(CAD), using data from the Wellcome Trust Case Control

Consortium 1 (WTCCC1).45 It is known that T1D is associ-

ated with an increased risk for CAD,46 but the role of ge-

netics in this association is not clear. We chose to explore

this example because of the expected impact of covariates

on the result: T1D is very strongly affected by SNPs in the

major histocompatibility complex (MHC) region, and sex

is a major risk factor for CAD. We thus modeled the effects

of these risk factors as fixed rather than random and inves-

tigated the implications of inclusion and exclusion of

these covariates. The analysis details are provided in the

Supplemental Methods.

The results demonstrated the existence of a positive ge-

netic correlation between T1D and CAD and corroborated



Table 1. Results of Real Data Analysis of Psychiatric Disorders

Covariates

SCZ BP

Correlationbs2
g

bh2 bs2
g

bh2

Omitted PCGC-s 0.127 (0.059) 0.127 (0.059) 0.259 (0.044) 0.259 (0.044) 0.561 (0.149)

PCGC-s-LD 0.139 (0.047) 0.139 (0.047) 0.282 (0.057) 0.282 (0.057) 0.602 (0.178)

LDSC-omit 0.467 (0.101) 0.467 (0.101) 0.293 (0.109) 0.293 (0.109) 0.451 (0.190)

LDSC-omit þintercept 0.467 (0.101) 0.467 (0.101) 0.293 (0.109) 0.293 (0.109) –

Included PCGC-s 0.399 (0.068) 0.392 (0.062) 0.426 (0.051) 0.417 (0.045) 0.437 (0.077)

PCGC-s-LD 0.438 (0.059) 0.430 (0.049) 0.465 (0.059) 0.455 (0.058) 0.424 (0.084)

LDSC 0.412 (0.084) 0.405 (0.070) 0.356 (0.105) 0.348 (0.103) 0.527 (0.176)

LDSCþintercept 0.412 (0.084) 0.405 (0.077) 0.356 (0.105) 0.349 (0.093) 0.158 (0.112)

Shown are the estimated values of the genetic variance s2g (also termed the conditional heritability in this paper), the marginal heritability h2 (which is equal to s2g
when no covariates are present and smaller than s2g in the presence of covariates) and the genetic correlation. Standard errors were computed via a block jackknife
of 200 blocks of consecutive SNPs. LDSCþintercept is the LDSC estimator when fitting an intercept from the data.2 LDSC-omit is different from PCGC-s-LD with
omitted covariates because of differences in the predetermined intercept value due to normalization (Supplemental Methods). LDSC results were computed using
the ldsc software. Values marked with ‘‘–’’ could not be computed because of negative or illegal parameter estimates.
the simulation studies (Table 2, Table S4). As expected, in-

clusion of covariates had a minor effect on PCGC-s esti-

mates, decreasing the heritability estimate for T1D from

23.7% to 18.3% and for CAD from 40.5% to 39.9%, and

slightly increasing the genetic correlation estimate from

18.1% to 19.2%. The LDSC heritability estimates for T1D

and CAD when omitting covariates (35% and 58.8%,

respectively) were greater than those of PCGC-s (consistent

with our simulation results) and the correlation estimate

was also greater (28.4%). LDSC heritability estimates

were nonsensical (non-positive or greater than one)

when including covariates or fitting an intercept rather

than using a predetermined one. REML estimation of ge-

netic correlation using gcta failed to converge.

We conclude that accounting for covariates can substan-

tially affect heritability and genetic correlation estimates.

However, we caution that the results are sensitive to pre-

processing of the data (Tables S5–S7, Supplemental

Methods; see Discussion). We also present genetic correla-

tion estimates between all phenotypes included in the

WTCCC1 study, confirming some well-known significant

correlations, such as between hypertension and coronary

artery disease; and others that have been tentatively sug-

gested in the literature, such as between rheumatoid

arthritis and coronary artery disease47,48 (Table S8).
Discussion

Our major conclusions regarding the existing approaches

can be summarized as follows. (1) REML severely misesti-

mates heritability and genetic covariance in case-control

studies under all settings (as has been pointed out previ-

ously7,14,41). In settings without binary covariates, REML

accurately estimates genetic correlation, but it can become

slightly biased in the presence of such covariates. (2) LDSC

estimates are accurate in the absence of covariates but can
The
become biased in the presence of binary covariates with

strong effects. Importantly, regressing covariates out of

phenotypes prior to running LDSC can lead to a very se-

vere bias and should always be avoided.We further caution

that the software implementation of LDSC can lead to

different estimates than those of PCGC-s even in the

absence of covariates due to different data preprocessing

procedures, as discussed below. (3) PCGC accurately esti-

mates all quantities of interest directly or with summary

statistics. (4) Standard summary statistics cannot be used

to estimate genetic correlation for traits with binary non-

genetic risk factors; we propose here a novel formulation

of privacy-preserving summary statistics which can be

used for this task.

Another potentially problematic aspect of genetic corre-

lation estimation is analysis of cohorts from ancestrally

divergent populations. Our preliminary analysis demon-

strated that analysis of such cohorts can lead to inflated

and unstable genetic correlation estimates for all methods,

even when using a large number of PCs as covariates (re-

sults not shown). We therefore opted to focus our analysis

on two Swedish cohorts. Previous estimates of the genetic

correlation between schizophrenia and bipolar disorder

were based on cohorts from divergent European popula-

tions, whichmay be another reason for the large difference

between our estimates and previous ones.2,10,44

When comparing different methods, it is important to

distinguish between the underlying mathematics and the

software implementation. Even though PCGC-s and

LDSC are roughly equivalent in the absence of covariates,

the software implementation of PCGC-s is careful to

perform case-control-aware data preprocessing (e.g., avoid-

ing in-sample SNP standardization, and avoid assuming

that the diagonal of the genetic similarity matrix is exactly

1.0; Supplemental Methods). This can lead to major differ-

ences between the estimates of the software implementa-

tions in real data analysis. We therefore recommend that
American Journal of Human Genetics 103, 89–99, July 5, 2018 95



Table 2. Results of Real Data Analysis of T1D and CAD

Covariates

T1D CAD

Correlationbs2
g

bh2 bs2
g

bh2

Omitted PCGC-s 0.237 (0.044) 0.237 (0.044) 0.405 (0.063) 0.405 (0.063) 0.181 (0.115)

PCGC-s-LD 0.245 (0.045) 0.245 (0.045) 0.420 (0.065) 0.420 (0.065) 0.181 (0.115)

LDSC-omit 0.350 (0.046) 0.350 (0.046) 0.588 (0.066) 0.588 (0.066) 0.284 (0.074)

LDSC-omit þintercept 0.013 (0.105) 0.013 (0.105) 0.020 (0.109) 0.020 (0.109) –

Included PCGC-s 0.241 (0.066) 0.183 (0.050) 0.435 (0.070) 0.399 (0.062) 0.192 (0.139)

PCGC-s-LD 0.250 (0.069) 0.190 (0.052) 0.451 (0.065) 0.413 (0.060) 0.191 (0.139)

LDSC �1.75 (0.038) – �0.33 (0.058) – –

LDSCþintercept �0.03 (0.046) – �0.07 (0.09) – –

The table fields are the same as in Table 1. LDSC results are based on our own implementation to provide a detailed comparison with PCGC-s that is not
confounded by implementation details. Results using the ldsc software are provided in Table S4.
researchers use our software implementation of PCGC-s for

analysis of case-control studies regardless of the presence

of covariates, because PCGC-s is careful to preprocess

case-control data correctly.

An important issue often raised in the context of herita-

bility estimation regards the validity of the assumed

model. One specific concern concerns the use of allele fre-

quency and LD-dependent architectures.8,39,49,50 While

important, this concern is not directly related to our re-

sults, as PCGC-s can accommodate arbitrary linear genetic

architectures (Supplemental Methods). Additional con-

cerns include the difference between ‘‘SNP heritability’’

and ‘‘narrow sense heritability’’ which assumes that all

causal SNPs are measured7,51 and the potentially larger dif-

ference between narrow sense heritability and the true ge-

netic heritability in the presence of non-additive effects.52

These concerns are well founded and should certainly be

addressed in practice. However, they are not directly

related to our study, which focuses on the performance

of different methods when the model assumed by these

methods (liability threshold model and additivity) holds.

We believe our conclusion, that commonly used methods

can be biased under their ownmodeling assumptions, is of

major interest even given the concerns about the validity

of the assumptions themselves.

An important question that has been debated recently

concerns the relationship between causal effect sizes and

MAF and LD patterns.8,39,49 PCGC-s can be readily modi-

fied to use any linear genetic architecture and can thus

accommodate different genetic architectures. Several re-

searchers recently advocated comparing between different

models via the data likelihood,8 but unfortunately exact

likelihood estimation is infeasible in ascertained case-con-

trol studies. The determination of genetic architectures

under case-control studies is therefore a potential line of

future work.

Finally, the LDSC framework includes several techniques

not considered in this work: estimation of the contribution

of functional annotations to the liability variance,53
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improved estimation by weighting of summary statis-

tic,16 and fitting an intercept from the data rather than

using a predetermined one.16 The first technique can be

readily adapted into the PCGC-s framework (Supplemental

Methods). We do not recommend using the other tech-

niques in case-control studies, as the derivations underly-

ing these techniques assume an additive phenotype with

genotype-environment independence. Adapting these

procedures into case-control studies under a formal theo-

retical framework remains a potential avenue for future

work.
Supplemental Data

Supplemental Data include 17 figures, 8 tables, and Supplemental

Methods (mathematical derivations) and can be found with this

article online at https://doi.org/10.1016/j.ajhg.2018.06.002.
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