
 

 

 
 

OPEN ACCESS | www.microbialcell.com 327 Microbial Cell | JULY 2018 | Vol. 5 No. 7 

www.microbialcell.com 

Review 

ABSTRACT  Cells have evolved conserved mechanisms to protect DNA ends, 
such as those at the termini of linear chromosomes, or those at DNA double-
strand breaks (DSBs). In eukaryotes, DNA ends at chromosomal termini are 
packaged into proteinaceous structures called telomeres. Telomeres protect 
chromosome ends from erosion, inadvertent activation of the cellular DNA 
damage response (DDR), and telomere fusion. In contrast, cells must respond 
to damage-induced DNA ends at DSBs by harnessing the DDR to restore 
chromosome integrity, avoiding genome instability and disease. Intriguingly, 
Rif1 (Rap1-interacting factor 1) has been implicated in telomere homeostasis 
as well as DSB repair. The protein was first identified in Saccharomyces 
cerevisiae as being part of the proteinaceous telosome. In mammals, RIF1 is 
not associated with intact telomeres, but was found at chromosome breaks, 
where RIF1 has emerged as a key mediator of pathway choice between the 
two evolutionary conserved DSB repair pathways of non-homologous end-
joining (NHEJ) and homologous recombination (HR). While this functional di-
chotomy has long been a puzzle, recent findings link yeast Rif1 not only to 
telomeres, but also to DSB repair, and mechanistic parallels likely exist. In this 
review, we will provide an overview of the actions of Rif1 at DNA ends and 
explore how exclusion of end-processing factors might be the underlying prin-
ciple allowing Rif1 to fulfill diverse biological roles at telomeres and chromo-
some breaks. 
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RIF1 STRUCTURE AND FUNCTION 
Rif1 is a multifaceted genome caretaker involved in telo-
mere homeostasis, DSB repair pathway choice, and the 
regulation of replication timing (Figure 1). Rif1 orthologs in 
yeast [1, 2] and higher eukaryotes [3-7] are divergent at 

the primary sequence level, but share key protein features. 
S. cerevisiae Rif1 consists of 1916 amino acids residues, has 
a molecular mass of 218 kDa, and contains four identifiable 
functional domains (Figure 2): 
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CDK - Cyclin-dependent kinase,  
CST - Cdc13-Stn1-Ten1 complex, 
CTD - C-terminal domain, 
DDK - Dbf4-dependent kinase, 
DDR - DNA damage response, 
ds - double stranded, 
DSB - DNA double-strand break, 
HR - Homologous recombination, 
MCM - Minichromosome maintenance 
complex, 
MRN - MRE11-RAD50-NBS1 
(mammalian complex), 
MRX - Mre11-Rad50-Xrs2 (yeast 
complex), 
NHEJ - Non-homologous end-joining, 
NTD - N-terminal domain, 
PP1 - Protein phosphatase 1, 
Rap1 - Repressor/activator site-binding 
protein 1, 
RBM - Rap1-binding motif, 
Rif1 - Rap1-interacting factor 1, 
Rif2 - Rap1-interacting factor 2, 
SIR - Silent information regulator, 
ss - single-stranded. 
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(1) RVxF/SILK protein phosphatase 1 (PP1; Glycogen 7 
(Glc7) in budding yeast) docking site [8]. This site contains 
short KSVAF (residues 114-118) and SILR (146-149) signa-
ture sequences [6], which conform to PP1-docking motifs 
of the RVxF-type (consensus sequence [R/K]x[V/I/]x[F/W], 
where x denotes any amino acid except large hydrophobic 
residues) and SILK-type ([G/S]IL[R/K]) [9] (Figure 2A). A 
second putative RVxF/SILK domain has been identified 
(residues 316-320 and 222-225) [10, 11]. While the posi-
tion of the RVxF/SILK domains varies across organisms 
(Figure 3), yeast and mammalian Rif1 orthologs bind PP1, 
delivering phosphatase activity to origins of replication to 
exert control over origin firing and DNA replication timing 
(see Box 1 for details) [10, 12-18]. While there is currently 
no evidence for an involvement of PP1 binding in the func-
tion of Rif1 in promoting DSB repair [19], a recent report 
indicates that Rif1-dependent recruitment of Glc7 has a 
role in controlling telomere homeostasis [11].  

(2) The Rif1 N-terminal domain (NTD). In budding 
yeast, this domain is preceded by the RVxF/SILK motif and 
starts after residue 150 (Figure 2A), whereas the NTD 
starts at the very N-terminus of RIF1 in vertebrates [6]. The 
crystal structure of Rif1NTD has recently been solved (resi-
dues 177-1283), showing that this domain assumes an 
elongated fold composed of 23 irregular α-helical repeat 
units containing a mixture of two-helix HEAT (Huntingtin, 
elongation factor 3, protein phosphatase 2A, Tor1)-like and 

three-helix armadillo-like modules [19]. Overall, Rif1NTD 
resembles the shape of a shepherd’s crook, with the hook 
formed by the N-terminal end (residues 185-874; referred 
to as Rif1HOOK) (Figure 2B). Rif1HOOK is the most evolutionary 
conserved part of Rif1 and corresponds to Pfam domain 
Rif1_N (PF12231; residues 241-649) [30] (Figure 3). A high-
affinity DNA-binding site in budding yeast Rif1 was identi-
fied within the highly positively charged concave face of 
the HOOK domain. Rif1NTD was co-crystallized with DNA, 
showing that Rif1NTD assembles into a head-to-tail dimer 
such that each HOOK domain forms a DNA binding channel 
in the resulting figure-8-shaped conformation, and this 
arrangement was confirmed in solution (Figure 2C). Rif1NTD 
binds DNA in a sequence-independent manner, and associ-
ates with double-stranded (ds) and single-stranded (ss) 
DNA with nanomolar affinity. Direct DNA binding was the 
first activity that could be ascribed to the NTD and has 
been linked to a range of Rif1 genome maintenance func-
tions, including telomere homeostasis and DNA repair [19] 
(explained in more detail below). Recently, murine RIF1 N-
terminal DNA binding has been reported [31]. 

(3) Rap1 (Repressor/activator site-binding protein 1)-
binding motif (RBM, residues 1752-1772). Rap1 binds the 
dsDNA TG1-3 repeats at budding yeast telomeres in a se-
quence-specific manner and recruits Rif1 into the telosome 
(Figure 4). This interaction is essential for Rif1 to maintain 
telomere homeostasis, and disruption of Rif1RBM, which 

BOX 1: RIF1 AND PP1 PHOSPHATASES CONTROL REPLICATION TIMING IN EUKARYOTES 

In budding yeast [10, 16, 17, 20, 21], fission yeast [13, 16], and mammalian cells [14, 15, 18, 22, 23], downregulation of RIF1 leads to 
local alterations in the temporal pattern of replication initiation, consistent with a conserved mechanism through which Rif1 regulates 
DNA replication timing. 

Origins of replication are licensed in late M and G1 phase of the cell cycle, and fire in a temporally controlled manner as cells progress 
through S phase [24]. Origin firing requires assembly of the replicative helicase complex by association of Cdc45 (Cell division cycle 45) 
and GINS (Go-Ichi-Nii-San) proteins with the MCM (Minichromosome maintenance complex, comprised of Mcm2-7) catalytic core on 
DNA. This process is promoted by CDK and DDK (Dbf4-dependent kinase) activity. DDK-dependent phosphorylation of the unstructured 
Mcm4 N-terminal tail is essential for Cdc45-Mcm-GINS formation and initiation of DNA replication [25]. 

In budding yeast, this is attenuated by Rif1, which delivers protein phosphatase PP1 (Glc7) to origins of replication, leading to the 
dephosphorylation of Mcm4 and Sld3 (Synthetically lethal with Dpb11-1), a factor required for Cdc45 recruitment [10, 16, 17] (Figure 1). 
Consistently, budding yeast Rif1 has been localized to the DNA replication origins that it regulates [21], and disruption of its RVxF/SILK 
PP1 interaction motif results in misregulated replication timing, as well as suppression of replication failure in cells with mutations in the 
DDK catalytic subunit [10, 16, 17]. While Rif1 acts in replication timing across the genome [20], telomere sequestration enhances its 
effect on late replicating subtelomeric DNA in budding yeast [21]. It remains to be seen whether DNA binding by the Rif1NTD [19] is in-
volved in mediating direct interactions between Rif1 and origin DNA. Besides control over subtelomeric regions of the genome, Rif1-
restricted origin firing within the heavily transcribed rDNA appears of particular importance for genome stability in budding yeast [26]. 

In S. pombe, Rif1 controls origin firing in similar fashion with the Dis2 and Sds21 phosphatases [13, 16], and the Rif1-PP1 axis is also con-
served in mammalian cells [14, 15, 18, 22, 23]. Besides attenuating origin firing, human Rif1 also promotes origin licensing by stabilizing 
the ORC1 subunit of the origin recognition complex in G1 [18]. In addition to direct control of origin licensing/firing, Rif1 orthologs in 
fission yeast [27, 28] and mammals [22] have been proposed to play roles in shaping nuclear architecture to facilitate the establishment 
of discrete, late-replicating chromatin domains. In fission yeast, this has been linked to the ability of Rif1 to bind G-quadruplex DNA, 
determined by chromatin immunoprecipitation sequencing (ChIP-seq) and in vitro DNA-binding assays [27]. Based on the ability of bud-
ding yeast Rif1 to oligomerize [29], it was proposed the interaction with multiple G-quadruplex structures could allow Rif1 to organize 
chromatin loops, enabling Rif1-PP1 to act not only at sites of direct DNA interaction, but over long distances [27]. This is in contrast to 
budding yeast, where G-quadruplex binding was not found [19], and Rif1 was detected in direct proximity of the replication origins it 
regulates [21]. Given previous difficulties in determining Rap1-independent genomic sites of Rif1 binding by ChIP, and the recent success 
of mapping Rif1 to origins by chromatin endogenous cleavage sequencing (ChEC-seq) in budding yeast [21], it would be interesting to 
apply ChEC-seq in the fission yeast and mammalian systems to elucidate common and distinct mechanisms of replication timing control. 
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constitutes the main Rap1-binding epitope within Rif1, 
results in telomere dysfunction [29] (explained in more 
detail below). In fission yeast (Schizosaccharomyces 
pombe), Rif1 is recruited to telomeres by Taz1 (Telomere-
associated in S. pombe 1) [2], and mammalian RIF1 is not 
part of the protective shelterin complex at telomeres [34]; 
this can explain why the Rif1RBM motif is only found in Sac-
charomycetes. 

(4) The Rif1 C-terminal domain (CTD). In budding yeast, 
crystal structure analysis has shown that Rif1CTD (residues 
1857-1916) is a tetramerization module, as well as a sec-
ondary Rap1-binding interface [1, 29] (Figure 2A). In con-
trast to Rif1RBM, the CTD is partially conserved from yeast 
to human. Specifically, the vertebrate CTD can be subdivid-
ed into three regions, CTD-I, II, and III (I: amino acids 2170- 
2246, II: 2274-2344, III: 2370-2446; residue numbers refer 
to human RIF1) (Figure 3), and CTD-II corresponds to 
Rif1CTD in budding yeast. CTD-I contains the canonical 
mammalian RVxF/SILK motif, while CTD-II was shown to 
have micromolar DNA-binding activity [31, 35, 36]. Moreo-
ver, mammalian RIF1CTD mediates an interaction with 
Bloom’s syndrome helicase BLM, potentially linking RIF1 to 
replication stress-induced DNA damage repair [24]. 
 

BUDDING YEAST RIF1 REGULATES TELOMERE HOMEO-
STASIS  
Rif1 underpins telomere architecture 
Budding yeast telomeres contain on average 300 base pairs 
of repetitive TG1-3 DNA, which is bound by 15-20 Rap1 mol-
ecules. Rap1 contains three domains including a BRCT 
(BRCA1 C-terminal) domain, the Rap1 C-terminal domain 
(RCT), and a tandem myb-type helix-turn-helix domain 
through which the protein engages dsDNA. The short (12-
15 nucleotides) telomeric ssDNA TG1-3 3ʹ overhangs are 
bound by the CST complex, composed of Cdc13 (Cell divi-

sion cycle 13), Stn1 (Suppressor of cdc thirteen 1), and 
Ten1 (Telomeric pathways with Stn1). Rap1 and CST are 
essential genes and hypomorphs of these proteins lead to 
telomere dysfunction [37]. 

Rif1 interacts with the Rap1RCT through its RBM and 
CTD domains. The Rap1-binding epitope RBM is also found 
in Rif2 (Rap1-interacting factor 2) and the Sir (Silent infor-
mation regulator) proteins, which are involved in transcrip-
tional silencing [1, 29, 38-40]. The Rif1, Rif2, and Sir3 RBMs 
insert into a hydrophobic cleft within Rap1RCT in a mutually 
exclusive manner [29]. In addition, Rif1 and Rif2 possess 
secondary Rap1RCT-interaction modules: the Rif1CTD (as de-
scribed above), and a AAA+ (ATPase family associated with 
diverse cellular activities) domain within Rif2 [29]. Through 
its RBM and AAA+ domains, Rif2 can interlink adjacent 
Rap1 molecules, while Rif1, thanks to an extended linker 
between its RBM and CTD domains, can engage distant 
Rap1 proteins. Upon tetramerization, mediated by the CTD, 
Rif1 can bind up to four Rap1 molecules. Each individual 
Rap1-binding module within Rif1 and Rif2 is required for 
telosome stability, indicating the importance of the inter-
connected, Velcro-like Rap1-Rif1-Rif2 protein network for 
telomere architecture and function [29] (Figure 4). 

At native telomeres, Rif1 and Rif2 regulate telomere 
length by inhibiting telomerase in cis [38, 43]. Similarly, 
when telomeric DNA sequences are inserted at a chromo-
some-internal locus that is then cleaved to expose a DNA 
end flanked by TG1-3 repeats, elongation of these telomeric 
sequences is attenuated by Rif1 and Rif2 [44, 45]. Thus, 
Rif1 contributes to the regulation of telomerase, an en-
zyme which adds simple sequence repeats to chromosome 
ends in order to counteract telomere shortening due to the 
end-replication problem and nucleolytic degradation [46]. 
It has been observed that telomerase preferentially associ-
ates  with, and  elongates, short  telomeres,  indicating that  

FIGURE 1: Rif1 is a multi-faceted genome maintenance factor. At origins of replication, Rif1 attenuates origin firing by recruiting PP1/Glc7, 
which reverses activating Mcm4 and Sld3 phosphorylation mediated by DDK (see Box 1). At DSBs, Rif1 tightly encases the break ends, 
gating access of the end-resection machinery. As a result, DSB ends are stabilized, promoting their re-ligation by NHEJ. At budding yeast 
telomeres, Rif1 forms part of an interlinked telosome protein meshwork with Rap1 and Rif2, underpinning telomere architecture and func-
tion. In addition, direct Rif1-DNA interactions are required to counteract telomerase and inadvertent checkpoint activation at chromo-
some ends (see text for details). CST denotes the Cdc13-Stn1-Ten1 complex bound to ssDNA telomeric overhangs. 
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long telomeres inhibit telomerase association more effi-
ciently. The “protein counting” model postulates a nega-
tive feedback loop, by which the stochastic association of 
telomerase is increasingly suppressed when increasing 
amounts of Rap1, Rif1, and Rif2 are present [43, 47-51]. 
Conversely, reduced Rap1-Rif1-Rif2 occupancy at short 
telomeres increases the chance of telomere elongation, 
while Rap1 phosphorylation at short telomeres provides a 
mechanism to strengthen Rap1-Rif1 interactions and Rif1 
occupancy at telomeres [52]. With telomere elongation 
coinciding with replication, there is also the possibility that 
the unimpeded progression of replication forks through 
shorter telomeres may favor telomerase association and 
telomere elongation [53-56]. Both of these models are 
compatible with the Velcro-like interactions of Rap1-Rif1-
Rif2, which are expected to lead to tighter telomere DNA 
packaging, and thus resistance to processing and/or repli-
cation factors, as telomere length (and with it Rap1-Rif1-
Rif2 occupancy at chromosome ends) increases [29]. 
 
Rif1 inhibits telomere elongation by direct DNA binding 
While the Velcro-like interactions of the Rap1-Rif1-Rif2 
protein network are essential in establishing telomere ar-
chitecture, the recently discovered Rif1NTD DNA-binding 
activity proved to be equally important for telomere length 
regulation [19]. It has been demonstrated that disruption 
of the major Rap1-interaction epitope in Rif1 (the Rif1RBM) 
drastically reduces Rif1 occupancy at telomeres and results 

in telomere elongation [29]. In contrast, Rif1NTD mutations, 
which reduced Rif1’s ability to bind DNA, affected telomere 
association less severely, but had a much stronger effect 
on telomere elongation, phenocopying a RIF1 deletion [19]. 
These observations revealed a first Rap1-independent role 
for Rif1 in maintaining telomere homeostasis, showing that 
while Rap1 interactions are important to assemble Rif1 at 
chromosome effectively, the ability of Rif1 to bind DNA is 
crucial to gate access of telomerase. 

 
Rif1 suppresses checkpoint activation at telomeres 
In contrast to DSB ends, where the DDR initiates a network 
of signaling events that block cell-cycle progression and 
promote DNA repair [57], telomeric ends are protected 
from checkpoint activation by their capping complexes. 
Telomere uncapping in budding yeast by mutations in the 
CST complex exposes chromosome ends to the DDR, result-
ing in checkpoint activation [58-63]. Under these condi-
tions, an attenuation of the DDR by Rif1 can be appreciated. 
For example, cells carrying the hypomorphic cdc13-1 allele 
suffer progressive degradation of the 5ʹ-terminated strand 
at telomeres [59], but a full-blown DDR is prevented by 
Rif1, such that cells are saved from terminal checkpoint 
arrest and survive [64]. Rif1’s ability to suppress the lethali-
ty associated with Cdc13 dysfunction is dependent on the 
ability of Rif1NTD to bind DNA, while depletion of Rif1 led to 
telomere hyperresection [19]. Consistently, Rif1 localizes to  

FIGURE 2: Rif1 domains and structural features. (A) 
Cartoon of S. cerevisiae Rif1 with structural represen-
tation of the indicated domains: RVxF/SILK PP1/Glc7 
interacting motifs (green), NTD (N-terminal domain; 
blue), RBM (Rap1-binding motif; red) and CTD (C-
terminal domain; purple). The RVxF (residues 115-
118) and SILK (residues 146-149) motifs are shown 
bound with protein phosphatase PP1 (dark grey), 
modelled on two available co-crystal structures (PDB: 
4G9J for RVxF, serine/threonine-protein phosphatase 
PP1-alpha catalytic subunit, Homo sapiens [32] and 
PDB: 2O8A for SILK, serine/threonine-protein phos-
phatase PP1-gamma catalytic subunit, Rattus norvegi-
cus [33]). A flexible linker connects the RVxF and SILK 
motifs with the NTD (residues 188-1766), which is 
shaped like a shepherd’s crook (PDB: 5NVR [19]). The 
NTD connects via a 462 residue unstructured linker 
with RBM (residues 1752-1772). A co-crystal structure 
of RBM with the Rap1 C-terminal domain (RCT) is 
depicted (PDB: 4BJT). In addition, Rap1 contains BRCT 
and Myb domains (represented in light grey, Rap1 
linker regions between structured domains not 
shown). CTD (C-terminal domain of Rif1, residues 
1857-1916, PDB: 4BJS [29]) is a tetramerization do-
main, allowing oligomerization with other Rif1 mole-
cules (as indicated in translucent purple). (B) The NTD 
of Rif1 in complex with dsDNA. (C) Rif1NTD bound with 
two distinct DNA molecules in the head-to-tail dimer 
conformation observed in Rif1-DNA co-crystals and in 
solution. Contacts with the DNA are made by the 
concave surface of the so-called HOOK domain at the 

N-terminal end of the NTD 19. 
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the ssDNA/dsDNA end-resection junction and reduces the 
accumulation of ssDNA-binding protein RPA (Replication 
protein A), dampening recruitment and activation of the 
apical checkpoint kinase Mec1 (Mitosis entry checkpoint 1; 
ATR in human) [65]. Analogously, Rif1 counteracts the DDR 
at a model of critically short telomeres, where a DSB is 
induced at a short, ectopic telomeric DNA repeat sequence 
[45, 66], and can facilitate checkpoint adaptation and cell-
cycle re-entry in the presence of DNA damage [67]. The 
anti-checkpoint function of Rif1 in the critically-short telo-
mere model proved to be dependent on the ability of 
Rif1NTD to bind DNA [19]. These observations strongly indi-
cate that direct Rif1-DNA interactions underpin Rif1’s abil-
ity to dampen the DDR, potentially by contributing to the 
assembly of a proper telomere capping architecture and/or 
competitive exclusion of end-resection factors and check-
point activators. 
 
RIF1 and telomeres in mammals 
RIF1 does not interact with the telomeric capping complex 
in mammalian cells, localizing to telomeres only if these 
are uncapped or critically short [4, 5, 34]. Binding at dys-
functional telomeres likely reflects the involvement of 
mammalian RIF1 in DSB repair rather than telomere-
specific roles. 

Nonetheless, there is an interesting link between RIF1 
and telomere maintenance in mouse embryonic stem cells. 
In these cells, RIF1 is highly expressed [3] and helps restrict 
the expression of the ZSCAN4 (Zinc-finger and SCAN do-
main-containing 4) gene. ZSCAN4 encodes a protein that 
supports a recombination-dependent telomere-elongation 
mechanism active in mouse embryonic stem cells [68, 69]. 
RIF1 binds to the ZSCAN4 promoter, where it interacts with 
components of the methyltransferase complex mediating 
histone H3 lysine 9 methylation (H3K9me). Thus, RIF1 facil-

itates H3K9me and a transcriptionally silent chromatin 
state at the ZSCAN4 locus, suppressing hyperrecombina-
tion, telomere elongation, and chromosome aberrations 
[69]. 
 

RIF1 IN DNA DOUBLE-STRAND BREAK REPAIR 
Two conserved pathways mediate DSB repair 
DSB repair proceeds via NHEJ or HR [70, 71] (Figure 5). 
NHEJ is initiated by the association of the Ku heterodimer 
(Yku70 and Yku80) with DNA ends. Ku tightly encases DNA 
ends as a ring-like structure [72], forming a barrier to DNA 
degradation [73, 74]. Moreover, Ku serves as a scaffold for 
the recruitment of the core NHEJ machinery, comprised of 
the Dnl4-Lif1 (DNA ligase 4 and ligase-interacting factor 1) 
ligase complex and Nej1 (Non-homologous end-joining 
defective 1) [75-78]. When the Ku/Dnl4-Lif1/Nej1 complex 
is stably formed, the break ends are aligned and ligated. 
NHEJ can occur in all cell-cycle phases and is the preferred 
repair pathway in G1 and early S phase [70] (Figure 5). 

DSB repair by HR requires a homologous repair tem-
plate, which is usually provided by the unbroken sister 
chromatid [79, 80]; thus, HR is mainly used for DSB repair 
during late S and G2 phase of the cell cycle [71]. In budding 
yeast, the first HR factor observed at DSBs is the MRX 
complex [81], constituted by Mre11 (Meiotic recombina-
tion 11), Rad50 (Radiation sensitive 50), and Xrs2 (X-ray 
sensitive 2) (MRE11, RAD50, and NBS1 (Nijmegen breakage 
syndrome gene 1) in mammals). Stimulated by phosphory-
lated Sae2 (Sporulation in the absence of Spo eleven 2; 
CtIP (CtBP-interacting protein) in mammals) and Ku, Mre11 
introduces an endonucleolytic nick on the 5ʹ-terminated 
DNA strand, initiating DNA end-resection, which leads to 
the eviction of Ku [82-87]. Exonuclease Exo1 and the hel-
icase/nuclease complex constituted by Sgs1 (Slow growth 
suppressor 1; BLM in mammals) and Dna2 (DNA synthesis 
defective 2) [88] then catalyze long-range 5ʹ to 3ʹ end-
resection [89, 90]. In mammalian cells, MRE11 has been 
reported to cut both strands of the DNA in close proximity 
of the break, removing ends occluded by Ku and allowing 
EXO1 to engage for long-range end-resection [91]. The 
resection tracts are initially covered by RPA, which is then 
exchanged for the central recombinase Rad51 (Radiation 
sensitive 51) with the help of recombination mediator pro-
teins. The resulting Rad51 nucleoprotein filament conducts 
homology search, seeking out a homologous template for 
DSB repair [92, 93] (Figure 5). 

 
DNA end-resection at DSBs determines repair pathway 
choice 
At DSBs, repair pathway choice is intricately linked with 
DNA end-resection. As described above, NHEJ requires 
limited, if any, end processing, and becomes inefficient 
when DNA ends are extensively resected [94]. In contrast, 
HR is dependent on end-resection and exposure of ssDNA 
tracts, which serve as substrate for the recombination ma-
chinery. End-resection is therefore a commitment to DSB 
repair  by HR, and  in eukaryotes this  commitment is linked  

FIGURE 3: Conserved domains of Rif1. Rif1 orthologs from bud-
ding yeast (S. cerevisiae), fission yeast (S. pombe) and human (H. 
sapiens), aligned on the most conserved region of the protein 
(dark blue) present within the NTD, and corresponding to Pfam 
domain Rif1_N (residues 241-649 in S. cerevisiae, 108-471 in S. 
pombe, and 19-361 in H. sapiens). While the RVxF/SILK and NTD 
domains are found across organisms, RBM is only present in 
Saccharomycetes; the CTD domain is partially conserved from 
yeast to human (see text for details). 
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to the cell cycle and CDK (Cyclin-dependent kinase) activity 
[95]. In budding yeast, the sole CDK involved in cell-cycle 
control, Cdc28, regulates end-resection at DSBs [96, 97]. 
Cdc28 phosphorylates Sae2 [98], which stimulates Mre11 
in nicking the 5ʹ-terminated DNA strand, providing an entry 
site for the end-resection nucleases Exo1 and Dna2 [82, 84, 
85]. Cdc28 also phosphorylates Dna2, promoting long-
range end-resection [99], and the chromatin remodeler 
Fun30 (Function unknown now 30), which counteracts an 
end-protection activity exerted by DDR mediator Rad9 [100, 
101]. As a result, end-resection and HR-mediated DSB re-
pair are prevalent in late S and G2/M phases of the cell 
cycle, when CDK activity is high. 

Similar CDK-dependent mechanisms promote end-
resection in mammalian cells [94]. Importantly, phosphory-
lation of mammalian Sae2 ortholog CtIP promotes its in-
teraction with pro-resection factor BRCA1 (Breast cancer 
gene 1) [102-104]. RIF1, in conjunction with 53BP1 (p53-
binding protein 1) [105], counterbalances the BRCA1-CtIP 
axis of end-resection. The role of RIF1 in blocking end-
resection and promoting NHEJ in mammalian cells [106] is 
the subject of the next section. 

 
An antagonism between 53BP1-RIF1 and BRCA1-CtIP me-
diates DSB repair pathway choice in mammalian cells 
RIF1 accumulates at DSBs in a manner dependent on apical 
DNA damage-checkpoint kinase ATM (Ataxia-telangiectasia 
mutated) and 53BP1 [4], a protein related to checkpoint 
mediator Rad9 in budding yeast [107] (Figure 6). ATM 
phosphorylates a cluster of 28 N-terminal S/T-Q sites with-
in 53BP1 to promote RIF1 binding [4, 108-117], but wheth-
er the interaction between RIF1 and 53BP1 is direct or in-
volves as-yet unidentified accessory factors is currently not 
clear [118]. 53BP1 is a reader of multiple histone marks, 
allowing 53BP1-RIF1 recruitment to damaged chromatin 
surrounding DSBs in a highly controlled manner: (1) the 
tandem Tudor domain of 53BP1 interacts with dimethylat-
ed lysine 20 on histone 4 (H4K20me2) [119], and (2) the 
UDR (ubiquitylation-dependent recruitment) motif con-
tacts mono-ubiquitylated lysine 15 on histone 2A 
(H2AK15ub) [120, 121]; (3) it has also been reported that 
the C-terminal tandem BRCT (BRCA1 C-terminal) domain of 
53BP1 interacts with ATM-phosphorylated histone H2AX 
(γH2AX) [122], however, as the BRCT domain appears to be 
dispensable for the recruitment of 53BP1 to damaged 
chromatin [111], the underlying functional relevance of 
this interaction remains to be elucidated. The H2AK15ub 
mark is specific to damaged chromatin and deposited by a 
ubiquitylation cascade involving RING-finger proteins RNF8 
and RNF168 (Figure 6). H4K20me2 is a constitutive histone 
mark, which is diluted during replication due to new his-
tone deposition in S phase. 53BP1 recruitment to sites of 
damage is therefore favored in G1 and less efficient in 
newly replicated chromatin in late S phase or G2 [123, 124]. 
Moreover, L3MBTL1 (Lethal 3 malignant brain tumor-like 
protein 1) [125] and KDM4A (Lysine specific demethylase 
4A) [126] compete with 53BP1 for the binding of 
H4K20me2, while TIRR (Tudor-interacting repair regulatory 
protein) binds 53BP1, masking the interaction surface for 

Figure 4: The Velcro-like protein network found at S. cerevisiae 
telomeres. Structural model illustrating the Rap1-Rif1-Rif2 inter-
actions at dsDNA regions of budding yeast telomeres [29]. Rap1 
(grey) engages DNA through its Myb domain (PDB: 1IGN [41]). 
Numbers 1 to 5 indicate Rap1-binding sites. Rif1 and Rif2 are re-
cruited via the Rap1RCT domain (Rap1 C-terminal domain; linker 
regions not shown; PDB: 4BJ5 [29]; PDB: 3UKG [42]). In this exam-
ple, each Rap1RCT is bound with Rif2 (PDB: 4BJ1 [29]) via the 
Rif2AAA+ domain (light green). The Rif2AAA+ domain is connected to 
the Rif2RBM (dark green), a second Rap1 interaction epitope with 
similar affinity for Rap1RCT [29]. A relatively short linker between 
Rif2AAA+ and Rif2RBM (green dotted line, maximal length of 42 Å) 
limits Rif2 to interlinking neighboring Rap1 molecules. At binding 
site 5, more complex Rap1-Rif1-Rif2 interactions are shown in 
exemplary fashion. The Rif1RBM (red, PDB: 4BJT) represents the 
major Rap1 interaction motif; the Rif1CTD (purple, PDB: 4BJS) plays 
an accessory role in Rap1 binding and serves as a tetramerization 
domain [29]. An extended flexible linker (blue dotted line) con-
nects the RBM and CTD domains, allowing multimeric Rif1 to in-
terlink up to four Rap1 units over long distances (maximal dis-
tance of 110 Å). The Rif1RBM and Rif2RBM bind Rap1RCT in a mutually 
exclusive manner at the same hydrophobic cleft. In addition, 
RBM-bound Rap1RCT can engage the Rif1CTD or Rif2AAA+ domains. 
These multipoint interactions between interconnected Rap1, Rif1, 
and Rif2 stabilize the telosome and have been likened to a molec-
ular Velcro [29]. The Rap1BRCT and Rif1NTD domains have been 
omitted for clarity. 
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methylated H4 [127]. Recruitment of 53BP1 to chromatin is 
further controlled by post-translational modifications de-
posited on 53BP1 itself. Thus, RNF168-dependent ubiq-
uitylation [128], and PRMT1 (Protein arginine N-
methyltransferase 1)-dependent methylation [129] of 
53BP1 favors its accumulation at sites of damage, while 
53BP1 phosphorylation [130, 131] and acetylation [132] 
reduce the affinity of 53BP1 for H2AK15ub. 

Observations showing that downregulation of 53BP1 
induces ectopic BRCA1 recruitment to DSBs in G1, and that 
conversely, depletion of BRCA1 or CtIP leads to accumula-
tion of 53BP1 at chromosomal breaks in G2, indicate that 

53BP1 and BRCA1 compete for DSB binding [116]. CDK-
dependent phosphorylation of CtIP [133-135] favors the 
formation of a complex containing BRCA1, CtIP and MRN 
[103] at DSBs. BRCA1 and its partner BARD1 (BRCA1-
associated RING domain protein 1) form an E3 ubiquitin 
ligase, adding ubiquitin chains to H2A. Ubiquitylated H2A 
attracts chromatin remodeler SMARCAD1 (SWI/SNF-
related matrix-associated actin-dependent regulator of 
chromatin subfamily A containing DEAD/H box1; Fun30 in 
budding yeast), which in turn evicts and repositions nucle-
osomes and 53BP1 at DSBs [136]. Ubiquitylation of RIF1, 
promoted by BRCA1 interactor UHRF1 (Ubiquitin-like, con- 

FIGURE 5: DSB repair by NHEJ and HR. The conserved mechanisms of DSB repair by NHEJ and HR are illustrated with budding yeast pro-
teins. Left; Ku encircles DSB ends, recruiting the Lif1-Dnl4 and Nej1 ligase complex to promote NHEJ. Right; Stimulated by phosphorylated 
Sae2, Mre11 introduces nicks in the 5ʹ-terminated DNA strands, destabilizing Ku. At the nicks, Exo1 and Sgs1-Dna2 initiate long-range end-
resection, exposing ssDNA, which is first coated by RPA, then by recombinase Rad51. The Rad51 nucleoprotein filament seeks out and in-
vades a homologous donor sequence to initiate DNA repair synthesis. HR leads mostly to non-crossover products with a repair patch where 
new DNA has been synthesized. 
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FIGURE 6: An antagonism between 53BP1-RIF1 and BRCA1-CtIP regulates DSB repair pathway choice in mammalian cells. DSB formation 
triggers a range of protein modifications that orchestrate the cellular response and DNA repair. MRN binds DSBs and recruits apical DDR 
kinase ATM, which phosphorylates H2AX (γH2AX). γH2AX attracts MDC1 (Mediator of DNA damage checkpoint protein 1), which becomes 
phosphorylated by ATM and binds additional MRN and ATM, providing a positive feedback loop for signal amplification. MDC1 also recruits 
RNF8, which cooperates with RNF168 to catalyze protein ubiquitylation at DSBs. H2AK15ub, together with H4K20me2, mediates binding of 
53BP1 at DSBs. In its ATM-phosphorylated form, 53BP1 interacts with RIF1, although it remains to be determined whether this interaction is 
direct. The 53BP1-RIF1 complex blocks resection and inhibits BRCA1-CtIP, EXO1 and DNA2 through an as yet unidentified molecular mecha-
nism. Attenuation of resection results in NHEJ repair in G1 and in early S phase (left). In late S and G2 phase, CDK activity rises and the 
H4K20me2 mark is diluted as a consequence of new histone deposition during DNA replication. CDK stimulates the endonucleolytic activity of 
the MRN complex, and the recruitment of BRCA1-CtIP to damaged chromatin, while 53BP1-RIF1 binding is diminished. CDK-phosphorylated 
EXO1 and DNA2-BLM promote long-range resection, generating 3ʹ-ssDNA overhangs, the substrate for the HR-dependent DSB repair machin-
ery (right). 
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taining PHD and RING finger domains 1), is also involved in 
dissociating RIF1 from DSB ends [137]. Following removal 
of 53BP1 and RIF1, end-resection, catalyzed by EXO1 [138, 
139] and DNA2-BLM [140-142] can take place, initiating HR 
repair. 

While 53BP1 and RIF1 are epistatic in repressing end-
resection at DSBs [113, 117], it is not yet understood how 
53BP1 and RIF1 cooperate to inhibit the end-resection ma-
chinery and promote NHEJ mechanistically. By analogy to 
budding yeast, where Rif1 participates in organizing higher-
order structures at telomeres [29] (Figure 4), it has been 
speculated that 53BP1 and RIF1 might arrange DSBs into 
structures less accessible for resection [118]. At uncapped 
telomeres, resembling one-ended DSBs, RIF1’s role in at-
tenuating end-resection is supported by BLM [35] and 
MAD2L2 (Mitotic spindle assembly checkpoint protein 
MAD2B) [143], and these interactions could putatively play 
similar roles at chromosome breaks. Finally, given the in-
teraction between RIF1 and PP1 (see Box 1), it is tempting 
to speculate that the dephosphorylation of DDR and/or 
resection factors may be involved in RIF1-dependent at-
tenuation of end-resection [106]. 
 
Rif1 and DSB repair pathway choice in budding yeast: Rif1 
attenuates DNA end-resection by tightly encasing DNA 
ends 
The involvement of S. cerevisiae Rif1 in DSB repair has 
emerged only recently. A first indication that budding yeast 
Rif1 may localize to broken DNA came from studies fo-
cused on the telomeric roles of Rif1. In a model for critical-
ly short telomeres, where a DSB is generated proximal to a 
short telomeric repeat sequence, Rif1 accumulates in a 
Rap1-dependent manner. Surprisingly, Rif1 was observed 
at these telomeric breaks even when its C-terminal Rap1-
interaction modules (the Rif1RBM and Rif1CTD domains) were 
disrupted, which suggested a Rap1-independent mecha-
nism of recruitment [29]. This was confirmed by findings of 
Rif1 targeting induced DSBs at different places in the bud-
ding yeast genome, and in a manner fully independent of 
telomeric DNA sequences [19, 67, 144].  

In contrast to the mammalian system, a first analysis of 
budding yeast Rif1 at non-telomeric DSBs showed that cells 
deleted for RIF1 accumulated less ssDNA at distances 
greater than ~2 kb from a break site in G1 phase of the cell 
cycle [144]. This correlated with increased binding of DNA 
damage checkpoint mediator Rad9, a protein known for its 
ability to function as a barrier to end-resection [145, 146]. 
It therefore appears that Rif1 may facilitate longer-range 
end-resection by limiting Rad9 recruitment under certain 
conditions. While this Rif1-Rad9 interplay has been shown 
to be important for deleterious intrachromosomal break 
repair, any impact on canonical DSB repair by HR or NHEJ 
remains unclear [144, 147]. 

Further insight into the interaction of Rif1 with DSBs 
resulted from the identification of the Rif1NTD DNA-binding 
site (Figure 2). In vitro, Rif1NTD binds dsDNA and ssDNA 
substrates in a sequence-independent manner, showing 
preference for 3ʹ-tailed ssDNA-dsDNA junctions, a DNA 
structure similar to those found at telomeric ends and DSB 

ends. As mentioned above, direct DNA binding by the 
Rif1NTD was found to play critical in vivo roles by counter-
acting telomerase and the attenuation of end-resection at 
uncapped telomeres in budding yeast. Analogously, and 
mirroring the situation in mammalian systems, Rif1NTD also 
engages DSBs, attenuates end-resection, and promotes 
NHEJ [19]. In yeast strains harboring an inducible DSB that 
can only be repaired by NHEJ [148, 149], loss of Rif1 desta-
bilized the break ends and reduced repair by ~40%. End-
protection and the promotion of NHEJ by Rif1 was de-
pendent on the DNA-binding activity residing in the HOOK 
domain of Rif1NTD; in contrast, the Rap1 and PP1-binding 
modules are apparently not required [19]. These findings 
show that the role of Rif1 in modulating DSB repair path-
way choice is evolutionary conserved, and that the yeast 
and mammalian Rif1 orthologs are functionally more simi-
lar than previously thought. 

The structural and functional evidence in budding yeast 
strongly suggests that Rif1NTD promotes NHEJ by tightly 
encasing DNA ends in a way that sterically excludes the 
end-resection machinery. In human, the NTD is strictly 
required for recruitment of Rif1 to DSBs, while the C-
terminal part of the protein contributes moderately [116]. 
Based on the evolutionary conservation of the Rif1NTD [6] 
and recent reports of DNA binding by the murine RIF1 [31], 
it is tempting to speculate that Rif1 may operate in DSB 
repair by gating access to DNA ends across organisms. 

 
Possible means of regulation of budding yeast Rif1 in DSB 
repair 
In mammalian cells, the actions of RIF1 in DSB repair path-
way choice are dependent upon 53BP1 [113, 115-117]. A 
potential functional equivalent to 53BP1 in budding yeast 
is Rad9. Like 53BP1, Rad9 is a reader of histone marks, in-
teracting with damaged chromatin through its Tudor and 
BRCT domains binding H3K79me [150, 151] and γH2AX 
[152, 153], respectively. So far, no functional or physical 
interactions between Rad9 and Rif1 analogous to the 
mammalian 53BP1-RIF1 axis have been reported. Quite to 
the contrary, Rif1 has been shown to prevent the accumu-
lation of Rad9 at telomeres, inhibiting the DDR [65, 66]. As 
described above, a similar antagonism between Rif1 and 
Rad9 may operate at DSBs [67, 144]. How yeast Rif1 is reg-
ulated in NHEJ is an interesting open question. HEAT re-
peats have frequently been linked with protein-protein 
interactions [154], raising the possibility that, in addition to 
direct DNA binding, RifNTD may mediate as-yet unknown 
physical interactions regulating its functions in NHEJ. 

In budding yeast, Rif1 has been seen in foci at the nu-
clear periphery, coinciding with the subnuclear position of 
telomeres [155-157]. Fission yeast Rif1 has been proposed 
to establish late-replicating domains by dictating specific 
chromatin architectures in proximity of the inner nuclear 
membrane [27] (see Box 1). Similarly, mouse RIF1 proved 
critical in linking nuclear spatial organization and replica-
tion timing, and based on the observation that RIF1 inter-
acts with Lamin B1, this function may be exerted by physi-
cal interactions with the inner nuclear membrane [22]. 
Given  that  nuclear  compartments are  important for  DSB  
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FIGURE 7: Ways in which Rif1 dimerization may promote DSB repair and shape telomere architecture. (A) Crystallographic model showing 
budding yeast Rif1 dimers bound to two DNA molecules [19]. The shepherd’s crook-like Rif1NTD (blue) comprises an N-terminal HOOK and a 
straight SHAFT region. Rif1RBM (Rap1-binding domain, red) and Rif1CTD (C-terminal tetramerization domain, purple) are connected to Rif1NTD 
by unstructured linker regions (dotted lines). Rif1NTD has intrinsic DNA-binding activity and assembles on DNA as a figure 8-shaped, head-to-
tail dimer. Multiple dimers may be organized around the same DNA molecules, forming a protein sheath, and restricting access of other 
proteins. (B) Speculative model of Rif1 dimers binding to the two ends of a DSB: tethering DSB ends in this way may promote re-ligation 
along the NHEJ pathway by keeping DSB ends in close proximity. (C) Schematic representation of the Velcro-like protein network formed by 
Rap1, Rif1 and Rif2 at yeast telomeres, taking DNA binding by Rif1 into account. Rap1 molecules (grey) directly bind dsDNA TG1-3 tracts, 
recruiting Rif1 and Rif2. Rif2 (green) interlinks adjacent Rap1 molecules, while Rif1, forming tetramers via its CTD, engages multiple Rap1 
molecules through RBM epitopes. The NTD may allow Rif1 to directly engage telomeric DNA at sites not covered by Rap1. Fold-back struc-
tures could potentially be stabilized by Rif1-mediated DNA-bridging. 
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repair [158, 159], it will be interesting to explore whether a 
nuclear-peripheral localization of Rif1 may be functionally 
involved in NHEJ. 
 

CONCLUSIONS AND FUTURE PERSPECTIVES 
Initially described as a telomeric protein in budding yeast 
[1], Rif1 is now recognized as a key genome maintenance 
factor that exists across eukaryotes. A growing body of 
evidence indicates that most of Rif1’s diverse functions are 
evolutionary conserved. Studies in yeast [10, 13, 16, 17, 20, 
21] and mammalian cells [14, 15, 18, 22, 23] have provided 
a detailed view of Rif1 in the regulation of replication tim-
ing by shared mechanisms involving control over origin 
firing and chromatin structure (Box 1). Pioneering work in 
mammalian cells has established RIF1 as a mediator of DSB 
repair pathway choice [4, 5, 113, 115-117]. At DSBs, RIF1 
promotes NHEJ by attenuating end-resection, although the 
mechanism of action in mammalian cells remains to be 
elucidated. The yeast model may prove informative in 
these efforts. Budding yeast Rif1 has long been regarded 
purely as a telomere maintenance factor, tethered to 
chromosome ends by DNA-binding protein Rap1 [1, 29]. 
With recent studies linking budding yeast Rif1 to DSB re-
pair, this view has changed [19, 67, 144]. Detailed structur-
al analyses have revealed direct DNA binding by the con-
served NTD of Rif1, which, in budding yeast at least, medi-
ates functionally important interactions with chromosome 
ends and DSB ends alike [19]. The crook-shaped Rif1NTD 
encases DNA ends (Figure 2 and Figure 7A), gating access 
of processing factors. This provides an elegant, direct 
mechanism that allows Rif1 to control diverse biological 
processes including telomere elongation and end-resection. 
Rif1NTD-mediated DNA binding may be conserved in mam-
mals [31], and it will be important to establish how gener-
ally the mechanistic insights from budding yeast apply to 
other eukaryotes. 

Rif1 binds DNA in oligomeric form [19, 31]. In the Rif1-
DNA co-crystal, Rif1NTD is seen in a head-to-tail dimer con-
figuration bound with two DNA molecules [19] (Figure 2C 
and Figure 7A). The significance of this intriguing arrange-
ment remains to be elucidated in vivo, but it is tempting to 
speculate that multipoint DNA interactions may underpin 
Rif1 function. For example, tethering DSB ends, as seen in 
case of the MRX [160-166] and MRN complexes [167-170], 
could be involved in Rif1’s role in promoting NHEJ (Figure 
7B). At telomeres, higher-order chromatin structure is im-
portant for homeostasis. In mammalian cells, chromosome 
ends fold back on themselves and display a lariat-like struc-
ture (T-loops), generated by invasion of the 3ʹ ssDNA over-
hang into the dsDNA region of the telomere [171]. In hu-

man, shelterin component TRF2 (Telomeric repeat-binding 
factor 2) is crucial in forming and maintaining T-loops [171, 
172]. Similar fold-back structures exist in yeast, and in 
budding yeast Rif1 and Rif2 are implicated in their for-
mation [173-177]. Although speculative at the moment, 
both Rif1 multimerization [29] and multi-point DNA binding 
[19], could promote the stability of higher-order telomere 
structures (Figure 7C), and by analogy may also support 
higher-order RIF1-53BP1 assemblies at repair sites. 

In conclusion, Rif1 is emerging as a versatile and multi-
faceted genome maintenance protein involved in DNA 
replication timing, telomere maintenance, and the repair 
of chromosome breaks. It now appears that its cellular 
functions are largely conserved among eukaryotes. The 
way in which Rif1 is integrated into the telomere protec-
tive cap is unique to yeast. Yet, the finding that Rif1 utilizes 
an intrinsic DNA-binding activity within the conserved 
Rif1NTD to regulate telomere length and end-resection at 
DSBs is compatible with the view that a conserved DNA 
repair protein has been “hijacked” and is moonlighting in 
telomere homeostasis [178]. The mechanistic parallels of 
direct DNA binding by Rif1 in DNA repair and telomere 
maintenance provide a satisfyingly unified view of Rif1 
shepherding DNA ends to safeguard genome stability. 
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