|BC THEMATIC MINIREVIEW

L))

Check for
Updates

Nonhomologous DNA end-joining for repair of DNA

double-strand breaks

Published, Papers in Press, December 14,2017, DOI 10.1074/jbc.TM117.000374

Nicholas R. Pannunzio', Go Watanabe', and Michael R. Lieber?

From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section
of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of
Southern California Keck School of Medicine, Los Angeles, California 90033

Edited by Patrick Sung

Nonhomologous DNA end-joining (NHE]) is the predomi-
nant double-strand break (DSB) repair pathway throughout
the cell cycle and accounts for nearly all DSB repair outside of
the S and G, phases. NHE] relies on Ku to thread onto DNA
termini and thereby improve the affinity of the NHE] enzy-
matic components consisting of polymerases (Pol u and Pol
A), a nuclease (the Artemis'DNA-PKcs complex), and a ligase
(XLF-XRCC4-Lig4 complex). Each of the enzymatic components
is distinctive for its versatility in acting on diverse incompatible
DNA end configurations coupled with a flexibility in loading
order, resulting in many possible junctional outcomes from one
DSB. DNA ends can either be directly ligated or, if the ends
are incompatible, processed until a ligatable configuration is
achieved that is often stabilized by up to 4 bp of terminal
microhomology. Processing of DNA ends results in nucleotide
loss or addition, explaining why DSBs repaired by NHE] are
rarely restored to their original DNA sequence. Thus, NHE] is a
single pathway with multiple enzymes at its disposal to repair
DSBs, resulting in a diversity of repair outcomes.

Eukaryotic cells have evolved to repair multiple forms of
DNA damage to maintain a high level of fidelity between cell
divisions. Among types of damage, DNA double-strand breaks
(DSBs)? are particularly detrimental as they can result in inser-
tions, deletions, or chromosomal translocations that are the
primary transforming step in many human cancers. Pathologi-
cal DSBs can arise from both exogenous (e.g. ionizing radiation
or reactive oxygen species) or endogenous (e.g. DNA replica-
tion errors or incidental action by nuclear enzymes) sources. In
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some cases, DSBs are required as part of a physiological process,
such as the breaks that occur during V(D)J recombination and
immunoglobulin heavy chain (IgH) class switch recombination
(1). Both pathological and physiological DSBs require efficient
processes for repair that result in minimal to no change to the
broken chromosome. Repair mechanisms can be largely di-
vided between those that use extensive homology from a
sister chromatid or homologous sequence elsewhere in the
genome and those that use little to no homology. Both mecha-
nisms require end processing by nucleases, utilization of DNA
polymerases, and a final ligation step to complete repair of
the broken DNA (Fig. 1). Nonhomologous DNA end-joining
(NHEJ) was originally a phrase used to describe a type of illegit-
imate repair that utilizes little to no long homology (2) (we feel
it unnecessary to include the word “canonical” or use the term
“c-NHE]” as we consider NHE] a stand-alone pathway that does
not need to be described in reference to separate alternative
end-joining pathways that have their own distinct compo-
nents). “Nonhomologous” could be misinterpreted as meaning
completely homology-independent by a newcomer to the field,
but up to 4 bp of microhomology during repair is common for
NHE]J, and the term is simply meant to contrast with “homo-
logous” recombination (HR), which can use several hundred
base pairs of homology as a template for high-fidelity repair. In
NHE]J, the DSB is first recognized by a heterodimer consisting
of Ku70 and Ku80 (Ku). The DNA-dependent protein kinase
catalytic subunit (DNA-PKcs) has a high affinity for DNA ends,
which is even tighter when Ku is bound to that end (3). The
nuclease, Artemis, exists in tight complex with DNA-PKcs
within the cell and is likely recruited along with DNA-PKcs (4).
Nucleotide addition can occur by the Pol X family polymerases,
Pol w and Pol A. Finally, the DNA ligase IV complex, including
XRCC4, XLF, and perhaps PAXX, carries out the critical liga-
tion step for either strand of the DSB.

Importantly, NHE] is an iterative process, where each of the
DNA ends involved in the break can be acted upon by these
components multiple times and in a different order (Fig. S1).
Other important factors that dictate repair are the differential
requirements for the various NHE] proteins depending on the
configuration of the DNA ends, which can include blunt ends,
5’ or 3' overhangs, or ends containing adducts refractory to
processing or ligation. Recent work has begun to systematically
examine how various DNA end configurations are processed
differently (5, 6). We briefly mention how NHE] relates to the

SASBMB

© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.  Published in the US.A.


http://www.jbc.org/cgi/content/full/TM117.000374/DC1
http://www.jbc.org/cgi/content/full/TM117.000374/DC1
mailto:lieber@usc.edu
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.TM117.000374&domain=pdf&date_stamp=2017-12-14

THEMATIC MINIREVIEW: NHEJ for repair of double-strand breaks

/ \ End resection

End protection

53BP1 ctiP
MRN
N —
<
s —— l BLM \
E Ku70/80 EX%LA f—
x Kku e — - N
g Artemis
& DNA-PKcs l BRCAT
z Pol A/p PARP1 A BRCA2
o PAXX POL6 =
S XLF RADS52 RADST
s XRCC4 XPF/ERCCA RAD54
§ LIG4
z S
: v
E aEs =X
NHEJ
Microhomology
orhomology 0 -4 2-20 >25 >100

usage (bp)

Figure 1. NHEJ in the context of other double-strand break repair pathways. DNA double-strand breaks (DSBs) can be repaired by NHEJ, alternative
end-joining (a-EJ), single-strand annealing (SSA), or homologous recombination (HR). Pathway choice and pathways other than NHEJ are discussed in other
Minireviews in this thematic series. The name NHEJ originally arose to distinguish it from repair that requires extensive DNA homology (i.e. HR and SSA).
Lengths of terminal microhomology (MH) between 1 and 4 bp are common in NHEJ. a-EJ is also called microhomology-mediated end joining (MMEJ) or Pol
6-mediated end joining (TMEJ). The major difference in the pathways is the requirement for significant DNA end resection. The p53-binding protein 1 (53BP7)
is a chromatin remodeler and a positive regulator for NHEJ. Although Artemis-DNA-PKcs can carry out some nucleolytic resection (typically <20 nt), the NHEJ
pathway does not require extensive end resection, and the ends are protected from deeper resection by the binding of the Ku heterodimer (Ku70-80) to the
DNA ends. By contrast, the C-terminal binding protein-interacting protein (Ct/P) and the MRN (MRE11 (meiotic recombination 11)-RAD50-NBS1 (Nijmegen
breakage syndrome protein 1)) complexes are involved in extensive 5’ to 3’ resection of regions of the duplex, and this generates stretches of ssDNA at DNA
ends fora-EJ, SSA, and HR. SSA typically requires >25 bp of microhomology, whereas the requirement for a-EJ is typically <20 bp. Poly(ADP-ribose) polymerase
1 (PARP1) and Pol # areimportant for a-EJ. Bloom syndrome RecQ-like helicase (BLM) and exonuclease 1 (EXOT) account for additional resection, and replication
protein A (RPA) binds to ssDNA to promote the SSA and HR pathways. RAD52-mediated annealing of homologous sequence is key for the SSA pathway.
XPF-ERCC1 cuts the remaining 3’ nonhomologous ssDNA prior to ligation by DNA ligase 1. By contrast, RAD51-mediated strand exchange with its association
with BRCA1, BRCA2, and RAD54 is essential for facilitating the HR pathway.

other pathways of double-strand break repair, but our major
focus is the NHE] process. Therefore, readers are directed to
the other works in this Thematic Minireview series for a
detailed explanation of other DSB repair mechanisms.

Overview of NHEJ in humans and its relationship with
other pathways of double-strand break repair

In human cells, NHE] appears to repair nearly all DSBs out-
side of S and G, cell cycle phases and even about 80% of DSBs
within S and G, that are not proximal to a replication fork (Fig.
1) (7). In late S and G,, HR is another major pathway for DSB
repair, relying on more extensive homology tracts as a template
for repair (8). When NHE] is compromised due to the absence
of one or more key protein components, the activities of other
DNA end-joining pathways that typically involve more exten-
sive end resection become apparent. Greater levels of 5’ end
resection expose homologous sequences embedded on either
side of a DSB, allowing for stable annealing of 3’ single-stranded
DNA (ssDNA) that promotes more efficient joining and liga-
tion (9). Although NHE] usually requires =4 bp of microhomo-
logy, the alternative end-joining (a-EJ) pathway (also known as
Pol §-mediated end-joining or microhomology-mediated end-
joining) (Fig. 1) (10), which utilizes the additional factors of
poly(ADP-ribose) polymeraseand DNA Pol 6, requires microho-
mology that ranges between 2 and 20 bp. Although NHE] dom-
inates DSB repair in most mammalian somatic cells, Pol -me-
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diated events appear at an observable frequency in certain cell
types (11), for certain repair events (12), and in some organisms
(13). Greater levels of resection can further promote the non-
conservative homology-directed repair pathway of single-
strand annealing (SSA) that requires >25 bp of homology (Fig.
1) (14-17). Therefore, the mechanisms of NHE] and HR occur
on opposite ends of a spectrum with respect to homology usage
with a-EJ and SSA occurring between them on a gradient of
increasing levels of DNA end resection and homology usage
(6).

A key reason for the dominance of NHE] is that extensive
DNA end resection is prevented by Ku binding (18), and the
tight affinity and high abundance of Ku in cells increases the
likelihood that Ku is the first protein to bind at a broken DNA
end (6) (Fig. 1). A small protein called CYREN (cell cycle regu-
lator of NHE] (69 aa); also called MRI-2, a sub-peptide of
C70rf49 (157 aa)) has been proposed to affect Ku DNA binding
(not specified how) and thus favor the HR pathway choice in
S/G, (19), although the data on CYREN effects on Ku binding
are conflicting (20). Signaling factors appear to be important in
controlling resection, as there is evidence that the DNA dam-
age-response protein p53-binding protein 1 (53BP1) is antago-
nistic to end resection, acting through a number of effector
proteins (21, 22). 53BP1 and mediator of DNA damage check-
point protein 1 (MDC1) are recruited to DSBs through a num-
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ber of modified histone residues and appear to have distinct
roles in DSB repair (8, 23, 24). Further work is required to elu-
cidate specifically how 53BP1 recruitment inhibits extensive
end resection. Overcoming this barrier to resection, however, is
the first step to enable either a-EJ or SSA.

Following commitment to NHE], the nuclease, polymerase,
and ligase components act on the DNA ends until repair is
complete. Pathway commitment likely is not final until the
strands of the break site are ligated, and if the DSB remains
unrepaired, the repeated processing of ends may shift repair to
another pathway. Below we provide a brief overview of the
types of proteins that are involved in NHE] and their functions,
which applies to nearly all vertebrates.

The nucleases of NHEJ

Direct ligation of broken DNA ends is often impeded due to
end incompatibility caused by mismatching overhangs or
chemical modifications (Fig. 1). Therefore, following commit-
ment to NHE]J, nucleases are required to process mismatched
or modified ends to prepare them for ligation. This typically
involves removing short regions of the 5" or 3" overhangs by
either exonucleolytic or endonucleolytic processing to expose
short regions of microhomology (=4 nt) between the strands
that can facilitate end joining. Extensive end resection (=20 nt),
which occurs to initiate HR or SSA pathways, is prevented by
the presence of Ku, distinguishing the end processing of NHE]
from other DSB repair pathways. When DNA resection is
required for NHE], DNA-PKcs is recruited in complex with the
nuclease Artemis to Ku-bound DNA ends. DNA-PKcs under-
goes autophosphorylation and activates Artemis (25, 26). Arte-
mis then gains the ability to cut DNA ends at single-strand—to—
double-strand DNA (ss—dsDNA) boundaries, which includes
all overhangs and other structures such as gaps, loops, and bub-
bles that may arise due to mismatches between the two DNA
ends being joined (27, 28).

Artemis is a member of the metallo-B-lactamase family of
nucleases, containing the conserved metallo-3-lactamase and
B-CASP domains. This family of nucleases has the ability to
hydrolyze DNA or RNA in various configurations (29). In addi-
tion to an intrinsic 5’ exonuclease activity on ssDNA that does
not require DNA-PKcs (30, 31), Artemis possesses a DNA—
PKcs-dependent endonuclease activity on both 5 and 3" DNA
overhangs of duplex DNA. Such overhangs often result due
to pathological DSBs where breaks on opposite DNA strands
occur in very close proximity. Also, Artemis endonuclease
activity is essential for the hairpin opening step during V(D)]
recombination (following cleavage by recombination activation
genes, RAG1 and RAG2), and patients lacking Artemis suffer
from severe combined immunodeficiency because of a V(D)]
recombination defect in antigen receptor gene assembly (4, 32).

DNA-PKcs interacts with the C terminus of Ku80, which is
highly dynamic and flexible (Fig. 24). The final 12 amino acids
of Ku80 are sufficient for interacting with DNA-PKcs (33, 34),
but Ku-'DNA-PKcs complex formation is very weak unless Ku is
bound to a DNA end. The presence of Ku on DNA increases the
binding affinity of DNA-PKcs for DNA ends by 100-fold (35).
Following binding to the DNA end, DNA-PKcs autophos-
phorylates, thus activating the endonuclease activity of Arte-
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mis (4). This likely occurs when autophosphorylated DNA-
PKcs phosphorylates the C-terminal inhibitory region of
Artemis (aa 454—458), promoting the dissociation of the
inhibitory region from the N-terminal catalytic domain (aa
1-7) (Fig. 2B) (25, 36).

It has been estimated that 20 -50% of ionizing radiation-in-
duced DSBs require Artemis for repair (37, 38). One possibility
is that the remaining DSBs can be joined without the need of
any nuclease (Fig. S2), but considering the number of nucleases
present in the cell, it seems likely that other nucleases could be
employed at incompatible ends, especially when Artemis is not
present. Among those suggested to be involved in DSB repair
include APLF, which is an abbreviation for Aprataxin and
PNKP-like factor (also known as PALF) (39 —41), flap structure-
specific endonuclease 1 (FEN1), DNA replication helicase/nu-
clease 2 (DNA2), and exonuclease 1 (EXO1). In addition to
nucleases, the Werner syndrome ATP-dependent helicase/nu-
clease (WRN) and the Bloom syndrome RecQ-like helicase
(BLM) may also be involved in processing of DSB ends by cre-
ating a cleavage substrate for several of the aforementioned
nucleases (42-44).

Another possible factor is the MRN complex (consisting of
MRE11, RAD50, and NBS1), which is important for the resec-
tion step of the HR and SSA pathways to generate extensive
3’-terminated ssDNA overhangs. The intrinsic 3'—5" exonu-
clease activity of the MRE11 component cannot generate these
3’-terminated overhangs by acting directly at a DNA end and
relies on the C-terminal-binding protein interacting protein
(CtIP) to stimulate MRN endonuclease activity to incise distal
from the break. Next, the 3" exonuclease activity can degrade
DNA from the incision back toward the DNA end, thus creating
the 3'-terminated ssDNA overhangs that can further undergo
long range resection (e.g. by EXO1 or DNA2-BLM) (45, 46).
This processing may have implications for the binding of Ku to
DNA ends because MREI1 endonuclease activity occurs
upstream of the Ku-bound DNA end.

CtIP is an important regulator of end processing as it not only
stimulates MRN but also the long range resection by BLM and
DNA2 (44). Importantly, CtIP is phosphorylated and active in S
and G, (47), indicating that cell cycle is another factor that
dictates nuclease involvement. Furthermore, the abundance
and localization of these nucleases at DSB sites will determine
which nucleases are responsible for the most resection at DSBs.
Because Artemis is recruited to breaks by DNA-PKcs at the
early stages of NHE], and because only limited resection occurs,
Artemis appears to the primary nuclease for most NHE] repair
events (27).

The polymerases of NHEJ

Members of the Pol X family of polymerases participate in
DSB repair by NHE]. DNA Pol w and Pol A are the two members
involved in NHE] in the majority of human cells (48, 49). Each
of these polymerases has an N-terminal BRCA1 C terminus
(BRCT) domain that allows them to interact with Ku (Fig. 2)
(50). Primary cells derived from mice with genetic knockouts of
both Pol w and Pol A exhibit little or no sensitivity to ionizing
radiation, although knockouts in cell lines can have some deficit
in DSB repair in some assays (51, 52). Pol w and Pol A can
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Figure 2. Nonhomologous end-joining proteins and their known interactions. A, nonhomologous end-joining (VHEJ) DNA-dependent protein kinase
(DNA-PK) complex consists of a heterodimer of Ku70 and Ku80 plus DNA-PKcs (catalytic subunit). Ku70 and Ku80 consist of von Willebrand (vWA) domains, the
Ku core, and the nuclear localization sequence (NLS). Ku70 also contains a SAF-A/B, Acinus, and PIAS (SAP) domain. DNA-PKcs consists of an N-terminal domain
with PQR and ABCDE autophosphorylation clusters implicated in its activation, FAT (FRAP, ATM, TRRAP) domain, followed by the phosphatidylinositol 3-kinase
(PI3K) domain, and the FAT-C (C-terminal) domain. B, NHEJ nucleases consist of Artemis and APLF (abbreviation for Aprataxin and PNKP-like factor). Artemis has
a catalytic B-lactamase domain, a cleavage and polyadenylation specificity factor (3-CASP) domain, and a disordered C terminus. Amino acids (aa) 454 -458
bind aa 1-7 to auto-inhibit Artemis activity (119). APLF consists of a forkhead-associated (FHA) domain, middle (MID) domain, and the poly(ADP-ribose)-
binding zinc finger (PBZ) domain (73, 120-122). C, polymerases involved in NHEJ are Pol A, Pol u, and terminal deoxynucleotidyltransferase (TdT). They consist
of a breast cancer C terminus (BRCT) domain, a lyase domain, and a nucleotidyltransferase domain. D, DNA ligase complex consists of DNA ligase IV, X-ray repair
cross-complementing 4 (XRCC4), XRCC4-like factor (XLF), and paralog of XRCC4 and XLF (PAXX). DNA ligase IV consists of an N-terminal DNA-binding domain,
a catalytic core, and an XRCC4 interaction domain (XID) flanked by the BRCT | and Il domains. XRCC4, XLF, and PAXX are structurally similar with an N-terminal
head domain, helical domain, and C terminus. Protein domains are in blue and linker regions in gray.

incorporate both ANTPs and rNTPs (48, 49), with any incorpo-
rated ribonucleotides subsequently removed by base excision
repair (53). Importantly, both Pol w and Pol A can incorporate
nucleotides in a template-dependent or template-independent
manner (51), although template-independent insertion by Pol
W appears stronger than that of Pol A (54, 55). Both of these
polymerases appear to be able to use an unstable primer-tem-
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plate junction, such as would exist during intermediate stages
of NHE]. The activity of these polymerases further explains the
high level of diversity that can occur at NHE]J junctions and
demonstrates that although resection is one way of generating
short stretches of homology between broken DNA ends,
template-independent nucleotide addition of one or both bro-
ken DNA ends is another.
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DNA polymerase 8 (Pol B) is another member of the Pol X
family, but it lacks a BRCT domain (56), which is a likely reason
why it is not involved in NHE]. The final known member of the
Pol X family is terminal deoxynucleotidyltransferase (TdT).
TdT is only expressed in early B- and T-lymphocytes, making it
most relevant to the NHE] repair that occurs during V(D)]
recombination, where it has a major role in promoting immu-
noglobulin diversity. DNA polymerases outside the Pol X fam-
ily are able to incorporate nucleotides during NHE], but only in
a template-dependent manner (16, 17, 57-59).

The ligase complex of NHEJ

DNA ligase IV (Lig4) functions exclusively in NHE], making
it a central component of the repair process. Lig4 acts in com-
plex with the X-ray repair cross-complementing 4 (XRCC4)
enzyme (9), which stimulates Lig4 enzyme activity in biochem-
ical assays (60). Loss of either Ligd or XRCC4 severely compro-
mises NHE]. Several other factors have also been implicated for
efficient ligation. A screen for XRCC4-interacting factors
yielded the XRCC4-like factor (XLF; also known as Cernun-
nos), a 33-kDa protein with weak sequence homology and
structural similarity to XRCC4 (61-63). The N-terminal head
domain of XLF interacts with the N-terminal head domain of
XRCC4 (62) allowing XLF to complex with XRCC4-Lig4 (Fig.
2). This interaction would presumably stabilize the juxtaposi-
tion of the DNA ends prior to covalent ligation, but this is still
an area of active investigation. Another protein found to have
structural similarity to XRCC4 is the 22-kDa protein PAXX
(paralog of XRCC4 and XLF) (64, 65). The C terminus of PAXX
(aa 199 -201) interacts with Ku, and similar to XLF mutants,
PAXX mutants are more sensitive to ionizing radiation and
DSB-inducing agents (Fig. 2) (64, 66, 67).

Accessory proteins of NHEJ: Tyrosyl DNA
phosphodiesterase 1, polynucleotide kinase, and
aprataxin

Although the above proteins can carry out a majority of the
NHE] reactions, some circumstances require the activity of
other proteins to chemically modify DNA ends to make them
suitable for repair. For example, tyrosyl DNA phosphodiester-
ase 1 (TDP1) is the only identified enzyme that can specifically
process the 3'-phosphoglycolates (3'-PG) that can form as a
by-product of up to 10% of ionizing radiation-induced DSBs
(68, 69). Ends with 3'-PG adducts are unligatable and must be
removed for NHE] to proceed.

Polynucleotide kinase (PNK) and aprataxin are two more fac-
tors that may be enlisted in DSB repair by NHE]. Human PNK
possesses both kinase and phosphatase activity. Phosphoryla-
tion by PNK s necessary when a 5’ end lacks a phosphate group,
and the phosphatase activity is important for removing 3’ phos-
phates that can arise following some types of oxidative damage
(70). Aprataxin is employed when Lig4 initiates but does not
complete a covalent join, resulting in an aborted ligation prod-
uct where the AMP group remains covalently bound to the 5’
strand of one of the DNA ends. In this case, the deadenylation
reaction catalyzed by aprataxin is required to remove the AMP
group (71). Following phosphorylation of XRCC4 by CK2, both
PNK and aprataxin can bind to XRCC4 via their forkhead-as-
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sociated domain (72). Therefore, although PNK and aprataxin
may not initially localize to the DSB site, they can be recruited if
necessary. This may occur if the DSB remains unrepaired after
a certain length of time, indicating that the first set of NHE]
proteins that responded to the site were unable to complete
repair.

Optimal NHEJ component utilization is influenced by
DNA end configuration

NHE] is a single pathway, but the DNA end configurations at
a given DSB determine which NHE] components are most
important for efficient ligation. In other words, NHE] has sev-
eral enzymes at its disposal, but it does not need to engage all of
them unless presented with certain DNA end configurations
(5). Even the core NHE] components may load and act in vari-
ous combinations, highlighting the flexibility of NHE] and
explaining the diversity of repair products generated for the
very same DSB configuration and DNA end sequence. This
model is supported by many structural and biochemical studies
demonstrating the different routes DNA end processing can
take to reach a ligatable joint (Fig. 3). The stability of this ligat-
able joint is greatly enhanced when base pairing of ssDNA from
either side of the break can occur via microhomology, although
for NHE] this microhomology need not be extensive, as even a
single base pairing (even a non-Watson-Crick base pairing) will
increase the stability enough to improve ligation efficiency a
few fold over what is observed for NHE] at blunt ends (74). In
some cases, simple breathing of the DNA ends that exposes a
complementary base pair between two broken ends may be
adequate for repair, whereas in other cases more extensive
processing by nucleases and polymerases may be required
(16, 17).

The iterative nature of NHE] means that multiple compo-
nents can act on a single DSB during multiple rounds of pro-
cessing (Fig. 3). Nucleases can remove nucleotides from a DNA
end, with Pol u subsequently adding nucleotides to that very
same DNA end. Similarly, XRCC4-Lig4 can successfully ligate
one DNA strand of a DSB only to have Artemis'DNA-PKcs
reverse this by cleaving the newly ligated strand at the DNA gap
generated by the ligation. Therefore, use of one set of compo-
nents is not mutually exclusive to the use of other components,
and all are active and in play as long as a DSB remains incom-
pletely repaired.

Blunt-end ligation by Ku-XRCC4-Lig4

Biochemical studies have demonstrated that Ku is required
for the efficient joining of blunt DNA ends lacking microhomo-
logy by NHE]. When a ligatable joint is formed using exposed
microhomology, however, Ku may not be necessary, indicating
that Ku becomes less important as ends are able to form a ther-
modynamically stable joint through terminal base pairing (55).
Ku is highly abundant in cells and has a high affinity for DNA
ends (K, = 6 X 10~ '° m), allowing it to quickly respond to a
break and promote the binding of XRCC4-Lig4 to the DNA
ends (75). The C terminus of Lig4 contains two BRCT domains
that allow it to bind to two Ku complexes, conceivably one
attached to each of the DSB ends (76). The region between
these two BRCT domains of Lig4 carries the interaction domain
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Figure 3. DNA ends undergo iterative processing during NHEJ. NHEJ is single pathway with multiple components available to process the diversity of DNA
end configurations at any given DSB. The first major step following formation of either a pathological or physiological DSB is binding of the Ku70-Ku80 complex
(Ku) to protect DNA ends. The Ku'DNA complex is able to efficiently bind and thereby recruit other NHEJ components. An iterative processing occurs to make
the two broken DNA ends optimal for ligation. Several types of processing performed by the Artemis:-DNA-PKcs complex or DNA polymerases are shown in the
white boxes along the large green circle. It would be difficult to represent all the possible DNA end configurations and every type of enzymatic processing in one
figure; therefore, this depiction is not meant to be comprehensive but is merely to highlight some of the possibilities with the key components for each process
indicated in parentheses. Any of these processes can occur to either end of a break in any order and multiple times. Once XRCC4-Lig4 is able to successfully ligate
across a break, an intermediate with one strand ligated can form. Ligation of the second strand will complete repair. Alternatively, the gapped intermediate
generated by ligating one strand has two ss- dsDNA boundaries, and Artemis-DNA-PKcs can cut at either boundary to generate a new DSB, thereby returning

the ends to the iterative processing step where they can undergo further alterations.

that binds a homodimer of XRCC4: (Fig. 2D) where the 2 to 1
ratio of XRCC4 to Lig4 further stabilizes the bridging between
the two DNA ends (77-79). The further activity of DNA-PKcs,
Artemis, or Pol wis not required, as efficient ligation is achieved
with the Ku-XRCC4:Ligd complex alone in reconstitution
assays using human proteins (80). Therefore, at least for blunt
DNA ends, direct ligation is preferred over extensive pro-
cessing. This contrasts with results from Saccharomyces cerevi-
siae where blunt end ligation was found to be inefficient (81,
82), but this may be due to greater DNA end resection that
occurs prior to repair by HR, which is the more dominant repair
mechanism in yeast.

Previous cryo-EM studies have shown interaction between
two DNA-PK complexes (83). The recent 4.3 A crystal struc-
ture of DNA-PKcs also raises the possibility that dimerization
of DNA-PKcs contributes to bridging of DNA ends (84); how-
ever, this particular observation of a dimeric arrangement may
be due to crystal packing. DNA is not present in this crystal
structure; thus one can only speculate about this interaction.
The ligation of ends with only Ku and XRCC4-Lig4 provides
biochemical evidence that DNA end-bridging is not reliant on
DNA-PKcs or NHE] factors other than Ku and XRCC4-Lig4 (5).
It is clear that the joining of the blunt ends (signal ends) during
V(D)] recombination also does not require any NHE] proteins
other than Ku and XRCC4-Lig4 (9), and this is consistent with
the biochemistry of blunt end ligation.
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The nucleases of NHEJ can process multiple DNA end
configurations

Artemis has been implicated as the major nuclease involved
in NHE] when such activity is required. Although the role Arte-
mis plays in DNA hairpin opening during V(D)] recombination
is well-characterized, its role in NHE] is now beginning to be
understood. Recent biochemical studies have revealed that the
ligation of incompatible overhangs is strongly stimulated in the
presence of the Artemis'DNA-PKcs complex. Therefore, Arte-
mis is recruited to process various DNA overhangs at broken
DNA ends to promote formation of a stable ligatable joint.
This makes sense when one considers that DNA hairpins are
structurally similar to DNA overhangs, due to a sterically-
constrained hairpin tip that results in only transient base
pairing of the terminal base pairs (4 nt), thus creating a
ss—dsDNA boundary (85). This ability of Artemis to act at
ss—dsDNA boundaries gives it the flexibility to process a num-
ber of DNA end configurations.

The endonuclease activity of the Artemis'DNA-PKcs com-
plex can remove both 5" and 3' DNA overhangs to create DNA
end structures that can be ligated by the XRCC4-Lig4 complex
(50, 86) (Fig. 3). At 5" overhangs, Artemis cuts directly at the
ss—dsDNA boundary, but when processing 3" overhangs and
DNA hairpins, Artemis preferentially leaves a 4-nt 3’ overhang.
Long 5" and 3’ overhangs can also be endonucleolytically pro-
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cessed by Artemis, and this may be useful to make microhomo-
logy embedded within the overhang available for annealing to
create a stable ligatable joint (5). These observations suggest a
model in which Artemis'DNA-PKcs binds to the ss—dsDNA
boundary to occupy 4 nts along the single-stranded segment at
the boundary followed by nicking on the 3’ side of the 4 nts (27).

In addition to overhangs, evidence also shows that when
blunt DNA ends breathe between a closed, fully hydrogen-
bonded state to an open, partially hydrogen-bonded state, they
form ss— dsDNA boundaries upon which Artemis can act (27).
Repair of such ends is relevant as blunt DNA ends may be gen-
erated by chemotherapeutic agents, reactive oxygen species, or
ionizing radiation (87). Furthermore, breathing allows the
Artemis')DNA-PKcs complex to resect into the duplex to gen-
erate short overhangs that can form microhomology (5),
explaining why even NHE] of blunt ends can display nucleotide
loss at repair junctions. Still, the fact that Artemis-DNA-PKcs
does not strongly stimulate the ligation of blunt-ended DNA
suggests that even though Artemis:DNA-PKcs is able to resect
at blunt ends, these ends are usually joined directly without
resection (5, 27).

The versatility of Artemis to act at many different types of
ends leads to a unifying model explaining the essential struc-
tural features of all DNA substrates at which Artemis functions.
Although it may appear that Artemis has the ability to recog-
nize a number of different structures, in fact it is one structure,
an ss— dsDNA boundary, that is recognized in a variety of dif-
ferent forms. 5" and 3’ overhangs, hairpins, and blunt ends in an
open state all have potential regions of ss— dsDNA that can act
as contact points for Artemis (28). The Artemis active site can
then act within the single-stranded portion of the overhang or
the hairpin to achieve hydrolysis of the phosphodiester back-
bone. Although this model must await the elucidation of a
DNA-Artemis structure, it explains the diversity of cutting pat-
terns of Artemis.

Besides the role in processing DNA overhangs, Artemis
appears to be necessary for removing damaged DNA from bro-
ken ends (Fig. 3). When ionizing radiation-induced DSBs bear a
3'-PG terminus (88-90), for example, these DNA ends are
unable to undergo ligation because this step requires a 3'-hy-
droxyl on one end and a 5’'-phosphate on the other. TDP1 is
able to remove these 3’ modifications; however, TDP1 mutant
cells are only marginally radiosensitive compared with Artemis
mutants, and it has been demonstrated biochemically that the
Artemis’ DNA-PKcs complex is able to process these ends (91,
92). This suggests that Artemis can work with or in place of
TDP1 to repair the large number of DSBs that can occur follow-
ing radiation exposure.

The finding that the C-terminal region of Artemis (aa 485—
495) interacts with the N-terminal head domain of Lig4 (Fig.
2B) (93-95) adds a further dimension to the role Artemis may
play in NHE]. Although the DNA-PKcs—independent 5’ exo-
nuclease activity has been described, recent data show that
Artemis has a DNA-PKcs—independent 3’ endonuclease activ-
ity stimulated by XRCC4-Lig4 (96). The interaction between
Ligd and the C-terminal regulatory region of Artemis may
recruit Artemis and alter the protein conformation, permitting
endonuclease activity without the need for activation by DNA-

10518 J Biol. Chem. (2018) 293(27) 10512-10523

PKcs. In addition to its crucial role in ligating a stable joint
intermediate, the extreme radiosensitivity of Ligd mutants may
be due to its ability to stimulate or recruit various NHE] com-
ponents to a DSB.

The DNA polymerases of NHEJ work to create a stable
ligatable joint

DNA polymerases can serve two important roles in NHE]J:
fill-in synthesis of gaps and nucleotide addition to broken DNA
ends. Both processes can enhance formation of a stable inter-
mediate for ligation by XRCC4-Lig4. The DNA polymerases Pol
pand Pol A are recruited to the DNA end by interaction of their
N-terminal BRCT domain with the Ku'DNA complex (Fig. 2C)
(50). Pol w primarily adds nucleotides in a template-indepen-
dent manner, whereas Pol A primarily has template-dependent
polymerase activity, although limited template-independent
activity has been reported (54). Pol u, and also TdT, carries a
protein domain, loop 1, that affects association with a DNA
template through hydrogen bonding and allows for template-
independent nucleotide addition (56, 97).

The template-dependent activity of Pol A is mostly required
when long ssDNA ends are annealed with terminal microho-
mology, leaving a gap. Fill-in synthesis of this gap will further
stabilize the annealed intermediate and promote the ligation
(52, 55). When the 3" overhangs are mismatched and therefore
unable to form an annealed intermediate, Pol A has little effect
on NHE] because there is no DNA template to act upon (5).

Pol w strongly promotes the ligation of incompatible 3" over-
hangs in reactions containing only the Ku-XRCC4-DNA ligase
4 complex (55). By adding nucleotides to the ends of these over-
hangs in both template-dependent and template-independent
mechanisms, Pol w generates regions of microhomology for
subsequent annealing and ligation (55). Nucleotide addition
can occur on 3’ overhangs as short as 1 to 2 nts (52). In bio-
chemical reactions containing Artemis, the joining of two mis-
matched 3’ overhangs is strongly stimulated by Pol u, promot-
ing the formation of terminal microhomology with limited
processing by Artemis (Fig. 3) (5). Interestingly, sequencing of
NHE]Jjunctions reveals that if the ends are compatible, meaning
they already share microhomology, nucleotide addition by Pol
w does not occur or is limited (5). This illustrates once again
that ends capable of forming a thermodynamically stable inter-
mediate are ligated efficiently without having to recruit addi-
tional factors.

XLF and PAXX stimulate ligation by the XRCC4-Lig4
complex

XLF and PAXX are the most recently characterized NHE]
factors shown to support ligation by the Lig4 complex. Both
XLF and PAXX share structural similarity with XRCC4 (62, 64).
Individual XLF and PAXX mutants display only a mild pheno-
type, but XLF PAXX double mutants are synthetically lethal in
mice and reduce V(D)] recombination in human B-lympho-
cytes (98-101), suggesting that although they may be redun-
dant, at least one is necessary for efficient repair by NHE]. The
main purpose of XLF and PAXX appears to be in providing
additional structural support to stabilize two DNA ends,
thereby enhancing the ability of XRCC4-Lig4. This likely occurs
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at 2.7 A (PDB code 1JEQ) is shown in the middle (109). Ku70 and Ku80 are shown in red and yellow, respectively. B, these toroidal Ku70/80 proteins bind to
broken dsDNA ends to form a Ku70/80-DNA complex (solved at 2.5 A) (PDB code 1JEY) (109). G, crystal structure of DNA-PKcs at 4.3 A is shown in the center (PDB
code 5LUQ) (84). The DNA-PKcs is color-coded as follows: N terminus (blue); circular cradle (green); head comprising FAT region (purple); kinase (yellow); FRB
(orange); FATC (light pink). D, DNA-PKcs binds the Ku70/80-DNA to form a DNA-PK complex. A 6.6-A cryo-EM structure of DNA-PK holoenzyme is shown (PDB
code 5Y3R) (111). E, structure of Artemis has not been reported yet. F, crystal structure of the catalytic region of DNA ligase IV (DBD-NTD-OBD) in complex with
an Artemis fragment (aa 485-495) was solved at 2.4 A (PDB code 3W1B) (94). The Artemis fragment is shown in orange and interacts with the DNA-binding
domain (DBD), which is shown in violet. The nucleotidyltransferase domain (NTD) is shown in cyan. The catalytic lysine (Lys-273), which forms a covalent
AMP-lysine intermediate, is shown as a sphere, and a possible aPO, is attached to the lysine. The OB-fold domain (OBD) is shown in blue. G, crystal structure of
the complex of XRCC4 homodimer and the BRCT repeats of ligase IV (Lig IV) at 2.4 A is shown (PDB code 3116) (107). Each XRCC4 molecule is shown in cyan and
green. Two BRCT domains are shown in red. H, crystal structure of XRCC4(1-224)-XLF(1-157) complex (both are homodimers) at 3.94 A is shown (PDB code
3RWR) (110). The XRCC4 homodimer is shown in cyan and green. The XLF homodimer is shown in yellow and orange. I, this XRCC4-XLF complex can form
filaments, shown in the same color scheme at the left top corner, which might bridge DNA ends. J, crystal structure of PAXX homodimer at 3.45 A is shown in cyan
and purple (PDB code 3WTF) (64). Note that Ku70/80 bound on the DNA end can recruit XRCC4-ligase IV complex, and Ku70/80 also directly interacts with and
recruits XLF and PAXX through their C termini. Also note that structures of the Pol X family polymerases are not shown here due to a space limitation. The figure
was created using PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC).

in a subset of NHE] repair reactions where the two broken ends
are incompatible and lack the thermodynamic stability pro-
vided by annealed microhomology.

Homodimers of XLF bind directly to XRCC4 via an N-termi-
nal head domain (102). This head domain also allows XLF to
interact with the KuuDNA complex (103). In biochemical reac-
tions containing only Ku and the XRCC4-Lig4 complex, XLF
was shown to only stimulate the ligation of short, incompatible
3’ overhangs (55). In another study, however, XLF was shown
to promote the ligation of all mismatched and noncohesive
overhangs in the presence of Ku, DNA-PKcs, and XRCC4-Lig4
(104). Although it is possible that DNA-PKcs could affect XLF
interactions, it is also possible that differences in the DNA sub-
strates used in each study affect the outcome because the study
involving DNA-PKcs used >3 kb oflinearized plasmids and the
other used fragments of ~70 bp. Although further study is
required to fully understand the major role of XLF in NHE], it
seems that XLF promotes annealing of at least some incompat-
ible substrates.

Genetic studies in mice complement these biochemical find-
ings as it was found that an XLF DNA-PKcs double knockout is
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synthetically lethal. Interestingly, a Ku70 knockout rescues this
synthetic lethality (105). Similar to a study showing that a Ku80
deletion rescues the lethality of a Lig4 knockout (106), this
demonstrates that several NHE] factors are epistatic to Ku. Loss
of both XLF and DNA-PKcs must severely impair the ability to
repair a DSB by NHE]. Further genetic studies and analysis of
DSB repair junctions in these deficient mice will provide more
information as to the critical role of XLF.

Like XLF, PAXX also forms homodimers, and its C terminus
has been found to associate with Ku (Fig. 2D) (64, 65). In reac-
tions containing only Ku and the XRCC4-Lig4 complex, PAXX
was shown to promote the ligation of two blunt ends (64). In
some cases, XLF and PAXX may work together to stabilize
DNA ends. In reactions containing Ku, XRCC4+Lig4, and XLF,
PAXX promoted the ligation of a blunt end to a 3’ overhang
(65). Interestingly, a more recent biochemical study showed
that if Artemis and Pol u are included, PAXX does not stimu-
late NHE] for 3" overhangs, but it does for 5’ overhangs (5),
indicating that the role of PAXX may be to stabilize substrates
that cannot generate microhomology by end processing or
nucleotide addition.
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Structural biology of NHEJ

There has been remarkable progress in determining progres-
sively higher resolution structures of some of the NHE] pro-
teins or, at least, portions of them (Fig. 4) (48, 49, 64, 84, 94,
107-112). Readers should also refer to detailed reviews about
the structural aspects of the interactions of ligase IV with
XRCC4, XLF, and Artemis (113, 114). However, we still lack a
convincing comprehensive view of how the enzymatic compo-
nents are positioned at a single DNA end or at a pair of DNA
ends. We also do not know the relative position of each com-
ponent relative to most of the others in a large multiprotein
complex during NHE].

Recently, a cryo-EM structure of DNA-PK was reported at
6.6 A by docking the available crystal structures of DNA-PKcs
(at 4.3 A) (84) and Ku70/80-DNA complex (at 2.5 A) (109). This
finally allowed positioning of DNA-PKcs relative to the Ku70/
80-DNA complex. However, statistics on the structural analysis
must be much improved, and the position of quite a number of
side chains of DNA-PKcs (>500 amino acids) is still question-
able (84, 111, 115). Moreover, we still do not know how the
C-terminal domain of Ku80 interacts with DNA-PKcs, and a
structure of Artemis has not yet been reported. Furthermore,
because some of the reported structures lack their C-terminal
portions (e.g. Ku, XRCC4, XLF, and PAXX), an understanding
on how these flexible regions work as full-length molecules will
be critical for understanding the function of these complexes
(64, 109-111).

Higher order structures have also been proposed for some
NHE] components. For example, the Ligd complex, including
XRCC4, XLF, and sometimes PAXX, has been proposed to
form a sleeve around the DNA duplex (116 -118), but the pre-
cise geometry is still not clear. It will be interesting to determine
how such models will include Ku, DNA-PKcs, Artemis, and the
polymerases w and A.

In many ways, the major future questions will require increasing
reliance on structural insights.

Concluding comments

DNA DSBs are potentially lethal events that must be repaired
in amanner that does not compromise genome integrity. NHE]
is the major pathway that repairs DSBs in mammalian cells.
DSBs can occur due to various pathological or physiological
events; however, the configuration of the DNA ends at breaks is
not uniform. Therefore, NHE] must be highly flexible so that it
can deploy multiple enzymes to process the various types of
DNA ends it may encounter. Biochemical and genetic studies
have provided mechanistic insight into which NHE] proteins
are utilized, depending on the DNA end configuration. Two
blunt DNA ends may only require Ku and XRCC4-Lig4 for join-
ing, whereas incompatible 3’ ends may require processing by
Artemis'DNA-PKcs, and incompatible 5' ends may require
XLF or PAXX for additional structural support. Time is likely a
critical factor as the longer a break remains, the more acces-
sory NHE] factors may be recruited to a break in an attempt
to repair it.

Many attempts have been made to subdivide the NHE] path-
way based upon the diversity of joining products that occur.

10520 J Biol. Chem. (2018) 293(27) 10512-10523

However, this diversity of products highlights the flexibility of
the NHE] pathway. Repair by NHE] does not mean a precise
join because the activity of Artemis can lead to nucleotide loss,
and the activity of Pol w can lead to nucleotide gain. Also, the
term “nonhomologous” was not meant to imply a total lack of
homology usage in repair, as up to 4 nts of microhomology is
typical for NHE] repair. Instead, it was only meant to distin-
guish NHE] from HR, which can use several hundred base pairs
of homology during repair. Still, NHE] is far from being com-
pletely understood, as evidenced by the discovery of new factors
(PAXX) and new activities of known factors (Artemis). Contin-
ued research in this area will help elucidate why NHE] is the
dominant repair pathway in mammals and reveal more factors
that contribute to DSB repair.

Acknowledgment—We apologize for any work that we have
overlooked.
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