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Glycogen synthase kinase-3 (GSK-3) activity regulates multi-
ple signal transduction pathways and is also a key component of
the network responsible for maintaining stem cell pluripotency.
Genetic deletion of Gsk-3� and Gsk-3� or inhibition of GSK-3
activity via small molecules promotes stem cell pluripotency, yet
the mechanism underlying the role for GSK-3 in this process
remains ambiguous. Another cellular process that has been
shown to affect stem cell pluripotency is mRNA methylation
(m6A). Here, we describe an intersection between these compo-
nents, the regulation of m6A by GSK-3. We find that protein
levels for the RNA demethylase, FTO (fat mass and obesity–
associated protein), are elevated in Gsk-3�;Gsk-3�-deficient
mouse embryonic stem cells (ESCs). FTO is normally phosphor-
ylated by GSK-3, and MS identified the sites on FTO that are
phosphorylated in a GSK-3– dependent fashion. GSK-3 phos-
phorylation of FTO leads to polyubiquitination, but in Gsk-3
knockout ESCs, that process is impaired, resulting in elevated
levels of FTO protein. As a consequence of altered FTO protein
levels, mRNAs in Gsk-3 knockout ESCs have 50% less m6A than
WT ESCs, and m6A-Seq analysis reveals the specific mRNAs
that have reduced m6A modifications. Taken together, we pro-
vide the first evidence for how m6A demethylation is regulated
in mammalian cells and identify a putative novel mechanism by
which GSK-3 activity regulates stem cell pluripotency.

Glycogen synthase kinase-3 (GSK-3)5 activity is an impor-
tant regulator of numerous signal transduction pathways (1).

GSK-3 activity is the sum of two largely redundant proteins,
GSK-3� and GSK-3�, and in general, GSK-3 is a negative reg-
ulator of cellular signaling (2). Rare among kinases, GSK-3
is active at a basal state, whereas pathway activation from
upstream signaling cascades results in the inhibition of GSK-3
activity (2). GSK-3� and GSK-3� together regulate signal trans-
duction pathways such as Wnt, protein kinase A, Hedgehog,
transforming growth factor-�, nuclear factor of activated
T-cells, and phosphatidylinositol 3-kinase (PI3K)-dependent
insulin signaling in a variety of biological settings (3–5).

GSK-3 activity can be inhibited through the use of small-
molecule inhibitors, such as SB-415,286, CHIR99021 (6 –8),
and the clinically relevant mood-stabilizer lithium (9, 10); how-
ever, a drawback to the use of small molecules to study GSK-3
function is the potential for off-target effects (11). Cells in
which Gsk-3� and Gsk-3� have been genetically deleted allow
for a more confident assessment of GSK-3–specific functions.
Therefore, we utilize mouse embryonic stem cells (ESCs) defi-
cient in both Gsk-3� and Gsk-3� (Gsk-3��/�;Gsk-3��/�) (i.e.
Gsk-3 double knockout (DKO)) to assess GSK-3–specific func-
tions (12, 13). One prominent phenotype of Gsk-3 DKO ESCs is
their persistent pluripotency, assessed by their inability to dif-
ferentiate into all three germs layers in a teratoma assay as well
as by analysis of global gene expression (12, 13). In fact, Gsk-3
DKO ESCs will maintain pluripotency in culture even in the
absence of leukemia-inhibitory factor (LIF) (12), which is added
to WT mouse ESCs to promote pluripotency (14, 15). Further-
more, the addition of small-molecule inhibitors of both GSK-3
and mitogen-activated protein kinase (extracellular signal-reg-
ulated kinase) (termed 2i mixture) to culture media is sufficient
to maintain pluripotency of mouse ESCs (16). Finally, the addi-
tion of GSK-3 inhibitors has enhanced the efficiency of induced
pluripotent stem cell derivation (17, 18) and facilitated the der-
ivation of ESCs from different strains of mice (19, 20) and from
different species (21, 22). The mechanism by which GSK-3 inhi-
bition or loss of function promotes pluripotency is not com-
pletely resolved (20, 23–35).
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Whereas GSK-3 activity clearly plays an important role in
stem cell pluripotency, other biological processes are also
important for pluripotency. Recent work has demonstrated an
important role for the methylation of adenosines (m6A) in
mRNA in the regulation of stem cell pluripotency (36 –38).
m6A is the most common internal modification to mRNA in
mammalian cells (39 –41), yet little was known about the biol-
ogy of this modification until a recent flurry of research led to
the identification of the enzymes that add and remove m6A
(METTL3/METTL14 and FTO/ALKBH5, respectively) (42–
44), as well as enrichment-based sequencing experiments to
identify mRNAs modified by m6A (45, 46). With respect to
stem cell pluripotency, it has been shown that reduced m6A
levels promote pluripotency (36 –38). One explanation that has
been proposed for how m6A levels affect stem cell pluripotency
is that mRNAs for several components of the core pluripotency
circuitry in mouse ESCs have reduced m6A, thereby increasing
the half-life of these factors (36).

Here we describe the regulation of m6A mRNA by GSK-3
in mouse ESCs. We find that FTO (fat mass and obesity–
associated) protein levels are elevated in Gsk-3 DKO ESCs com-
pared with WT ESCs, resulting in a concomitant decrease in
m6A levels. The mechanism underlying this effect is shown to
be the phosphorylation of FTO by GSK-3 and subsequent ubiq-
uitination, a process that is impaired in Gsk-3 DKO ESCs.

Results

FTO protein levels are elevated in Gsk-3 DKO ESCs

Reduced GSK-3 activity and decreased levels of m6A are
both associated with promotion of pluripotency. We therefore
investigated whether there was a direct connection between
GSK-3 and m6A. Because stem cell pluripotency is enhanced by
reduced m6A mRNA levels, an increase in FTO protein would
be one route to achieving decreased m6A mRNA levels. Because
the stereotypical role for GSK-3 is to negatively regulate target
substrates, our hypothesis was that FTO protein levels are kept
low by GSK-3 activity, and consequently, we should observe an
increase in FTO protein levels in Gsk-3 DKO ESCs. We initi-
ated our study by examining the levels of FTO protein in WT
and Gsk-3 DKO ESCs grown under standard conditions (sup-
plemented with LIF). We observed no difference in FTO pro-
tein between these cells (Fig. 1A). We then realized that, by
using culture conditions containing LIF, both WT and Gsk-3
DKO ESCs would be pluripotent. Thus, adding LIF would not
help us to understand how loss of GSK-3 was promoting pluri-
potency. It had been shown previously that Gsk-3 DKO ESCs
would remain pluripotent when grown in the absence of LIF for
as long as 14 days (12). Under these same conditions, WT ESCs
progressively differentiate. By growing ESCs without LIF, we
were able to obtain conditions in which we could now assess
how loss of GSK-3 promotes pluripotency. Persistence of plu-
ripotency in Gsk-3 DKO ESCs in the absence of LIF was verified
by examining mRNA levels of the pluripotency-associated
genes Nanog and estrogen receptor-� (Esrrb) by qPCR. As seen
in Fig. 1B, relative levels of Nanog and Esrrb mRNA remain
elevated in Gsk-3 DKO ESCs compared with WT ESCs, dem-
onstrating that even without supplementation with LIF, Gsk-3

DKO ESCs remain pluripotent. We then isolated proteins from
WT and Gsk-3 DKO ESCs, separated by SDS-PAGE, and exam-
ined FTO protein levels by Western blotting. We observed sub-
stantially higher FTO protein levels in Gsk-3 DKO ESCs (Fig.
1C). We then asked whether higher FTO protein levels was due
to increased levels of mRNA. qPCR analysis of FTO mRNA
revealed no increase in Gsk-3 DKO ESCs, and in fact, the
mRNA levels were decreased (Fig. 1D). These data suggest that
the elevated levels of FTO protein seen in Gsk-3 DKO ESCs are
probably due to post-transcriptional effects of GSK-3.

m6A quantification

Given that FTO is an RNA demethylase and FTO protein is
elevated in Gsk-3 DKO ESCs relative to WT ESCs, we sought to
quantitatively measure the amounts of m6A mRNA in ESCs by
UHPLC-MS. Total RNA was isolated from WT and Gsk-3 DKO
ESCs grown in the absence of LIF for 14 days. We then enriched
for mRNA, which was then digested into single nucleotides.
Targeted UHPLC-MS detection of individual nucleotides
allowed us to calculate the relative amount of m6A, which was
normalized against the total adenosine pool to correct for any
differences in the amount of RNA analyzed in each experiment.
Analysis revealed a 49% reduction in m6A nucleotides in Gsk-3
DKO ESCs compared with WT ESCs (Fig. 1E), consistent with
the higher levels of FTO protein observed in Gsk-3 DKO ESCs.

Small-molecule inhibitors of GSK-3 increase FTO protein

The elevation of FTO protein was not limited to Gsk-3 DKO
ESCs. We extended our initial observation to WT ESCs treated
with small-molecule inhibitors of GSK-3. WT ESCs were
grown in the absence of LIF for 14 days and then treated with
increasing doses of the GSK-3 inhibitors SB-415,286 or lithium
chloride for 48 h. Examination of FTO protein by Western blot-
ting revealed a dose-dependent increase in FTO protein (Fig. 2,
A and B). These results strongly support the notion that GSK-3
inhibition, even for a short time, is sufficient to result in ele-
vated levels of FTO protein in ESCs.

FTO phosphorylation

Because FTO protein levels are modulated by GSK-3 activity,
we hypothesized that FTO is phosphorylated by GSK-3, and a
repeated GSK-3 consensus motif was found within mouse FTO
(amino acids 245–257) (Fig. 3A). To test whether FTO phos-
phorylation occurs in mouse ESCs, we overexpressed murine
V5-tagged FTO in both WT and Gsk-3 DKO ESCs. Phospho-
rylated proteins were enriched using a Pro-Q Diamond kit, and
proteins were analyzed by Western blotting for the presence
of FTO. Examination of total protein lysates revealed that
FTO-V5 was expressed in both WT and Gsk-3 DKO ESCs, indi-
cating successful transfection of cells. Analysis of phospho-en-
riched proteins revealed FTO-V5 in WT ESCs, but not in Gsk-3
DKO ESCs (Fig. 3B). From this experiment, we conclude that
FTO is normally phosphorylated in WT ESCs, and this phos-
phorylation is impaired in Gsk-3 DKO ESCs.

Mapping of FTO phosphorylation in vivo

We next sought to identify the precise amino acids within
FTO that are phosphorylated in WT ESCs and not in Gsk-3
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DKO ESCs. ESCs were transfected with murine FLAG-tagged
FTO and then immunoprecipitated, trypsinized, and analyzed
by LC-MS/MS. These results definitively showed the presence
of phosphorylation in the region of FTO containing the GSK-3
consensus sequences, specifically on Ser-249 and Ser-253. Col-
lision-induced dissociation of the singly phosphorylated pep-
tide and carbamidomethylated (M � 3H)3� ion (1380.2174
m/z, sequence SAVAVYSYSCEGSEDESEDESSFEGRDPDT-

WHVGFK) generates fragment ions that suggest a mixed popula-
tion of isobaric peptides that harbor phosphorylated species on at
least two residues (Fig. 3C). The observed fragment ions primarily
suggest a mix of phosphorylation sites on both serine residues
found in the sequence . . . EG(SEDES)ED . . . (where the parenthe-
ses denote the amino acid motif that was found to be phosphory-
lated, where both serines were phosphorylated). No doubly or tri-
ply phosphorylated forms of this sequence were observed.
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Figure 1. GSK-3 activity regulates FTO protein levels. A, Western blot analysis of FTO protein in WT and Gsk-3 DKO ESCs grown under standard conditions
in the presence of LIF. Blots were then stripped and reprobed with �-tubulin antibody to ensure equal loading of protein lysates. B, qPCR data showing the
expression of pluripotency-related genes when grown in the absence of LIF. WT and Gsk-3 DKO ESCs were grown in the absence of LIF for 14 days before
collecting RNA. mRNA levels of pluripotency markers Nanog and Esrrb are shown as relative with respect to Gapdh mRNA levels. Each experiment shown was
performed in triplicate. Error bars, S.D. *, statistical significance between the indicated groups (p � 0.05, unpaired t test, two-tailed). C, Western blot analysis of
FTO protein in WT and Gsk-3 DKO ESCs grown in the absence of LIF for 14 days. Blots were then stripped and reprobed with �-tubulin antibody to ensure equal
loading of protein lysates. D, qPCR analysis of FTO mRNA levels in WT and Gsk-3 DKO ESCs in the absence of LIF. Relative mRNA levels are with respect to Gapdh
mRNA. Each experiment shown was performed in triplicate. Error bars, S.D. *, statistical significance between the indicated groups (p � 0.05, unpaired t test,
two-tailed). E, m6A quantification. mRNA was isolated from WT and Gsk-3 DKO ESCs grown in the absence of LIF for 14 days. mRNA was digested into single
nucleotides and quantified by UHPLC. Data depict the ratio of m6A with respect to the total number of adenosines in each sample and are the average of three
technical replicates for each sample. Results are from two biological replicates.
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Blots were then stripped and reprobed with �-tubulin antibody to ensure equal loading of protein lysates.
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To confirm that phosphorylation of FTO within the GSK-3
consensus motif accounts for the phosphorylation identified by
phospho-enrichment, we created murine FTO in which serines
249 and 253, found to be phosphorylated by LC-MS/MS, are
mutated to alanines (pCAGEN-FLAG-FTO-S249A/S253A).
When WT FLAG-FTO and FLAG-FTO S249A/S253A were
transfected into WT ESCs and phosphorylated proteins were
enriched using the Pro-Q Diamond kit, we recovered less of the
serine mutant FTO compared with WT FTO (Fig. 3D). This
suggests that changing the GSK-3 consensus motif in FTO
is sufficient to reduce its phosphorylation in vivo, further
strengthening the argument that GSK-3 is the kinase responsi-
ble for FTO phosphorylation.

FTO is a substrate for GSK-3�

Because the role for GSK-3 in controlling FTO protein levels
could be indirect, we sought to ask whether GSK-3 could
directly phosphorylate FTO. We performed in vitro kinase

assays using recombinant GSK-3� and recombinant mouse
FTO protein. Using conditions that resulted in the phosphory-
lation of recombinant 2N4R Tau (47) by GSK-3� (data not
shown), incubation of FTO with recombinant GSK-3� in the
presence of fresh ATP resulted in phosphorylation of FTO (Fig.
3E). From this experiment, we conclude that FTO is probably a
direct substrate for GSK-3�. In addition, the relatively weak
phosphorylation of FTO by GSK-3� points to the likely require-
ment of a priming kinase for optimal FTO phosphorylation by
GSK-3�.

FTO ubiquitination

Because FTO protein levels are increased in Gsk-3 DKO
ESCs compared with WT ESCs, we speculated that this could
be due to a reduction in FTO ubiquitination and subsequent
degradation. To assess this possibility, we examined the status
of FTO ubiquitination in WT and Gsk-3 DKO ESCs. Cells were
co-transfected with FLAG-FTO and HA-ubiquitin, then
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treated with lactacystin to inhibit the proteasome, allowing for
the accumulation of ubiquitinated proteins. We then immuno-
precipitated FTO using anti-FLAG antibody and performed
Western blotting for ubiquitin using an anti-HA antibody.
We found that FTO is modified by ubiquitin in WT ESCs,
but this modification is significantly impaired in Gsk-3 DKO
ESCs (Fig. 4A).

Next, we examined whether preventing FTO phosphoryla-
tion by GSK-3 was sufficient to affect FTO ubiquitination. WT
ESCs were transfected with HA-ubiquitin and either FLAG-
FTO or FLAG-FTO S249A/S253A. Using the same procedure
described above for Fig. 4A, we observed that FTO modification
by ubiquitin is reduced in the FTO S249A/S253A mutant com-
pared with WT FTO (Fig. 4B). Therefore, polyubiquitination
associated with proteasome-mediated protein degradation is
impaired with respect to FTO in Gsk-3 DKO ESCs, providing a
likely explanation for the increased FTO protein levels seen in
Gsk-3 DKO ESCs.

GSK-3� rescues m6A levels and pluripotency gene expression
in Gsk-3 DKO ESCs

Reducing GSK-3 activity via genetic deletion or small-mole-
cule inhibitors promotes stem cell pluripotency, as well as reg-
ulating m6A mRNA levels. Re-expressing GSK-3� in Gsk-3
DKO ESCs would therefore be predicted to reverse these
effects. Gsk-3 DKO ESCs stably expressing GSK-3� (DKO:
GSK-3�) were created (Fig. 5A) and analyzed. WT, Gsk-3 DKO,
and DKO:GSK-3� ESCs were grown in the absence of LIF for 14
days and then analyzed for gene expression and m6A levels.
Compared with Gsk-3 DKO ESCs, DKO:GSK-3� ESCs had sig-
nificantly reduced levels of expression of both pluripotency-
associated genes Nanog and Esrrb, as assessed by qPCR (Fig.
5B). Furthermore, the reduced levels of m6A seen in Gsk-3 DKO

ESCs were almost completely restored to WT levels in DKO:
GSK-3� ESCs (Fig. 5C). These data, along with the in vitro
kinase assay results, help to reinforce the notion that GSK-3 is
indeed regulating FTO in vivo, and this regulation is intimately
connected to controlling stem cell pluripotency.

m6A-Seq

Whereas m6A mRNA levels in Gsk-3 DKO ESCs were
approximately half of that detected in WT ESCs, the LC-
MS/MS analysis gave no information as to which specific
mRNAs had reduced m6A modifications. To obtain this infor-
mation, we performed m6A-Seq, making modifications to the
approach taken by Meyer et al. (45) and Dominissini et al. (46).
We first isolated total RNA from WT and Gsk-3 DKO ESCs,
enriched for mRNA using oligo(dT) beads, and then immuno-
precipitated m6A mRNA using an anti-m6A antibody coupled
to magnetic beads. The resulting m6A mRNA was then
chemically fragmented, cDNA was created using random prim-
ers, adaptors were ligated to the ends, and next-generation
sequencing was performed. m6A-Seq analysis was performed to
identify transcripts that had at least 2-fold fewer m6A modifi-
cations in Gsk-3 DKO ESCs compared with WT ESCs and rel-
ative to input reads for WT and Gsk-3 DKO ESCs. 899 mRNAs
were identified that met these criteria (Fig. S1). To verify the
results obtained from the m6A-Seq experiment, we performed
meRIP-qPCR on the mRNA from WT and Gsk-3 DKO ESCs
that was immunoprecipitated with the m6A antibody, specifi-
cally examining mRNAs that were found to be hypomethylated
in Gsk-3 DKO ESCs. We found that m6A levels for the pluripo-
tency-associated mRNAs Esrrb (Fig. 6A) and c-myc (Fig. 6B)
were both reduced by �40% with respect to input mRNA in
Gsk-3 DKO ESCs, providing independent validation of our
m6A-Seq results.

Figure 4. Analysis of FTO ubiquitination in ESCs. A, Western blotting of WT and Gsk-3 DKO ESCs transfected with FLAG-FTO-WT alone or with HA-ubiquitin
(HA-Ub). FTO was immunoprecipitated with anti-FLAG (FLAG-IP). Input and FLAG-IP lysates were then separated by SDS-PAGE. Top and middle panels, HA
Western blots. Bottom panel, FLAG Western blotting on the same lysates. B, Western blotting of WT ESCs transfected with FLAG-FTO-WT or FLAG-FTO-S249A/
S253A, with and without HA-Ub. FTO was immunoprecipitated with anti-FLAG (FLAG-IP). Input and FLAG-IP lysates were then separated by SDS-PAGE. Top, HA
Western blotting. Bottom, FLAG Western blotting on the same lysates.
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Our approach for detecting m6A relied on an antibody
against m6A, but this antibody was recently shown to detect
both m6A and N6,2�-O-dimethyladenosine (m6Am) (48), mak-
ing it impossible for us to discriminate between these two RNA
modifications using this technique (49). However, because
m6Am is only found directly adjacent to the 7-methylguanosine
cap on mRNA (50), we are confident that most of the changes
we observe are m6A, but we cannot discount the possibility of
changes in m6Am as well.

Because we were interested in whether there is a direct con-
nection between mRNAs with GSK-3– dependent reduction
and mouse ESC pluripotency, we wanted to examine whether
any of the core pluripotency factors described by Young (51)
had reduced m6A modifications in Gsk-3 DKO ESCs. We found
that only a handful of the mRNAs for these pluripotency factors
(Esrrb, c-myc, Sox2, and Smad1) had reductions in m6A. Fur-
thermore, because Mettl3�/� ESCs also have reduced m6A
mRNA levels as well as enhanced pluripotency (36), we looked
for concordance between mRNAs that show reduced m6A
modifications in both Gsk-3 DKO ESCs and Mettl3�/� ESCs.
With respect to the mRNAs described as being part of the plu-
ripotency circuit, we found reduced m6A levels on Lin28,
c-myc, and Max in Gsk-3 DKO ESCs. Therefore, whereas there
are modest effects on known regulators of pluripotency, the
overall effect on these regulators could help to explain the per-
sistent pluripotency seen in Gsk-3 DKO ESCs.

Discussion

The epitranscriptome landscape in eukaryotic cells has
recently been revealed in detail. Besides m6A-Seq studies that
have precisely identified the location of methylated adenosines
in RNA molecules (45, 46), details are also emerging regarding
the reversible nature of epigenetic marks on RNA (52). This
reversibility implies that RNA modifications are regulated, but

the nature of this regulation is just beginning to be understood.
Here, we describe a compelling role for GSK-3 in the regulation
of m6A levels via FTO (Fig. 7).

We provide evidence that GSK-3 plays a role in modulating
mRNA adenosine methylation in mouse embryonic stem cells
through controlling the protein levels of the RNA demethylase
FTO. Whereas GSK-3 inhibition or deletion has been known to
regulate embryonic stem cell pluripotency, the precise role for
GSK-3 has been difficult to pin down. Several different aspects
of GSK-3 function have been investigated, but a great deal of
focus has been on examining the GSK-3– dependent signaling
pathways that promote pluripotency. Most of these studies
have focused on Wnt and PI3K signaling because activation of
each pathway results in inhibition of GSK-3, but the conclu-
sions have not been clear-cut. For example, with respect to Wnt
signaling, it has been proposed that pluripotency via GSK-3
inhibition works through both Tcf3-dependent (26, 53, 54) and
Tcf3-independent (24) mechanisms. In addition, several lines
of evidence also support a role for PI3K in promoting stem cell
pluripotency (55). Detailed mechanistic studies have deter-
mined that GSK-3 activity was regulated in part by PI3K signal-
ing, yet the precise mechanism by which inhibition of GSK-3
was promoting stem cell pluripotency remained elusive (8, 29,
34, 56). Our findings raise the possibility that Wnt signaling
and/or PI3K signaling via GSK-3 could be regulating mRNA
methylation, thereby controlling stem cell pluripotency. Fur-
ther studies will be required to determine whether specific sig-
naling pathways have an effect on FTO phosphorylation and
mRNA methylation.

The phosphorylation of proteins has been shown to be a
common prerequisite for subsequent polyubiquitination (57),
and GSK-3 activity has been shown to precede substrate ubiq-
uitination (58). A prime example is �-catenin, the main effector

Figure 5. Expression of GSK-3� in Gsk-3 DKO ESCs rescues m6A. A, Western blotting of WT and Gsk-3 DKO ESCs stably expressing GSK-3�. ESCs were grown
in the absence of LIF for 14 days. GSK-3�/� Western blotting demonstrates the expression of GSK-3� in Gsk-3 DKO ESCs (DKO:GSK-3�). Note the absence of
GSK-3� protein. B, qPCR analysis of the expression of pluripotency-related genes in DKO:GSK-3� ESCs after 14 days in culture in the absence of LIF. Relative
mRNA levels of pluripotency markers Nanog and Esrrb are shown with respect to Gapdh mRNA. Each experiment shown was performed in triplicate. Error bars,
S.D. *, statistical significance between the indicated groups (p � 0.05, unpaired t test, two-tailed). C, m6A quantification. Representative experiment showing
the relative quantification of m6A levels in RNA isolated from WT, Gsk-3 DKO, and DKO:GSK-3� ESCs grown in the absence of LIF for 14 days. Each experiment
shown was performed in duplicate. Error bars, S.D.
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of canonical Wnt signaling. �-Catenin is ubiquitinated and
degraded only after phosphorylation by GSK-3 on N-terminal
serines and threonines (59). Activation of Wnt signaling by the
addition of Wnt ligand (60), genetic deletion of GSK-3 (12), and
small-molecule inhibition of GSK-3 (10, 11, 61) all result in the
accumulation of �-catenin protein. We observe a similar para-
digm for GSK-3 with respect to FTO. Although we provide
evidence that FTO is a direct target of GSK-3, the in vitro kinase
assay for FTO lacked the robustness of phosphorylation seen in
the positive control (Tau). This result probably reflects that
GSK-3 often phosphorylates substrates that have been primed
by another kinase (62); Tau does not have a requirement for
priming with respect to GSK-3 (63). Therefore, it is quite pos-
sible that phosphorylation of FTO by another kinase would
result in enhanced phosphorylation by GSK-3. Because our in
vitro kinase assay only examined the effect of GSK-3 on FTO
phosphorylation, the next reasonable step would be to identify
kinases that work in tandem with GSK-3 in the phosphoryla-
tion of FTO.

With our data describing a novel role for GSK-3 activity in
modulating post-transcriptional modifications of mRNA, one
could envision how signaling pathways that converge on GSK-3

via distinct routes (e.g. Wnt and PI3K) could synergize with
respect to gene expression. For example, whereas one GSK-3–
dependent pathway could promote the transcription of a spe-
cific mRNA, a different GSK-3– dependent pathway could ele-
vate FTO protein levels, thereby reducing methylation of the
same mRNA. An exciting possibility raised by our work is that
transcription and RNA modifications are occurring concur-
rently, resulting in a fine-tuning of the net transcriptional
response to signaling events.

These data may also be relevant in further understanding
how signaling pathways have the capacity to directly alter the
m6A modifications of specific mRNAs, as well as providing
insights into the mechanisms of GSK-3–mediated signaling in
other cell types and disease states. FTO has been shown to be
expressed at high levels in the brain (64 –66), implicating an
important role in regulating mRNA methylation. Although
details on the relationship between RNA modifications and dis-
ease are just beginning to be examined in depth (67), it is worth
noting that GSK-3 is inhibited by the mood-stabilizing drug
lithium (9, 10). A recent study showed that genes involved in
m6A modification are associated with major depressive disor-
der in a Han Chinese population (68). The data presented here

Figure 6. m6A-Seq validation. A and B, meRIP-qPCR analysis of input (pre-meRIP) and m6A levels of Esrrb (A) and c-myc (B) mRNAs from WT and Gsk-3 DKO ESCs.
Bars labeled WT or DKO, mRNA levels before meRIP. Bars labeled WT-m6A and DKO-m6A, mRNA levels after Me-RIP. All meRIP-qPCR analyses are relative to Gapdh
mRNA levels. Each experiment shown was performed in triplicate. Error bars, S.D. *, statistical significance between the indicated groups (p � 0.05, unpaired t
test, two-tailed).

Figure 7. Proposed model. Left, when GSK-3 is active, it phosphorylates FTO, which targets it for ubiquitin-mediated degradation, keeping FTO levels low and
resulting in elevated levels of m6A mRNA. Right, in the absence of GSK-3 activity, FTO protein accumulates, resulting in decreased levels of m6A mRNA.
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raise the possibility that toggling the levels of methylated
adenosine on mRNA in the brain could play a role in mood
stabilization.

The FTO locus in humans has been shown unequivocally to
be associated with predisposition to obesity (69 –72), and
genetic deletion of FTO in mice was shown to protect animals
from becoming obese. Despite the connection between FTO
and obesity, the precise role that FTO plays in this process is not
well-understood, although regulation of the expression of
nearby genes has been proposed (73). However, this explana-
tion is independent of the biological function of the FTO pro-
tein as a 2-oxoglutarate– dependent RNA demethylase (64, 74).
GSK-3 is a major regulator of cellular metabolism and has been
linked to obesity via its role in regulating the insulin/PI3K path-
way. Interestingly, it was recently found that transgenic mice
expressing a form of GSK-3 that is insensitive to inhibition by
PI3K signaling were protected from developing metabolic syn-
drome, which includes obesity (75). Although it is not yet
known if the role of FTO in obesity is connected to GSK-3
activity and mRNA methylation levels, it is a tantalizing possi-
bility that should be explored further.

Although we identify a new mechanism that results in
changes in mRNA methylation, the biological effects of these
changes are likely to be complicated. Since the discovery that
m6A tags on mRNA are reversible (43), it has become widely
accepted that this modification results in decreased mRNA
half-life. This is due to the recognition of m6A mRNA by the
reader protein YTH domain family 2 (YTHDF2) (76). Yet
numerous studies have shown that the m6A modification of
mRNA affects nearly every step in its life cycle, and the resulting
effect on m6A-modified mRNA depends on the specific YTH
domain family reader protein that binds to the mRNA (77).
Further complicating the fate of m6A-modified mRNA is the
recent discovery that insulin-like growth factor-2 mRNA-
binding proteins (IGFBP1–3) also bind to m6A-containing
transcripts and have the opposite effect as YTHDF2, resulting
in stabilization of mRNA (78). Taken together, this means that
we are unable to speculate what effect reducing m6A marks has
on the mRNAs affected in Gsk-3 DKO ESCs.

While this manuscript was in preparation, data from Jaffrey
and colleagues (48) were published showing that FTO does not
specifically demethylate m6A RNA, but instead prefers to dem-
ethylate m6Am. Our approach for detecting m6A relied on an
antibody against m6A, but this antibody was shown to detect
both m6A and m6Am (49). In addition, whereas the approach we
used for m6A-Seq did not provide us with the precise locations
of demethylated adenosines in RNA from Gsk-3 DKO ESCs, we
nonetheless observed that hundreds of mRNAs had regions
largely devoid of methylated adenosines. This strongly suggests
thatdemethylationofm6AmbyFTOisnottheonlyRNAdemeth-
ylation occurring in Gsk-3 DKO ESCs. Mauer et al. (48) also
provided evidence that m6A demethylation is mediated by
Alkbh5. Our m6A-Seq data raise the possibility that GSK-3
activity could be directly or indirectly regulating Alkbh5, in
addition to FTO. We do not observe an increase in Alkbh5
protein or mRNA in Gsk-3 DKO ESCs (data not shown), but it
is possible that either GSK-3 regulates Alkbh5 activity or that
there is coordination between the demethylation of m6Am and

m6A. Further investigation will be required to determine
whether either of these possibilities is indeed true.

In summary, we have uncovered the first example of a mech-
anism by which mRNA demethylation can be regulated. This
finding dovetails nicely with the recent discovery from Vallier
and colleagues (79) that Activin/Nodal signaling via Smad2/
Smad3 regulates the activity of the Mettl3 mRNA methyltrans-
ferase complex. Interestingly, it has been shown that simulta-
neous inhibition of GSK-3 and Activin/Nodal signaling in
mouse ESCs promotes pluripotency (80), yet at the time of pub-
lication, neither of these molecules were known to regulate
mRNA methylation. In light of both the findings from Bertero
et al. (79) and those described here by our group on the regula-
tion of mRNA methylation, an intriguing possibility is that
these experiments could be reinterpreted as attaining pluripo-
tency via the simultaneous inhibition of mRNA methylation
and promotion of mRNA demethylation. Further experiments
will be able to directly test this hypothesis. Taken together, we
provide strong evidence demonstrating that the effects of
GSK-3 are not limited to canonical signaling pathways but can
affect epigenetic processes as well.

Experimental procedures

Plasmids

The mammalian expression vector pCAGEN (from Connie
Cepko, Addgene plasmid 11160) was linearized with EcoRI, and
synthetic gBlocks (IDT) containing V5-FTO, FLAG-FTO, or
FLAG-FTO-S249A/S253A were then cloned into pCAGEN
using Gibson Assembly master mix (New England Biolabs).
Plasmids containing inserts were identified by restriction
digests and confirmed by DNA sequencing (Eton Biosciences).

Cell culture and transfection

Feeder-free WT mouse (E14K), Gsk-3 DKO ESCs, and Gsk-3
DKO/Gsk-3� rescue ESCs were grown on 0.1% gelatin-coated
plates with high-glucose Dulbecco’s modified Eagle’s medium
(Invitrogen) supplemented with 15% fetal bovine serum
(HyClone), 1% nonessential amino acids, 1% sodium pyruvate,
1% L-glutamine, 1% penicillin/streptomycin (Gibco) 55 �M

2-mercaptoethanol, and 1000 units/ml recombinant LIF or
ESGRO (Millipore). Medium was replenished every other day.
WT and Gsk-3 DKO ESCs were transfected using PEI (81). 1 �
106 ESCs/well were resuspended in Opti-MEM (Gibco) along
with either 1800 ng of pCAGEN-V5-FTO, pCAGEN-FLAG-
FTO, or pCAGEN-FLAG-FTO-S249A/S253A, along with 200
ng of pMax-GFP. After incubation for 30 min at room temper-
ature, cells were added to gelatin-coated 6-well plates contain-
ing complete medium. Transfection efficiencies were con-
firmed after 18 h via fluorescence microscopy (Evos FL,
Thermo Fisher Scientific). For identification of phosphoryla-
tion sites on FTO, we plated 6 � 106 WT and Gsk-3 DKO ESCs
per 10-cm plate and used 10 plates of each cell line. Cells on
each plate were transfected with 11 �g of pCAGEN-FLAG-
FTO and 1 �g of pMax-GFP using the PEI method.

Immunoprecipitation and Western blotting

For protein extraction, ESCs were resuspended in lysis buffer
(137 mM NaCl, 10 mM Tris, pH 7.4, 1% IGEPAL) containing
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protease inhibitor mixture (1:100; Sigma) and lysed by vigorous
vortexing. For V5 immunoprecipitations, 10% of the lysate was
set aside, whereas the remaining protein lysate was added to
V5-agarose beads (Bethyl Laboratories). Lysates were incu-
bated with beads for 2 h at room temperature while rotating and
then centrifuged at 3000 � g for 1 min at 4 °C to pellet beads.
Pellet was washed four times with lysis buffer containing pro-
tease inhibitor mixture (1:100; Sigma). Protein was eluted from
the beads by adding 40 �l of 1� Tris/Tricine sample buffer and
incubating for 5 min at 100 °C. Beads were pelleted by centrif-
ugation at 14,000 rpm for 1 min, and the supernatant was trans-
ferred to a fresh microcentrifuge tube and stored at �20 °C
until use. For FLAG immunoprecipitations, 10% of the lysate
was set aside, whereas the remaining protein lysate was added
to FLAG-magnetic agarose beads (Sigma). Lysates were incu-
bated with beads for 4 h at room temperature while rotating,
placed on the magnet, and supernatant was saved. Beads were
washed three times in lysis buffer and then stored at 4 °C.

Western blotting was performed after electrophoresis on
7.5% Tris/Tricine acrylamide gels and transfer of protein onto
nitrocellulose membranes at 100 V for 1 h. Blots were blocked
for 1 h with either 5% milk/TBST (150 mM NaCl, 50 mM Tris,
pH 7.4, 0.1% Tween) (for �-FTO, �-V5, and �-FLAG antibod-
ies) or 5% BSA/TBST (for �-tubulin antibody). Primary anti-
bodies (�-FTO mAb (1:1000; PhosphoSolutions, catalog no.
597-FTO, lot CH7166), �-V5 mouse mAb (1:5000; Bethyl Lab-
oratories, catalog no. A190-120A, lot A190-120A-6), �-FLAG
M2 mouse mAb (1:1000; Sigma, catalog no. F3165, lot
SLBQ7119V), �-HA rabbit mAb (1:1000; Cell Signaling Tech-
nologies; catalog no. 3724, lot 8), and �-tubulin rabbit mAb
(1:1000; Cell Signaling Technologies, catalog no. 2125, lot 11))
were diluted in blocking solutions overnight at 4 °C. Blots were
washed and incubated for 30 min in �-mouse or �-rabbit IgG
horseradish peroxidase secondary antibody (GE Healthcare)
diluted 1:20,000 in 5% milk/TBS or 5% BSA/TBST. Proteins
were visualized using ECL Plus detection reagents (GE
Healthcare).

RNA isolation, cDNA synthesis, and quantitative PCR

1 � 106 ESCs/well were plated on a gelatin-coated 6-well
plate. RNA was isolated using TRIzol reagent (Thermo Fisher
Scientific) and extracted using Direct-zol RNA Miniprep col-
umns (Zymo) following the manufacturer’s protocol. RNA was
quantified using a Nanodrop 2000 (Thermo Fisher Scientific).

2 �g of total RNA was used to synthesize cDNA. cDNA was
synthesized using the High Capacity Reverse Transcriptase kit
(Applied Biosystems) according to the manufacturer’s proto-
col. The amount of input RNA used was kept constant for
each reverse transcription reaction. Reactions were run on a
StepOne Real-Time PCR System (Applied Biosystems) using
PrimeTime gene expression master mix (IDT) and Prime-
Time qPCR assays for FTO (Mm.PT.58.32888407), Nanog
(Mm.PT.58.23510265), and Esrrb (Mm.PT.58.14246772) (IDT).
Three biological replicates and three technical replicates were
used for WT, Gsk-3 DKO, and Gsk-3 DKO/Gsk-3� ESCs. All
threshold cycle (Ct) values were normalized to a mouse Gapdh
endogenous control (Mm.PT.39a.1) (IDT), and relative quanti-
fication was calculated from the median Ct value.

Enrichment of phosphoproteins

Total protein was isolated from WT and Gsk-3 DKO mESCs
that were transfected with pCAGEN-FTO-V5, pCAGEN-FTO-
FLAG, or pCAGEN-FTO-S249A/S253A-FLAG. Samples were
enriched for phosphoproteins using the Pro-Q Diamond phos-
phoprotein enrichment kit (Molecular Probes) according to the
manufacturer’s protocol for nondenatured protein lysates. Lysates
were then separated on 7.5% Tris/Tricine acrylamide gels, and
Western blotting for V5 or FLAG was performed as described
above.

In vitro kinase assay

Recombinant human GSK-3� (Sigma-Aldrich) was incu-
bated with recombinant mouse FTO (Sigma-Aldrich) or
recombinant 2N4R His-tagged Tau in the presence of fresh
ATP for 1 h at 30 °C. Reactions were then run on 7.5% Tris/
Tricine acrylamide gels, and then the gels were stained with
Pro-Q Diamond for 1 h followed by destaining for 1 h to detect
phosphorylated proteins. Gels were imaged using a Gel Doc
XRS� (Bio-Rad) using the 560DF50 filter.

Protein mass spectrometry

Immunoprecipitated FLAG-FTO from WT and Gsk-3 DKO
ESCs washed with 100 �l of 100 mM ammonium bicarbonate
(pH 8.0) three times while retained on FLAG magnetic beads.
Cysteine residues were reduced and alkylated at 22 °C using 10
mM DTT (Sigma-Aldrich) for 1.5 h followed by 25 mM iodoacet-
amide (Sigma-Aldrich) for 45 min in the dark. Proteins were
digested on beads (1:20 enzyme/protein) with either trypsin or
endoproteinase LysC (Promega) for 6 h at room temperature on
a shaker. Peptides were removed with the supernatant and acid-
ified to pH 2.5 using formic acid (Fisher).

Peptides were loaded directly onto a Waters nanoAcquity
UPLC for separation on a 75 �m � 250-mm C18 BEH UPLC
column (1.7-�m particle size; Waters) coupled to a Thermo
LTQ-Orbitrap Velos mass spectrometer. A linear 70 min, 0.3
�l/min flow UPLC gradient was performed using 0.1% formic
acid in water (solvent A) and 0.1% formic acid in acetonitrile
(solvent B) with the following conditions: 2% solvent B hold for
17 min, 2–7% solvent B in 3 min, 7–32% solvent B in 25 min,
32–95% solvent B in 5 min, 95% solvent B hold for 4 min, 95 to
2% B in 1 min, 15-min hold at 2% B. MS scans were acquired at
60,000 resolution in the Orbitrap, and a top 10 data-dependent
CID tandem MS method was used to acquire MS/MS scans in
the ion trap. All data were searched against a Uniprot Mus
musculus protein database using Mascot (Matrix Science) with
the following parameters: 50-ppm peptide mass tolerance;
0.5-Da fragment ion tolerance; variable modifications includ-
ing Gln to pyro-Glu conversion on N-terminal Gln, oxidation of
Met, and phosphorylation of Ser/Thr/Tyr; fixed modification
carbamidomethyl Cys; 1% false discovery rate; and two missed
cleavages with trypsin enzyme specificity. All expected proteo-
lyzed peptides were investigated by hand for the presence of any
singly or doubly phosphorylated forms in the MS and MS/MS
spectra. Phosphorylated peptides were sequenced by hand and
confirmed by manual inspection of the MS/MS spectra. An
additional LC-MS/MS experiment was conducted using the
same parameters as above, plus a targeted MS/MS scan event at
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1380.9 m/z to sequence the (M � 3H)3� carbamidomethylated
and singly phosphorylated peptide sequence SAVAVYSYSCE-
GSEDESEDESSFEGRDPDTWHVGFK.

Detection of ubiquitinated FTO

For detection of ubiquitinated FTO, we plated 6 � 106 WT
and Gsk-3 DKO ESCs per 10-cm plate. Cells on each plate were
transfected with 5.5 �g of pCAGEN-FLAG-FTO, 5.5 �g of HA-
ubiquitin, and 1 �g of pMax-GFP using the PEI method. 24 h
later, medium was changed, and cells were treated with 10 �M

lactacystin for 6 h. Cells were then collected in lysis buffer
containing deubiquitination enzyme inhibitors (N-ethylma-
leimide and TPEN (N,N,N�,N�-tetrakis(2-pyridinylmethyl)-
1,2-ethanediamine)) to ensure recovery of ubiquitinated
proteins. Lysates were separated on 7.5% Tris/Tricine acryl-
amide gels, and Western blotting for HA and FLAG was
performed as described above.

m6A quantification

To quantify the amount m6A-modified mRNA, we first
enriched for mRNA by isolating the population of poly(A)�
RNA from total RNA. 5 �g of total RNA was isolated from WT
and Gsk-3 DKO ESCs as described above and then incubated
with oligo(dT)25 magnetic beads (New England Biolabs) on a
rotator overnight at 4 °C. Tubes were then placed on a magnetic
plate for 1 min, and supernatant was saved as “oligo(dT) other”
for further analysis. Beads were washed with 100 �l of RNase-
free H2O three times. To elute RNA from beads, 20 �l of cold 10
mM Tris-HCl, pH 7.5, was added to beads and incubated at
80 °C for 2 min. Tubes were returned to the magnet, and eluted
RNA was immediately transferred to a new tube and placed on
ice. Poly(A)� RNA was quantified using the Qubit HS RNA
assay kit (Thermo Fisher Scientific). For m6A quantification, we
used the method described by Jia et al. (43). 1 �g of poly(A)�
mRNA was digested by 4 �l of nuclease P1 (2 units) in 40 �l of
LC-MS/MS buffer (25 mM NaCl and 2.5 mM ZnCl2) for 1 h at
37 °C, followed by the addition of 1 M NH4HCO3 and 0.5 units
of alkaline phosphatase and incubation at 37 °C for another 1 h.
To confirm digestion of RNA, samples were run on a 1% agarose
gel, with an undigested RNA sample as a control. Samples were
then analyzed by UHPLC-MS (Vanquish UHPLC coupled online
with a Q Exactive quadrupole-Orbitrap mass spectrometer, oper-
ated in positive-ion mode; Thermo Fisher Scientific) at the Uni-
versity of Colorado School of Medicine Proteomics Core Facility,
and the ratios of methyladenosine to adenosine were reported.
Retention times and linearity ranges were determined against in-
house libraries of light and deuterated standards available in the
core for adenosine and methyladenosine (Sigma-Aldrich).

m6A levels were also quantified using the EpiQuik m6A RNA
methylation quantification kit (Epigentek) following the man-
ufacturer’s instructions. Briefly, 200 ng of total RNA from WT,
Gsk-3 DKO, and Gsk-3 DKO/Gsk-3� rescue ESCs was bound to
wells in a clear 96-well plate via RNA high-binding solution and
then incubated with m6A capture and detection antibodies, fol-
lowed by colorimetric detection of signal (A450 nm) using an
EnSpire plate reader (PerkinElmer Life Sciences). The readings
were then used to calculate the relative quantification using a
formula provided by the manufacturer.

m6A-Seq

RNA was isolated from WT and Gsk-3 DKO ESCs using
TRIzol (Thermo Fisher Scientific) as described above. 15 �g of
total RNA was used for mRNA isolation with oligo(dT)25 mag-
netic beads (New England Biolabs). 7 �g of poly(A)� RNA from
each sample was then incubated with Protein G magnetic beads
(New England Biolabs) coupled with anti-m6A antibody (New
England Biolabs, catalog no. E1611A, lot 0011602) rotating
overnight at 4 °C. Beads were washed at room temperature, two
times with reaction buffer (150 mM NaCl, 10 mM Tris HCl, pH
7.5, and 0.1% Nonidet P-40), two times with low-salt reaction
buffer (50 mM NaCl, 10 mM Tris HCl, pH 7.5, and 0.1% Nonidet
P-40), and two times with high-salt reaction buffer (500 mM

NaCl, 10 mM Tris HCl, pH 7.5, and 0.1% Nonidet P-40). Beads
were then resuspended in Buffer RLT (Qiagen) and placed on
a magnet, and then m6A mRNA-containing solution was
removed and placed in new tubes. Samples were concentrated
further using MyOne Silane Dynabeads (Thermo Fisher Scien-
tific). m6A mRNA values obtained using Qubit were: as follows
122 ng (WT) and 163 ng (DKO). m6A mRNA was chemically
fragmented by incubating in 100 mM Tris-HCl, pH 7.0, and 100
mM ZnCl2 at 94 °C for 5 min, and the reaction was stopped with
0.5 M EDTA (82). Fragmented RNA was cleaned and concen-
trated using a commercial kit (Zymo). m6A-Seq was performed
using the IonProton sequencing platform (Thermo Fisher Sci-
entific) at PrimBio (Exton, PA).

meRIP-qPCR

50 ng of WT and Gsk-3 DKO mRNA from cells grown with-
out LIF before and after immunoprecipitation with anti-m6A
antibody was used for meRIP-qPCR. Briefly, SuperScript IV
VILO cDNA kit (Thermo Fisher Scientific) was used to synthe-
size cDNA using the manufacturer’s protocol. cDNA was
diluted to 0.5 ng/�l for use in qPCR. Reactions were run on a
StepOne real-time PCR system (Applied Biosystems) using
PrimeTime gene expression master mix (IDT) and PrimeTime
qPCR assays (IDT) for c-myc (Mm.PT.58.13590978) and Esrrb
(Mm.PT.58.14246772). All Ct values were normalized to a
mouse Gapdh endogenous control (Mm.PT.39a.1) (IDT), and
relative quantification was calculated from the median Ct value.
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