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Cardiovascular diseases are the leading cause of morbidity and
mortality worldwide. Regenerative therapy has been applied to
restore lost cardiac muscle and cardiac performance. Induced
pluripotent stem cells (iPSCs) can provide an unlimited source
of cardiomyocytes and therefore play a key role in cardiac
regeneration. Despite initial encouraging results from pre-clin-
ical studies, progress toward clinical applications has been
hampered by issues such as tumorigenesis, arrhythmogenesis,
immune rejection, scalability, low graft-cell survival, and
poor engraftment. Here, we review recent developments in
iPSC research on regenerating injured heart tissue, including
novel advances in cell therapy and potential strategies to over-
come current obstacles in the field.

The prevalence of cardiovascular diseases (CVDs) globally has
reached alarming levels.1–3 In the United States, the economic burden
of CVD is expected to reach over $1 trillion dollars annually by 2035.4

Despite significant progress in prevention, diagnosis, and treatment
of CVD and heart failure (HF), in severe cases, there is no alternative
for patients other than heart transplantation.5,6 The limited regener-
ative capacity of the adult heart is insufficient for repairing the
massive loss of cardiac tissue and particularly of cardiomyocytes
(CMs), leading to maladaptive cardiac remodeling and the subse-
quent development of HF.7,8 Therefore, the adult heart is a prime
target for the development of cardiac regenerative strategies, with
the ultimate goal of replacing the lost myocardial tissue with function-
ally active and electrically coupled CMs.
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Overview of Cardiac Regeneration

Numerous strategies have been developed to use diverse cell types to
serve as potential sources of newly formed CMs. These cell types
include skeletal myoblasts, bone-marrow-derived mononuclear cells
(BMMNCs), mesenchymal stem cells (MSCs), and adult cardiac
stem cells.9 The abilities of these cells to repair myocardial tissue
have been tested mainly in pre-clinical models. Some of these studies
have led to clinical trials, but while safe, so far these approaches have
only been marginally efficacious.10,11 Therefore, additional strategies
are needed to address the unmet medical need to treat heart failure.
Potential novel methods include induction of endogenous cardiac
progenitors,12 direct reprogramming of resident cardiac fibroblasts
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to cardiomyocytes,13 as well as generation of cardiomyocytes from
embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSCs).14 Direct reprogramming of cardiac fibroblasts represents
an attractive avenue toward cardiac regeneration because it would
create non-immunogenic, autologously derived CMs adjacent to the
injury sites. Further work is required to improve the efficiency of re-
programming, cardiac tropism, and the maturation of CMs.15 Simi-
larly, further research is needed to establish paracrine factors that
can activate proliferation and differentiation programs of endogenous
cardiac progenitors toward CMSs.
Pluripotent Stem Cells as Candidates for Cell Therapy Trials

Since the discovery of iPSCs in 2006, there has been a great interest in
their potential therapeutic application in numerous diseases,
including various heart diseases.16 In 2014, the world’s first transplan-
tation of autologous iPSC-derived cells was carried out on a patient
with age-related macular degeneration.17 During the first year after
transplantation, there was no sign of teratoma formation or immune
rejection of the transplanted iPSC-derived retinal pigment epithelium
(RPE) cells in the absence of immunosuppressants, but the visual acu-
ity of the patient neither improved nor declined without additional
treatment. More recently, the same group reported the first clinical
case of allogeneic transplantation of iPSC-RPE using histocompatibil-
ity leukocyte antigen (HLA)-matched allogeneic iPSCs.18 Although
clinical trials for heart repair using iPSCs have yet to begin, these
studies encourage parallel efforts toward novel iPSC-based cardiac
regeneration therapies.
Properties of ESC- and iPSC-Derived Cardiomyocytes

Human PSCs, which include both ESCs and iPSCs, are alternative
sources of CMs and effective candidates for the remuscularization
of the diseased human heart. Recent progress in the differentiation
protocols of ESCs and iPSCs has led to the identification of serum-
free, chemically defined media supplements that give rise to popula-
tions of human CMs with high yield and purity.19 These protocols
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produce CMs that possess critical functional and structural proper-
ties, such as expression of contractile apparatus components, calcium
handling machinery, electrical connectivity, and excitability. How-
ever, ESC- and iPSC-derived CMs (iPSC-CMs) also exhibit immature
cell characteristics such as small size, lack of T-tubules, immature
myofibril ultrastructure alignment, inefficient Ca2+ handling, and
fetal metabolic phenotype. Moreover, they represent mixed popula-
tions of ventricular, atrial, and nodal CMs.20

Applications of iPSC-Derived CMs in Disease Modeling and

Drug Discovery

The generation of patient-derived iPSCs and iPSC-CMs has provided
an extraordinary opportunity to create relevant in vitro models
for human diseases and test therapeutic compounds in a personal-
ized manner. Various forms of inherited cardiac disease, including
predominantly arrhythmogenic syndromes and ion-channel disor-
ders (channelopathies), such as arrhythmogenic right ventricular
dysplasia (ARVD),21,22 familial long-QT syndrome (LQT1,23-25

LQT2,26-28 LQT3,29 LQT8,30 LQT14,31 and LQT5 32), and catechol-
aminergic polymorphic ventricular tachycardia (CPVT),33-35 have
been successfully modeled by iPSC-CMs. Moreover, iPSC-CMs
have been successfully used to study the molecular characteristics of
cardiac diseases related to sarcomeric and cytoskeletal proteins,
such as hypertrophic cardiomyopathy (HCM)36 and dilated cardio-
myopathy (DCM).37,38 In addition, patient-derived iPSC-CMs have
been used to model cardiometabolic disorders, such as diabetic car-
diomyopathy,39 Dannon disease,40 Barth syndrome,41 aldehyde dehy-
drogenase 2 (ALDH-2) deficiency,42 and Pompe disease.43 Further-
more, iPSC-CMs have been used to study differential sensitivity of
breast cancer patients to doxorubicin-induced cardiomyopathy.44

In addition to disease modeling, iPSC-CMs are valuable tools for as-
sessing cardiotoxicity of drugs as well as identifying novel therapeutic
compounds. For example, Sharma et al.45 developed a cardiotoxicity
safety index for anticancer tyrosine kinase inhibitors in control versus
patient-derived iPSC-CMs. Additionally, recent years have seen
tremendous efforts devoted to the integration of iPSC-CMs into
high-throughput platforms and development of assays to monitor
cell phenotyping,46 contractile properties,47 electrophysiological pa-
rameters,48,49 and Ca+2 transients.50-53 Despite considerable success
in reproducing clinical phenotypes of cardiovascular diseases using
patient-derived iPSC-CMs, there has been relatively little progress
in identifying novel therapeutic compounds for these diseases. To
fill this gap, increased efforts should be focused on the development
of more mature iPSC-CMs and their integration in high-throughput
platforms that will facilitate screening of novel compounds.

Cell Therapy Applications of iPSC-Derived CMs

Although the differences in regenerative potential between iPSCs and
ESCs are still unclear,54 studies examining the therapeutic effect of
ESC-derived cells have provided valuable information to develop
iPSC-derived cells as therapeutic tools in the clinic. In this review,
we discuss the latest advances and challenges in the clinical applica-
tions of human pluripotent stem cell-derived CMs (PSC-CMs) for
cardiac repair and regeneration, focusing on recent studies that
examine the therapeutic effect of human PSC-CM transplantation
in the treatment of heart failure (Figure 1). This review is not intended
to give an exhaustive description of the historical development in this
area, for which excellent review articles are available.16,55

Preclinical Large Animal Studies

To date, many studies have already demonstrated the feasibility and
efficacy of cardiac stem cell therapy in small animal models. Recent
studies therefore have shifted toward large animal models prior to
translation into human trials.56 In the first clinical-scale transplanta-
tion of human PSC-CMs by Chong et al.,57 one billion human ESC-
derived CMs (ESC-CMs) were intra-myocardially injected into the
heart of adult pigtail macaques (Macaca nemestrina) 2 weeks after
acute myocardial ischemia reperfusion (I/R) injury under immuno-
suppressive treatment. These investigators found that a substantial
number of grafted cells survived in non-human primate (NHP) hearts
with blood supply from host vessels over a 3-month period after in-
jection. In addition, grafted CMs were capable of electrical coupling
with the host myocardium. Teratoma formation or cell engraftment
in the off-target organs was not detected. However, the authors could
not conclude whether transplantation of human ESC-CMs amelio-
rated cardiac dysfunction or subsequent heart failure after I/R injury,
mainly due to the small number of animals used in the study. An
additional concern regarding future clinical applications is the deter-
mination of the optimal number of iPSC-CMs to be injected in the
damaged human myocardium. Extrapolating these numbers to the
human heart, which is roughly ten times larger than a macaque’s
heart and contains 2–3 billion CMs, would lead to an unrealistic num-
ber of required iPSC-CMs to be injected (approximately 10 billion).58

Further studies are required to determine the optimal feasible number
of iPSC-CMs that needs to be injected into the human myocardium.

More recently, Zhu et al.59 examined the effectiveness and safety of
transplantation of human PSC-derived cardiovascular progenitor
cells (PSC-CVPCs) in an NHP model. In this study, PSC-CVPCs
were differentiated from human ESCs using BMP-4, Activin A, and
CHIR99021 (GSK-3 inhibitor) for 3 days. Following the injection of
10 million PSC-CVPCs into a cynomolgus monkey heart 30 min after
myocardial infarction (MI) induced by permanent ligation of the left
anterior descending (LAD) artery, they observed recovery of cardiac
function (left ventricular ejection fraction [LVEF]; from 37.5% to
43.5% in the CVPC group), but no transplanted cells were found after
treatment with multiple immunosuppressive agents at 20 weeks after
transplantation. Although the exact reasons for the discrepancy in
graft survival between the Chong and Zhu studies are not clear, the
experiments differed in various aspects, such as the disease model
(I/R versus MI), timing of cell delivery (2 weeks versus 30 min after
injury), number of transplanted cells (1 billion ESC-CMs versus 10
million PSC-CVPCs), and data interpretation, as the authors noted.59

Tissue Engineering Approach

Despite efforts to obtain better cell engraftment after direct myocar-
dial injection, high injection pressures and harsh tissue environment
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Figure 1. Cardiac Cell Therapy Using PSC-CMs

Illustration of recent cell therapy approaches to recover lost cardiac muscle following severe myocardial injury. (A) As alternatives to direct injection of PSC-CMs in the injured

heart, (B) tissue engineering approaches have been employed to increase the survival and functional engraftment of cells following delivery. (C) The integration of endothelial

cells forming vascular networks into PSC-CM cell sheets facilitates delivery of oxygen and nutrients to the graft, greatly augmenting its engraftment and function as a novel

contractile unit. Providing a structural framework with hydrogel and other cell types complementary to CMs such as ECs and smooth muscle cells may boost functional

integration into the host myocardium. (D) The secretion of growth factors and cytokines represents another way that administered PSC-CMs might benefit cardiac per-

formance following injury. (E) Finally, the use of scaffolds formulated from fibrin patches containing PSC-derived cardiac progenitor cells (CPCs) is another therapeutic

application. PSCs, pluripotent stem cells; PSC-CMs, PSC-derived cardiomyocytes; ECs, endothelial cells; SMCs, smooth muscle cells; Isl-1, Islet-1; SSEA-1, stage-specific

embryonic antigen-1.
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compromise cell survival, especially in areas of scar tissue, which are
less expandable and provide fewer nutrients compared to non-injured
healthy muscle tissue. To circumvent these problems, tissue engineer-
ing approaches have been applied to construct engineered heart tissue
(EHT) for implantation onto the surface of the infarcted area. EHT is
expected to enhance the efficacy of cell therapy by reducing heart wall
stress and prolonging paracrine secretion. However, the optimal com-
bination of cell types and scaffold materials employed in EHT has yet
to be established for clinical application. Two main types of EHT,
hydrogel-based EHT and cell sheets, are currently being investigated
for cardiac regeneration.

Hydrogel-Based EHT

In hydrogel-based EHT, various extracellular matrix (ECM) proteins,
such as collagen I, Matrigel, and fibrin, are commonly used as scaffold
material. Riegler et al.60 reported the transplantation of a collagen-
based EHT containing 2.5 million human ESC-CMs into nude athy-
mic rats 1 month following I/R injury. A high survival rate of CMs in
the implanted graft was seen at 1 month. However, compared to the
1626 Molecular Therapy Vol. 26 No 7 July 2018
patch containing nonviable ESC-CMs (following lethal irradiation),
transplantation with a patch containing viable ESC-CMs showed
no significant differences in LVEF. This finding is consistent with
the anticipated lack of electric integration of human xenografts in
rat hearts, but also highlights the possibility that cell-independent ef-
fects (e.g., activation of immune cells and mechanical stabilization)
could also elicit therapeutic effects. In another study, Weinberger
et al.61 implanted a fibrin-based EHT containing 5 million human
iPSC-CMs and 2 million human endothelial cells (ECs) into guinea
pig hearts 1 week after cryoinjury under immunosuppressive treat-
ment. Interestingly, the EHT improved LV contraction, with robust
survival of iPSC-CMs 1 month after transplantation compared to
the cell-free patch. They also observed electrical coupling between
the EHT and the host myocardium, albeit only in a subset of engrafted
cells. More recently, a fibrin-based EHT of clinically relevant size
(4 cm� 2 cm� 1.25 mm) was generated by Gao et al.62 using human
iPSC-CMs, iPSC-ECs, and iPSC-derived smooth muscle cells (iPSC-
SMCs). They transplanted two EHT patches into the pig heart under
immunosuppression immediately after I/R injury. They showed
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improved contractile function and infarct size compared to the cell-
free patch, with �10% of transplanted cells surviving 1 month after
surgery. These inconsistent results may reflect differences in the
animal models (rat versus guinea pig versus pig), injury model (I/R
versus cryoinjury), timing of treatment (acute versus chronic), and/or
properties of the utilized EHT.

Cell Sheets

Three-dimensional engineered cardiac tissue can be generated by
stacking detachable monolayer cell sheets formed on temperature-
responsive culture dishes.63 This technology has an advantage
because the resulting EHT is constructed using a relatively simple
method without specialized scaffolds. Masumoto et al.64 showed
that transplantation of three cell sheets containing 2 million human
iPSC-derived cells (�70% CMs and �25% vascular cells) into an
athymic nude rat sub-acute MI model significantly improved cardiac
contraction compared to sham animals, during the first 2 weeks after
transplantation. However, the lack of supply of oxygen and nutrients
in a vascular system limits the stacking of iPSC-CMs sheets to three
layers.65 Recently, Kawamura et al.66 solved this problem by a surgical
procedure with an omental flap that is frequently used in clinical
practice. One month following MI, seven iPSC-CM sheets prepared
on 10-cm culture dishes were transplanted into infarcted pig hearts
and covered with an omental flap under immunosuppressive treat-
ment. Three months after transplantation, cardiac contractile func-
tion was significantly improved in the cell-sheet-transplanted group
with omental flap (LVEF; from 36.8% to 52.1%) compared with the
cell sheet only group (LVEF; from 35.7% to 44.9%) and the omental
flap only group (LVEF; from 35.9% to 33.9%).

Novel Approaches for Heart Tissue Generation

In addition to conventional methods, newer approaches are being
explored to generate three-dimensional (3D) cardiac tissue with a
complex ECM structure similar to that of the native human myocar-
dium tissue.67 The perfusion decellularization method has been suc-
cessfully applied to create acellular scaffolds with a preserved ECM
and a vascular network from human cadaveric whole hearts.68 The
decellularized human cardiac matrix can support the engraftment
of human iPSC-CMs and create force-generating myocardial tissue-
like constructs. Gao et al.69 applied high-resolution 3D printing to
generate EHT-containing human iPSCs-CMs, iPSC-ECs, and iPSC-
SMCs. The scaffold was generated with photoactive gelatin polymer
guided by a template based on the distribution of fibronectin in the
native adult mouse heart tissue. Synchronous beating of the cell-
seeded scaffold was established within 1 day, and increased contrac-
tion speed and calcium handling were observed during extended
in vitro culture over 7 days. After transplantation of the cardiac patch
into the infarcted immunodeficient mouse, graft survival was
confirmed after 1 month as well as improved cardiac function.

Role of Paracrine Factors in Cardiac Regenerative Therapies

Using PSC-CMs

There are many preclinical and clinical studies reporting that cell-
based transplant therapy promotes functional recovery in MI models
despite suboptimal engraftment of transplanted cells.55 These find-
ings led to the concept that the observed beneficial effects on the
damaged myocardium are mediated through paracrine factors
released by the transplanted cells. Ong et al.70 reported that the injec-
tion of 2 million human iPSC-CMs improved cardiac function
(LVEF; from 19.2% to 24.5%) 1 month after permanent LAD artery
ligation in immunodeficient mice despite the limited engraftment
of transplanted iPSC-CMs. They found increased neo-angiogenesis
and reduced apoptosis in peri-infarcted myocardium after detecting
proangiogenic and anti-apoptotic cytokines released from the trans-
planted iPSC-CMs in the hypoxic environment of the ischemic
myocardium. Similarly, Tachibana et al.71 demonstrated a significant
volumetric discrepancy between the engrafted cells and the increased
viable myocardium 1 month after transplantation of iPSC-CMs or
ESC-CMs into infarcted severe combined immunodeficient (SCID)
mice. They also found that cardio-protective paracrine factors as
well as anti-apoptotic (tumor necrosis factor alpha [TNF-a]),
pro-angiogenic (interleukin-8 [IL-8], placental growth factor-1
[PIGF-1], granulocyte colony-stimulating factor [GCSF], and
vascular endothelial growth factor [VEGF]), and pro-cell migration
factors (stromal cell-derived factor-1 a [SDF-1a], TNF-a, vascular
cell adhesion protein 1 [VCAM-1], and plasminogen activator
inhibitor-1 [PAI-1]) were abundantly released from iPSC-CMs or
ESC-CMs in the host myocardium.

First Clinical Trial Using PSC-Cardiac Progenitor Cells

Recently, Menasche et al.72,73 reported the results of a clinical trial
that evaluated the potential therapeutic effects of PSC-CMs in severe
heart failure patients. The authors generated a fibrin patch containing
ISL-1-positive cells isolated through immunomagnetic sorting of
stage-specific embryonic antigen 1 (SSEA-1) (CD15) from differenti-
ated human ESCs that were exposed to bone morphogenetic protein 2
(BMP-2) and fibroblast growth factor receptor (FGFR)-specific tyro-
sine kinase inhibitor for 4 days. A 20 cm2 piece of the patch contain-
ing 5–10 million SSEA-1 progenitor cells was implanted onto the
epicardium of 6 ischemic cardiomyopathy patients with advanced
congestive heart failure. The procedure was performed with concom-
itant coronary artery bypass graft (CABG) surgery after implantation
of an internal cardioverter defibrillator, and immunosuppressive
treatment was given until 1 to 2months after the procedure. Although
one patient died shortly after the procedure from treatment-unrelated
comorbidities, no tumor formation or episodes of ventricular
arrhythmias were detected after 6 months of follow-up. Except for
the last recruited patient, the other 4 patients assessed at the 1-year
follow-up showed improved LVEF (median 26% to 38.5%) and symp-
toms (New York Heart Association [NYHA] functional class III to
class I/II), with new-onset contractility in the treated area. However,
it is not clear whether the improved LVEF and symptoms were due to
the fibrin patch or concomitant CABG procedure.

Heart Regeneration Using HLA Haplotype Matched iPSC Lines

In theory, differentiated human iPSCs are an ideal resource for autol-
ogous cell transplantation, but the production of adequate quantities
of autologous CMs remains costly as well as time consuming and
Molecular Therapy Vol. 26 No 7 July 2018 1627
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Figure 2. Illustration of the “Mountain” of Obstacles to Overcome in Clinical Translation of PSC-CMs in Heart Disease

(A) Careful screening of PSC lines and state-of-the-art methodologies for the expansion and maintenance of PSCs are required to avoid genomic instability. (B) Engineering

novel ways to eliminate undifferentiated PSCs from PSC derivatives can prevent teratoma formation. (C) To produce clinically relevant numbers of PSC-CMs, novel ways of

PSC-CM manufacturing need to be developed. Advances in stirred-based bioreactors have allowed the maintenance and expansion of PSCs as well as the generation of

PSC-CMs in a large scale that is sufficient to meet clinical demands. (D) The latest improvements in cardiac differentiation protocols toward specific cardiac subtypes will

tremendously minimize the risk of arrhythmias caused by injection of mixed pools of PSC-CMs in fibrotic areas of the myocardium. (E) Creation of HLA-matched iPSC banks

and engineering of immunoprivileged PSC-CMs will greatly reduce the risk of immune rejection of the grafted cells. HLA, human leukocyte antigen.
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labor intensive.74 Therefore, allogeneic iPSC-based cell therapy has
emerged as amore realistic strategymainly because the iPSC bank sys-
tem enables selection of HLA-matched iPSC lines based on recipient
HLA haplotype. Recently, Shiba et al.75 demonstrated that allogeneic
transplantation of nonhuman primate iPSC-CMs improved cardiac
contractile function in a nonhuman primate model of MI. Two weeks
after I/R injury, �400 million major histocompatibility complex
(MHC)-matched primate iPSC-CMs were injected into the heart of
adult cynomolgus monkeys (Macaca fascicularis). The investigators
found that a substantial number of transplanted cells were
vascularized by host vessels and electrically coupled with the host
myocardium 3 months after cell transplantation. By contrast, after
MHC-mismatched iPSC-CM injection, only a small number of trans-
planted cells were detected, with amassive infiltration of inflammatory
cells. In addition, the LVEF was higher in the MHC-matched iPSC-
CM group than in the sham group at 3 months after cell transplanta-
tion (62.0% ± 4.1% versus 48.8% ± 5.6%), whereas the incidence of
ventricular arrhythmia was transiently but significantly increased in
theMHC-matched iPSC-CMgroup. This proof-of-concept study pro-
vided encouraging results to justify continued effort toward establish-
ing iPSC banks for allogeneic regenerative cell therapy.
1628 Molecular Therapy Vol. 26 No 7 July 2018
Current Challenges for PSC-CM Therapy

Successful application of PSC-CMs in the clinical setting requires
preparation of highly pure and mature CMs that can sufficiently
engraft in the host myocardium and exhibit electrical and mechanical
coupling with existing myocytes. A number of concerns exist
regarding the application of PSC-CMs in cardiac disease (Figure 2).

Stem Cell Genomic Stability

A critical requirement that needs to be fulfilled prior to any transla-
tional application of PSCs and their derivatives is the assessment of
their karyotype.76 For example, genetic mutations were found in
the iPSCs that were intended to be administered in the second patient
with age-related macular degeneration, prompting a temporary halt
of the RIKEN trial.77 Prolonged expansion periods, pre-existing ge-
netic variations in parental cell lines, and reprogramming-induced
mutations can all lead to chromosomal abnormalities that affect
gene expression, cell function, teratoma formation, tumorigenicity,
and efficacy of transplanted cells.78 Taapken et al.79 found chromo-
somal irregularities in �13% of 1,715 cultures analyzed that were
derived from 259 different human PSC and ESC lines. Using next-
generation sequencing, a low incidence of protein-coding mutations
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in every human iPSC line (�6–12/line) was also reported.80 Thus,
karyotypic instability is highly dependent on the specific cell line
under investigation as well as the expansion conditions, thus necessi-
tating systematic efforts to ensure genomic stability prior to any clin-
ical application of stem-cell-derived CMs.

Teratoma Formation

A primary concern and a major unwanted side effect of PSC trans-
plantation is the generation of teratomas in the recipients. Undiffer-
entiated stem cells (present due to inefficient differentiation protocols
or purification methodologies or genomic instability) may survive the
transplantation process and generate highly undesirable tumors and
teratomas. However, as shown by a large number of studies, only
an extremely low risk of teratoma or tumor formation exists following
transplantation of PSC-CMs in failing or injured hearts.57,81-84 Never-
theless, novel methods that can either identify or eradicate the
residual undifferentiated PSCs while sparing their differentiated de-
rivatives are required for safe translational application of PSCs.85,86

Recent progress with the establishment of highly efficient CM differ-
entiation and purification protocols has minimized the undifferenti-
ated PSCs to undetectable levels, preventing teratoma or tumor
formation.19 Various strategies have also been employed over the
last several years to selectively eliminate PSCs, including the use of
suicide genes,87-90 tumor suppression genes,91 cytotoxic antibodies
against the PSC-specific marker Claudin-6,92 SSEA-5,93 and expres-
sion of cell-specific microRNA molecules.94,95 Additional studies
have used chemical inhibitors to selectively eliminate PSCs by target-
ing different cellular processes or properties of these cells, such as
oleate synthesis,96 cyclin-dependent kinase 1 (CDK-1)-dependent
cell cycle progression, p53-induced cell death,97 and expression of
ABC transporters ABCG-2 and MDR-1.98 Despite significant steps
toward the thorough and robust elimination of PSCs, many of these
methods are still limited by their relatively low effectiveness, speci-
ficity, and clinical applicability.

Immune Rejection

A major concern in the design of translational PSC therapy studies is
immune rejection, particularly with allogeneic transplantation.99-101

To that end, immunocompromised or immunodeficient animals
and various cocktails of pharmacological immunosuppressants have
been employed to study and prevent unwanted immune reac-
tions.102,103 However, this approach can increase risks of opportu-
nistic infections as well as the development of malignancies. Recent
studies have shed some light on the molecular mechanisms involved
in the immune rejection of allogeneic human ESCs and their deriva-
tives. For instance, Gornalusse et al.104 attempted to generate a uni-
versal donor ESCs by genetically engineering them to overexpress
HLA-E single-chain peptides. They showed that HLA-E-engineered
stem cells and their differentiated counterparts were immunoprivi-
leged against all major immune rejection mechanisms, such as
cytotoxic CD8+ T cells, anti-HLA antibodies, and natural killer
(NK)-cell-mediated cell lysis. In addition, the identification of suitable
donors for iPSC generation requires the establishment of stem cell
banks with a wide diversity of HLA types. It is estimated that more
than 150 human iPSC lines are required to provide a beneficial effect
for HLA-matched lines, with a minimum immunosuppression
requirement for more than 90% of the patients in the UK popula-
tion.105 Other studies have revealed that ethnic composition largely
drives the percentage of haplotype-compatible individuals in the
general population and particularly in more diverse ethnic groups.106

To facilitate such efforts, international consortia have been estab-
lished to assure the quality and clinical characteristics of haplotype
screening.107-109

Arrhythmogenicity due to the Injection of Mixed CM Pools

One of the most challenging adverse effects of cell therapy for cardio-
vascular disease is the arrhythmogenic phenotype of “graft-derived”
myocardium. Although transplanted cells manage to functionally
integrate into the injured “host myocardium,” they do not operate
in a synchronous manner with the residual CMs, which significantly
endangers the health of the recipient due to episodes of arrhythmia.
Initial studies showed that human ESC-CM grafts not only improved
cardiac function, but intriguingly also reduced spontaneous and
induced arrhythmias in guinea pigs.81,110,111 However, the same
group also reported that injection of human ESC-CMs was accompa-
nied by significant ventricular arrhythmias in NHP models.57 The
reason for this inconsistency is unclear, but may stem from species
differences between small and large animals, such as in their heart
sizes or beating rates. Alternatively, injection of iPSC-CMs in large
numbers may lead to arrhythmias due to the generation of dead cells
that might affect propagation of the electrical signal in cardiac muscle.
Although an implanted cardiac defibrillator may prevent the life-
threatening event in these patients, further studies evaluating the
optimal cell dosage in relationship to occurrence of post-transplant
arrhythmias are warranted to address safety.

Development of Cardiomyocyte Subtype-Specific Protocols

Current protocols of stem cell cardiogenic differentiation produce a
heterogeneous mixture of CMs of different subtypes, primarily ven-
tricular CMs, but also substantial quantities of atrial and nodal
CMs.112 Such cells canmaintain an autonomous electrical stimulation
capacity representing potential sources of arrhythmogenic episodes.
In addition to reducing this risk, the development of subtype-specific
cardiac differentiation protocols would tremendously assist cardiac
disease modeling, drug discovery, and particularly cardiac cell ther-
apy efforts. A large number of transcription factors are implicated
in subtype specification, including Nkx2.5, Isl-1, Hand-1/2, Irx-4,
Cited-1, COUP transcription factor-2, CHF-1/Hey-2, and the
T-box family, among many others.113,114 Similarly, various growth
factors are associated with the regulation of cardiac lineage and sub-
type specification, including neuregulin, endothelin, Wnt ligands, and
retinoic acid (RA), among others. Neuregulin and endothelin are
implicated in the generation of nodal cells and Purkinje fibers, respec-
tively.115-117 Recently, Lee et al.118 reported a detailed molecular
network that dictates cardiac subtype specification. Using spontane-
ously differentiating embryoid bodies, they first found that the effects
of RA are mediated during a narrow 2-day temporal window. During
this period, the addition of RA in embryoid bodies reduced the
Molecular Therapy Vol. 26 No 7 July 2018 1629
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specification of ventricular-like CMs and increased that of atrial-like
CMs, as measured by a panel of respective markers. Next, they iden-
tified a specific RA-synthesizing subpopulation of ALDH+platelet-
derived growth factor receptor (PDGFR)+ cells that might represent
a source of atrial RA-responsive CMs. Following a step-by-step path
of careful titration of Activin A and BMP-4 as well as cell surface
marker screening, they found two distinct mesodermal cell popula-
tions, CD235a+ and ALDH+CD235a�, that have the potential to
generate RA-non-responsive, ventricular-like CMs and RA-respon-
sive, atrial-like CMs, respectively.

Besides ventricular- and atrial-like CMs, extensive efforts have been
devoted to generate pacemaker cells from PSCs. The generation of
pure populations of pacemaker cells would enable further investiga-
tions into advanced biological pacemaking devices. Birket et al.119

developed a methodology to generate pacemaker cells through the
regulated expression of c-Myc in an Nkx-2.5eGFP/W ESC reporter
line. Doxycycline-induced expression of c-Myc in combination with
manipulation of the BMP, combined with fibroblast growth factor
(FGF) signaling in human ESCs, resulted in a highly enriched popu-
lation of functionally competent pacemaker cells.119 More recently,
Protze et al.120 established another methodology for the generation
of sinoatrial node (SAN)-like pacemaker cells by manipulating the
BMP, transforming growth factor (TGF), FGF, and RA signaling
pathways. Functional analysis as well as in vivo testing revealed that
their properties closely resemble those of pacemaker cells and that
they can function as biological pacemakers.

Improving Scalability of Human PSC-CM Production

The primary goal of cardiac cell therapy is the replacement of lost car-
diac muscle tissue due to severe cardiac injury such as MI. Previous
calculations estimated that following a typical MI episode, up to
one-quarter of the existing CMs can be lost, leading to various pathol-
ogies and heart failure.121 Current conventional methodologies for
PSC expansion and CM differentiation do not meet the standards
for effective high-yield, clinical-grade, and cost-effective PSC expan-
sion and CM differentiation, which are required for therapeutic
applications. Therefore, novel methodologies are needed to achieve
this goal. An example of such technological advancement is the
employment of stirred tank bioreactor culture platforms that can
accommodate the expansion of PSCs on micro-carriers or function
as floating aggregates.122 They also allow homogeneous mixing,
distribution of cells, nutrients, and gases, as well as a constant assess-
ment of key parameters, such as levels of oxygen, pH, and key
metabolites.123

Recent efforts have established long-term, cost-effective, scalable,
GMP-compatible, expansion of PSCs using xeno-free, chemically
defined culture media.124,125 The next challenge is to adapt the highly
specific and effective differentiation protocols19 for the aforemen-
tioned “industrial-scale” cell culture methodologies to produce large
amounts of CMs. Recently, Kempf et al.126 described the robust for-
mation of highly enriched human PSC-CMs using a suspension-
culture-based method. The authors also demonstrated efficient
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applicability of their method in a 100-mL stirred-based bioreactor
culture system, which resulted in the generation of PSC-CMs, with
purities reaching above 80%.126 Similarly, Chen et al.127 used a
matrix-free aggregate suspension system in 1 L spinner flasks to pro-
duce large quantities of human PSC-CMs under chemically defined,
GMP-compatible culture conditions. This method produced CMs
with over 90% purity that demonstrated typical morphological and
electrophysiological characteristics. Additional efforts to standardize
large-scale production of human PSC-CMs in a cost effective, highly
specific, and reproducible manner are needed to meet the demands of
pre-clinical and clinical studies.

Challenges of Improving Survival and Engraftment of

Transplanted Cells

The various approaches for cell delivery have undergone intensive
scrutiny and debate. Following intramyocardial delivery, most of
the cells are washed out rapidly.128 In addition, most of the injected
cells die acutely within the first week after injection.55 The problem
of acute donor cell death exists not only in cardiac stem cell therapy,
but also in other fields, such as neurologic, skeletal, and hepatic stem
cell transplantation. Notably, the exception involves hematopoietic
stem cell transplantation, which can effectively repopulate the pa-
tient’s bone marrow but also requires total body irradiation prior to
the procedure.129-131 To overcome the problem of acute donor cell
death, heat shock pretreatment and a cocktail of pro-survival factors,
including insulin-like growth factor 1 (IGF-1) and cyclosporine A,
have been used to enhance survival of transplanted cells via the
anti-apoptotic effect.110 However, the short biological half-lives of
these factors limit their effect on graft cell survival following delivery
into the ischemic myocardium. To enable the slow release of pro-sur-
vival factors, Lee et al.132 recently developed a novel collagen-den-
drimer biomaterial crosslinked with pro-survival peptide analogs,
and demonstrated that the peptides can enhance cell survival after
transplantation into the mouse ischemic heart.

Conclusions

The central premise of stem cell therapy for heart disease is to induce
remuscularization of lost myocardium following injury. PSCs are
prime candidates for the generation of new CMs that can be utilized
in cell therapy protocols. Recent years have seen various technological
advancements, and bioengineering platforms are being employed to
improve the engraftment, survival, and effectiveness of the trans-
planted cells. New developments to establish differentiation protocols
for cardiac-specific subtypes hold great promise for preventing ar-
rhythmias caused by administration of mixed CM pools. However,
multiple additional hurdles, such as tumorigenicity, immunogenicity,
arrhythmogenicity, and donor cell death, still remain to be addressed.
Given that CVD and HF represent the leading causes of morbidity
and mortality worldwide, additional multidisciplinary efforts are
needed to overcome current challenges and make cell therapy a
routine clinical reality.
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