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Alternative end-joining (a-EJ) pathways, which repair DNA
double-strand breaks (DSBs), are initiated by end resection that
generates 3’ single strands. This reaction is shared, at least in
part, with homologous recombination but distinguishes a-EJ
from the major nonhomologous end-joining pathway. Although
the a-EJ pathways make only a minor and poorly understood
contribution to DSB repair in nonmalignant cells, there is grow-
ing interest in these pathways, as they generate genomic rear-
rangements that are hallmarks of cancer cells. Here, we
review and discuss the current understanding of the mecha-
nisms and regulation of a-E] pathways, the role of a-EJ in
human disease, and the potential utility of a-EJ as a therapeu-
tic target in cancer.

DNA double-strand breaks (DSB)? can be generated by expo-
sure to exogenous agents such as ionizing radiation, endoge-
nous agents such as reactive oxygen species— generated aerobic
metabolism, or DNA metabolic processes, including DNA rep-
lication, meiosis, and rearrangement of genes encoding immu-
noglobulins and T cell receptors. These are extremely danger-
ous lesions because the integrity of both strands of the DNA
duplex is lost. In a cell with more than one DSB, it is important
to rejoin the previously linked DNA ends otherwise a chro-
mosomal translocation will be generated. Surprisingly, the
predominant repair pathway in human cells that is often
called either classic or canonical nonhomologous end-join-
ing relies upon DNA end-bridging mediated by protein—
protein interactions involving DNA-dependent protein ki-
nase molecules to bring together DNA ends (1-3). In this
Minireview, we will refer to this pathway simply as nonho-

This work was supported by National Institutes of Health Grants GM57479,
GM47251, ES012512, and CA92584 (to the Tomkinson laboratory). This is
the fourth article in the Thematic Minireview series “DNA double-strand
break repair and pathway choice.” A. E. T. is a co-inventor on patents that
cover the use of DNA ligase inhibitors as anti-cancer agents, and altered
expression of DSB repair proteins as biomarkers of increased dependence
upon MMEJ. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes
of Health.

" To whom correspondence should be addressed: Cancer Research Facility,
915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM
87131. Tel.: 505-2725404; E-mail: atomkinson@salud.unm.edu.

2 The abbreviations used are: DSB, double-strand break, a-EJ, alternative end-
joining; NHEJ, nonhomologous end-joining; MRN, Mre11/Rad50/Nbs1; HR,
homologous recombination; SSA, single-strand annealing; MMEJ, microho-
mology-mediated end joining; PARP, poly(ADP-ribose) polymerase; RPA,
replication protein A.

10536 J. Biol. Chem. (2018) 293(27) 10536-10546

mologous end-joining (NHE]). Although this could poten-
tially join DNA ends from different chromosomes, the repair
of DSBs by NHE] usually results in the rejoining of previously
linked DNA ends, possibly because the arrangement of chro-
matin in loops attached to a scaffold restricts the movement
of DNA ends generated by a break in the loop. The majority
of DSBs generated by ionizing radiation and oxygen free rad-
icals have damaged and noncomplementary termini that
require processing prior to re-joining. This processing fre-
quently results in either the loss or the addition of a few
nucleotides at the break site (1, 2). Thus, although NHE]
usually rejoins previously linked DNA ends, the repair of
DSBs by this pathway is frequently mutagenic. For more
details about the NHE] pathway, see the accompanying
Minireview by Pannunzio et al. (4).

Although DSBs are repaired by NHE] throughout the cell
cycle, a recombinational repair pathway operates during the S
and G, phases of the cell cycle when an intact sister chromatid
is available to guide the error-free repair of DSBs (5, 6). The
initial steps of this pathway involve resection of the 5" ends of
the DSBs followed by strand invasion into the adjacent intact
sister chromatid, generating a D loop structure by strand
exchange (6, 7). For more details about the homologous recom-
bination (HR) pathway, see the accompanying Minireview by
Wright et al. (8). In this Minireview, we focus on minor DSB
repair pathways that are genetically distinct from HR and NHE]
that we will refer to collectively as alternative end-joining (a-EJ)
pathways. These pathways do share factors with and/or utilize
similar mechanisms to the major DSB repair pathways. All the
a-EJ pathways, like HR, are initiated by end resection (Fig. 1)
and involve some, if not all, of the factors that constitute the HR
end resection machinery (1, 7, 9). The a-EJ pathways also share
similarities with NHE] in that the DNA ends to be joined are
juxtaposed without using a homologous template as a guide.
They do, however, utilize differing amounts of sequence homo-
logy (Fig. 1) to align the DNA molecules (1, 9). Although the
a-EJ pathways make only a minor and poorly understood con-
tribution to DSB repair in nonmalignant cells, there is growing
interest in these pathways as they generate large deletions,
translocations, and end-to-end chromosome fusions, genomic
rearrangements that are frequently observed in cancer cells
(10-12). Furthermore, they appear to be promising therapeutic
targets in cancer cells with defects in either NHE]J or HR (11,
13-16).
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Figure 1. Role of DNA sequence homology in a-EJ pathways. Resection of the 5’ strand at DSBs is the first common step of all the EJ pathways (a-EJ). Three
distinct pathways, single-strand annealing (SSA), microhomology-mediated end-joining (MMEJ), and end-joining (EJ) are distinguished based on the amount
of DNA sequence complementarity used to align DNA ends. SSA involves complementary repeat sequences more than 25 nucleotides in length, whereas MMEJ
involves shorter tracts of sequence homology, ranging from 2 to 20 nucleotides in length. There is also a third category of DSB repair events that either lack or
have very little sequence homology at the repair site generated by a poorly defined EJ pathway.

Overview of a-EJ in humans and its relationship with
other pathways of DSB repair

A series of X-ray—sensitive mutants of Chinese hamster
ovary cell lines were used to identify human XRCC (X-ray
cross-complementing) genes involved in the repair of DSBs
both by HR and NHE] (17, 18). Around the same time, a num-
ber of labs described robust DNA end-joining activities in
extracts from mammalian cells but did not definitively link
these activities to NHE] factors (19, 20). In a seminal paper,
Bauman and West (21) described end joining by a human cell
extract that depended upon NHE] factors but also noted that
end-joining activities that were independent of NHE] could be
detected in extracts prepared by different methods.

The initial genetic characterization of a-EJ pathways also
occurred around the same time using the yeast Saccharomyces
cerevisiae as amodel eukaryote. In contrast to mammalian cells,
HRis the predominant DSB repair pathway in yeast. Two minor
DSB repair pathways, single-strand annealing (SSA) and microho-
mology-mediated end joining (MME]) (22, 23), were identified
in HR-deficient yeast strains in addition to the NHE] pathway
(24). Both the SSA and MME] pathways are initiated by DNA
end resection. In SSA, 5’ to 3’ end resection at both ends
exposes single-strand regions with complementary sequences
of greater than 25 nucleotides that reside within tandem
repeats (Fig. 1). The complementary sequences anneal, gener-
ating DNA duplex with noncomplementary 3’ single-strand
tails. These tails are removed, followed by gap-filling synthesis
and ligation. This pathway usually generates intrachromosomal
deletions but may generate translocations through events
involving repetitive elements on different chromosomes. In
MME], shorter regions of complementary sequence, ranging
from 2 to 20 nucleotides that are called microhomologies, are
frequently used to align DNA ends prior to gap filling and liga-
tion. Like SSA, this pathway generates deletions, but additional
nontemplated nucleotides may be added at the repair site (24).
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It should be noted that the NHE] pathway also utilizes microho-
mologies, such as those generated by restriction endonucleases,
during end joining. Although the complementary single-strand
overhangs generated by restriction endonucleases are usually
accurately rejoined by the NHE] pathway, microhomologies
less than four nucleotides produced by limited nucleolytic pro-
cessing and error-prone gap-filling synthesis likely play a role in
end alignment during the repair of DSBs with noncomplemen-
tary ends by NHE], resulting in the characteristic small inser-
tions and deletions (1). The ring-shaped Ku heterodimer initi-
ates the repair of DSBs by NHE]. This factor binds rapidly and
stably to DSBs, preventing end degradation by the HR end
resection machinery and limiting resection by other nucleases.
It also serves as the platform for the assembly of the other NHE]
factors, including end-processing factors, in a multiprotein
complex (1, 2, 25). MME] and the other a-EJ pathways are dis-
tinct from NHE] in that they are Ku-independent, require com-
ponents of HR end-resection machinery, and frequently involve
longer tracts of microhomology. The competition between Ku
and the end-resection machinery for a DSB end determines
whether that end will be repaired by NHE] or channeled into
the HR and occasionally the a-EJ pathways. Our current under-
standing of the mechanisms that determine DSB repair path-
way choice is the focus of the accompanying Minireview by Her
and Bunting (26).

The identification of PARP-1 and DNA ligase IIla (Ligllla),
neither of which are present in S. cerevisiae, as participants in
a-EJ in mammalian cells (Table 1), provided the first evidence
that there are likely to be differences in the repertoire and
mechanisms of a-E] pathways between yeast and mammalian
cells (27-29). The repair of DSBs by a-EJ, in particular MME], is
more evident in mammalian cells that are deficient in NHE]
(30-33). For example, class switch recombination that is nor-
mally dependent upon NHE] factors occurs by an a-EJ pathway
in the absence of a functional NHE] pathway (30, 33). Similarly,
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Table 1
Proteins involved in a-EJ pathways

For the proteins shown in boldface type, there is strong evidence identifying them as
a key factor in the indicated EJ pathway.

MRN/CtIP/EXO1/DNA2

End Resection MRN/CtIP/EXO1/DNA2 MRN/CtIP/EXO1/DNA2

End Bridging RAD52 PARP/MRN/Pol & PARP/MRN
Flap Cleavage ERCC1/XPF ? ?
Gap Filling i Pol& ?
Ligation ? Liglll/XRCC1 Ligl

cells that are deficient in HR are more dependent upon a-EJ
pathways for the repair of DSBs (11, 13). Compared with HR
and NHE], the factors involved in a-EJ and the mechanisms by
which they act together to process and repair DSBs are not
well-defined. It is possible that the repair of DSBs by a-EJ that
occurs in repair-deficient cells may not be carried out by dis-
tinct pathways. Instead, the factors required to repair a DSB
may be dictated by the nature of the defect in the NHE]J or HR
pathway.

Although it is evident that the MME] pathway serves as a
back-up pathway in cells that are deficient in either NHE] or
HR, the joining of DSBs by MME] can be detected in cells that
are proficient for both NHE] and HR (34). The role(s) of the a-E]J
pathways when the major DSB repair pathways are functional is
poorly understood. A recent study showing that MME] activity
is induced by ionizing radiation suggests that this pathway may
be responsible for the repair of a subset of DSBs with damaged
termini that render them refractory to repair by NHE] (35).
Because the end resection machinery is activated in S phase
cells, it is possible that the SSA pathway acts to repair DSBsin S
phase cells that occur in unreplicated DNA (9). In the following
sections, we provide a brief overview of the mechanisms of the
a-EJ pathways, SSA and MME], that are shown schematically in
Figs. 2 and 3, respectively.

End resection (MRN/CtIP)

As mentioned above, the a-EJ pathways are similar to HR in
that they are initiated by end resection (Fig. 1). For HR and a-E]
(Figs. 2 and 3), end resection is initiated by the Mre11/Rad50/
Nbs1l (MRN) complex and CtIP (Table 1). Studies with the
functionally homologous yeast proteins suggest that an initial
3’ single-strand region is generated by CtIP-enhanced MRN
endonuclease activity followed by 3’ to 5’ exonucleolytic diges-
tion by MRN (7, 36, 37). This allows the loading of the more
processive nucleases, either Exol or DNAZ2, that then generate
long stretches of single-strand DNA (7). Because PARP-1 is
required for the rapid recruitment of MRN to DSBs (38), it is
possible that the involvement of PARP-1 in a-EJ is due to its
role in recruiting MRN for the initial phase of end resection.
This, however, seems unlikely, because PARP inhibitors do not
reduce the viability of cells with a functional HR pathway,
whereas if they disrupted MRN recruitment and end resection
then they would also be expected to impact the repair of DSBs
by HR.

Although genetic studies have implicated MRN and CtIP in
both SSA and MME] (32, 34, 39-43), the role of Exol and
DNA2 is not clear. If there are defects in HR at the strand
exchange or later stages, it seems likely that Exol and/or DNA2
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will have been involved in generating the single-strand ends.
Functional redundancy between Exol and DNA2 may explain
why DNA2, Exol, and also BLM, which interacts with both
Exol and DNA2, appear to be dispensable for MME] (7).
Because more extensive DNA end resection is likely to be
needed to expose the homologous repeats required for SSA,
DSB repair by this pathway probably involves Exol and/or
DNAZ2 (Fig. 2), whereas the more limited end resection by CtIP
and MRN may be sufficient for at least some of the DSB repair
events catalyzed by the other a-EJ pathways involving either a
few nucleotides of microhomology (MME]) (Fig. 3) or no ho-
mology (EJ) (34).

At the present time, little is known about how the extent of
end resection is controlled either during HR or a-E]J. Notably,
the 3’ to 5’ exonuclease of Mrell, which functions as a dimer
within the MRN complex, is sensitive to the presence of other
DNA ends with noncomplementary ends enhancing degrada-
tion and complementary ends inhibiting degradation (44, 45).
When degradation by Mrell exposes a short tract of sequence
that is complementary to another DNA end, the Mrell exonu-
clease appears to pause, presumably transiently stabilizing
DNA end alignment via the microhomologies (44, 45). The
involvement of the endo- and, in particular, the exonuclease
activity of Mrell in MME] is supported by results from a recent
study showing that the repair of a plasmid substrate by an
MME]J-proficient XRCC1 immunoprecipitate that contains
MRN and CtIP was blocked by small molecule inhibitors of
either the endo- or the exonuclease activities of Mrell (35).
Interestingly, the loss of WRN, a member of the RecQ helicase
family that is defective in the prototypic premature aging syn-
drome, Werner’s syndrome, increased the size of deletions gen-
erated during MME] event suggesting that WRN functions to
suppress resection in MME] even though WRN also possesses
nuclease activity (46).

Given the role of end resection in a-EJ, it was generally
assumed that DSB repair via SSA, MME], and the other EJ path-
way occurs predominantly in S and G, phase cells when the
end-resection machineries are active. Despite the negative reg-
ulation of end resection in G; cells, it is evident that the repair of
DSBs by MME] also occurs in this phase of the cell cycle (47).
Both CtIP and MRN appear to be responsible for the end resec-
tion in G, cells with 53BP1 enhancing both end resection and
MME] (47). Knockdown of 53BP1 in G cells resulted in about a
2-fold increase in ionizing radiation-induced y-H2AX foci
remaining 8 and 24 h after radiation, indicating that a signifi-
cant fraction of ionizing radiation-induced DSBs are repaired
by MME] in G, cells (47). Furthermore, because inactivation of
NHE] resulted in increased repair of DSBs by MME] in G, cells,
it appears that NHE] suppresses DSB repair by MME]J in G,
cells (47). Although phosphorylation of CtIP by cyclin-depen-
dent protein kinases is critical for its role in initiating resection
for HR in G, cells, CtIP is phosphorylated in a DNA damage-
inducible manner by Polo-like kinase 3 to activate CtIP/MRN-
dependent resection in G; cells (48, 49). In accord with the
evidence that there is competition between NHE] and MME] in
G; cells (47), resection by CtIP/MRN in G, cells inhibits DSB
repair by NHE] (48). It should be noted that there is also evi-
dence that DSB repair in G, cells occurs via a resection-depen-
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Figure 2. Repair of DSBs by the single-strand annealing pathway. 7) Introduction of a DSB break. 2) PARP-1 (PARP) mediates the rapid recruitment of MRN
and CtIP to the DSB end. CtIP enhances the MRN endonuclease activity resulting in an internal single-strand break within the 5’ strand. The short single-strand
fragment at the DSB end is then degraded by the MRN exonuclease activity. 3) The resultant single-strand region, which is rapidly bound by RPA, serves as the
binding site for one of the processive 5’ to 3’ exonucleases, either Exo1 or DNA2. 4) The resultant long range resection by Exo1 or DNA2 exposes complemen-
tary single-strand regions, greater than 25 nucleotides in length. 5) Rad52 interacts with the RPA-coated single strands and anneals the complementary
regions, aligning the DNA ends and exposing nonhomologous 3’ single-strand tails. 6) The single-strand tails are removed by ERCC1/XPF, a DNA structure-
specific endonuclease that cleaves the 3’ strand at duplex/single-strand junctions. 7) After any gaps are filled, both strands are ligated to generate an intact
duplex that is missing one of the repeats and the DNA region between the repeats. The DNA polymerases and DNA ligases involved in the last steps of SSA have

not been identified.

dent version of NHE] rather than MME] in addition to resec-
tion-independent NHE] (50). Further studies are needed to
resolve these apparently contradictory findings.

DNA end-bridging and alignment

A critical step in all the a-E]J pathways is the juxtaposing of
DNA ends. Because SSA likely requires extensive resection by
Exol and/or DNA2 to expose the homologous repeats (Fig. 2
and Table 1), this repair pathway is probably most active during
the S and G, phases of the cell cycle. For post-replication

SASBMB

breaks, the ends are likely held in the same vicinity as a conse-
quence of sister chromatid cohesion with the repair event gen-
erating intrachromosomal deletions, whereas resection at DSBs
in nonreplicated DNA in cells could lead to translocations
involving homologous repeats on different chromosomes (9).
Initial genetic studies in yeast identified Rad52 as a key compo-
nent of the SSA pathway with similar studies implicating mam-
malian Rad52 protein (22, 51). Notably, Rad52 protein has a
robust single annealing activity and is able to anneal comple-
mentary single strands that are coated with RPA (52, 53).
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Figure 3. Repair of DSBs by the microhomology-mediated end-joining pathway. 7) Introduction of a DSB break. 2) PARP-1 (PARP) mediates the rapid
recruitment of MRN and CtIP to the DSB end. CtIP enhances the MRN endonuclease activity resulting in an internal single-strand break within the 5’ strand. The
short single-strand fragment at the DSB end is then degraded by the MRN exonuclease activity. 3) Short regions of sequence complementarity, ranging from
2to 20 nucleotides, are exposed within the RPA-coated single-strand regions. 4) The DNA ends are transiently aligned via the short microhomologies. PARP-1,
MRN, and Pol 6 have each been implicated in the end alignment. It is likely that a similar, possibly MRN independent process of end alignment also occurs
between ends that are being resected by the long-range exonucleases, Exo1 and DNA2 (see Fig. 2, step 3). 5) Nonhomologous 3’ tails are removed prior to
error-prone gap-filling DNA synthesis by Pol 6. It is assumed that several functionally redundant nucleases will participate in end processing. 6) Both strands are
ligated by the Ligllla=XRCC1 complex (Liglll/XRCCT). 7) The DNA duplexes generated by MMEJ are characterized by deletions and the presence of sequence

microhomologies at the repair site.

Together, these studies suggest that, during SSA, Rad52 anneals
complementary RPA coated-sequences exposed by end resec-
tion (Fig. 2 and Table 1).

For the other a-E] pathways, different proteins have been
suggested to play roles in the bridging of DNA ends and align-
ment via microhomologies (Table 1). PARP-1, which competes
with Ku for binding to DSBs, appears to have end-bridging
activity (27), although the mechanism by which PARP-1 medi-
ates end-synapsis, in particular the contribution of poly(ADP-
ribosylation), has not been elucidated. As noted previously,
PARP-1 is involved in the rapid recruitment of the MRN com-

10540 J. Biol. Chem. (2018) 293(27) 10536-10546

plex to DNA ends (38). Both the yeast and human versions of
this complex have robust end-bridging activity (54, 55), sug-
gesting that the MRN complex can simultaneously engage two
DNA ends, compare sequences, and transiently align the DNA
ends via exposed microhomologies during endo- and exonu-
cleolytic digestion (44, 45).

More recently, an A-family DNA polymerase, Pol 6, has been
identified as a key factor in a-EJ (11, 13). Pol 6 has a helicase-like
domain at its N terminus that is separated from the C-terminal
polymerase domain by a long, unstructured central region.
Notably, Pol 6 displaces RPA from single-strand DNA and also
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interacts with Rad51 and inhibits Rad51-dependent HR (11, 13,
56). Thus, Pol 0 appears to actively compete with the HR
machinery for resected DNA ends. Furthermore, Pol 6 is capa-
ble of searching for and aligning microhomologies, thereby
contributing to end bridging (57, 58).

Removal of nonhomologous 3’ tails

During the repair of DSBs by SSA, the long 3 tails are coated
with RPA (9). Following Rad52-mediated annealing of homo-
logous repeat sequences (Fig. 2), the noncomplementary 3 tails
are removed by the DNA structure-specific endonuclease
ERCC1/XPF (Table 1) that interacts with and is stimulated
by Rad52 (59). Although it is likely the end-joining events
catalyzed by the other a-EJ pathways will also involve re-
moval of noncomplementary 3’ tails (Fig. 1), the identity of
the nuclease(s) involved has not been definitively established
(Table 1), presumably reflecting redundancy among these
enzymes.

Gap filling DNA synthesis

It is likely that, after the removal of the nonhomologous tails,
the aligned DNA duplexes will contain gaps. The identity of the
DNA polymerase(s) involved in gap filling during the repair of
DSBs by SSA (9) and microhomology-independent EJ pathway
(Fig. 1) has not been definitively established (Table 1). In con-
trast, there is compelling evidence that Pol 6 participates in the
majority of DSBs repaired by MME] (11, 13, 58). Notably, Pol 6
has robust terminal transferase activity in addition to template-
directed synthesis activity and so generates insertions with sig-
nificant sequence diversity at repair sites (58, 60, 61). Although
Pol s clearly a key MME] factor, there is currently no evidence
of functional interactions between Pol 6 and other MME]
factors.

Ligation

The repair of DSBs by the a-E]J pathways is completed by a
DNA ligase once ligatable termini have been generated by end
processing. Among the DNA ligases encoded by the three
mammalian LI/G genes, DNA ligase IV appears to only function
in NHE], leaving the DNA ligases encoded by the LIGI and
LIG3 genes as the candidate enzymes for a-E] (2, 62, 63).
Because S. cerevisiae lacks a homolog of the mammalian LIG3
gene (64), it is likely that Cdc9 DNA ligase, the functional ho-
molog of human Lig], is the predominant DNA ligase in yeast
a-EJ. Although the contribution of the DNA ligases encoded by
the mammalian LIG1 and LIG3 genes to SSA has not been
established (Table 1), there is substantial evidence indicating
that LiglIl« is the major DNA ligase in the MME] pathway (27,
28, 65, 66). In the nucleus, Ligllla forms a stable complex with
XRCC1, a DNA repair protein that is often referred to as a
scaffold protein because of its interactions with a large number
of DNA repair proteins (67). Both Liglllae and XRCCI1 prefer-
entially interact with poly(ADP-ribosylated) PARP-1, interac-
tions that underlie the recruitment of the Ligllla/XRCC1 to in
vivo DNA single-strand breaks (68, 69). Although PARP inhib-
itors reduce the repair of DSBs by MME], there was no reduc-
tion in the recruitment of XRCC1 to DSBs (14, 35), indicating
that the recruitment of Ligllla/XRCC1 is not dependent upon
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poly(ADP-ribosylated) PARP-1. Interestingly, Ligllla/XRCC1
also physically and functionally interacts with the MRN com-
plex with these two complexes acting together to digest and join
DNA duplexes with noncomplementary termini utilizing inter-
nal sequence microhomologies (35, 70). Thus, it is possible that
this interaction directs the recruitment of Ligllla/XRCC1 to
DSBs undergoing repair by MME]. In support of this idea, ion-
izing radiation induces increased association of XRCC1 with
Mrell and CtIP, co-localization of XRCC1 with Mrell, and
increased MME] activity (35). These changes in the behavior of
XRCC1 and MME] activity are dependent upon phosphoryla-
tion of XRCC1 by casein kinase 2 in response to ionizing radi-
ation (35), suggesting that this phosphorylation event(s)
enhance the interaction with the MRN complex. Interestingly,
the N-terminal zinc finger of Ligllle, which is required for
intermolecular ligation in vitro, is also required for Ligllla-de-
pendent MME] (65, 71-73).

In mouse cells, the NHE] pathway acts to suppress formation
of translocations by Ligllla-dependent MME]J in response to
DSBs induced either by site-specific nucleases or ionizing radi-
ation (12, 65, 66). This is consistent with studies implicating
MME] in the formation of translocations due to aberrant class
switch recombination in mice deficient in NHE]J (10, 30, 33).
The observation in some studies that translocation formation
was not dependent upon XRCC1 (66, 74) was surprising given
the role of this protein in maintaining the stability and activity
of nuclear Ligllla and other studies indicating that XRCCl1 is a
key component of the MME] pathway (35, 75). Although there
may be sufficient residual nuclear LiglIl« for translocation for-
mation in the absence of XRCC1 (75), it is also possible that,
when nuclear Liglll« is absent, translocation formation occurs
by a Ligl-dependent EJ pathway (65). Notably, these events do
not appear to involve end alignment via microhomologies (65).
At the present time, it is not known how Ligl is recruited to the
repair site and whether other Ligl-interacting proteins such as
proliferating cell nuclear antigen and replication factor C are
involved in this E] pathway (Table 1).

Role of A-EJ in genome instability and human disease

The repair of DSBs by a-EJ is inherently mutagenic, poten-
tially giving rise to chromosomal translocations as well as intra-
and interchromosomal deletions and insertions (10, 33). In
addition, the MME] pathway also contributes to the formation
of end-to-end chromosome fusions (11). Given the prevalence
of these types of rearrangements in the genomes of cancer cells,
there is significant interest in understanding the contribution
of a-EJ to cancer formation and progression. Although the
majority of studies of genome instability have focused on the
nuclear genome, deletions within the circular mitochondrial
genome that have been implicated in a wide variety of human
diseases frequently occur between repeats and/or involve
microhomologies at the repaired site (76 —80). These observa-
tions suggest that a-EJ pathways may contribute to deleterious
changes in mitochondrial DNA, but our understanding of the
repertoire and mechanisms of DNA repair pathways, in partic-
ular DSB repair pathways, operating in mitochondria is still
very limited. Although there is compelling evidence that
Ligllle is the only DNA ligase in mitochondria (81-86) and
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mitochondrial extractsare capable of utilizing internal microho-
mologies to join DNA molecules with noncomplementary ends
(86), further work is needed to definitively establish the mito-
chondrial localization of other a-EJ factors, such as Pol 6 and
Mrell, and their participation in the repair of DSBs by a-EJ in
mitochondria (86, 87).

As noted previously, a-EJ is more readily detectable in cells
that are deficient in NHE] (10, 31, 32). In mice, genetic inacti-
vation of NHE] results in an increase in the frequency of chro-
mosomal translocations with evidence of microhomologies at
many of the ligation sites, indicative of joining by MME] (12,
65). As expected, mouse cells deficient in PARP-1, CtIP, or
Ligllla exhibit a reduced overall frequency of chromosomal
translocations and less use of microhomologies in the translo-
cations that do occur (65). Furthermore, p53-null mice that are
also deficient in NHE] develop pro-B-cell lymphomas arising
as a consequence of chromosomal translocations between the
IgH and the c-myc loci with the repair junctions characterized
by insertions, deletions, and microhomology (88, 89). Together,
these results indicate that, in the mouse, the majority of trans-
locations in lymphoid cells likely occurs as a result of the joining
of DSBs generated by V(D)] recombination with DSBs gener-
ated by activation-induced cytidine deaminase and reactive
oxygen species at other chromosomal fragile zones (90) by
MME], whereas NHE] prevents tumor incidence by suppress-
ing translocation formation. Although there is compelling evi-
dence indicating that Pol 6 is an important contributor to
MME]J (11, 13, 58), there are, however, contradictory reports
whether Pol 6-dependent MME] enhances or prevents chro-
mosomal translocations (11, 13, 58, 61). As noted above, end-
to-end chromosome fusions are generated by Pol 6-dependent
MME] (11). Although this activity is normally suppressed by
protective protein complexes at telomere ends and NHE] (11),
the end-to-end fusion of chromosomes by Pol 6-dependent
MME] may occur in response to telomere shortening during
cancer development.

In contrast to mouse cells (12, 65), the majority of transloca-
tions in human cells appears to arise as a consequence of the
repair of DSBs by NHE] (91). Itis possible that differences in the
relative contributions of NHE] and A-EJ pathways to DSB
repair between mouse and human cells underlies this discrep-
ancy. For example, there is evidence that NHE] is much less
active in mouse cells (92). It is likely that the frequency of trans-
location formation versus rejoining of previously linked ends is
different for each of the a-EJ pathways and that the contribution
of an individual a-E]J pathway to translocation formation will be
determined by a combination of the tendency of that pathway
to generate translocations and the contribution of that pathway
to DSB repair. For example, even if the repair of DSBs by NHE]
results in a low frequency of translocations, the NHE] pathway
will be responsible for most of the translocations produced if it
is the predominant DSB repair pathway. In addition, it is pos-
sible that the contribution of the individual a-E]J pathways to
translocation formation may differ depending on whether the
DSBs are generated by class switch recombination, site-specific
endonucleases, or other mechanisms.
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A-EJ as a therapeutic target in cancer

The rational development of olaparib and other PARP inhib-
itors to selectively target HR-deficient breast and ovarian can-
cers in patients with an inherited predisposition for these
tumors (93-95) has stimulated efforts to design similar syn-
thetic lethal strategies for other cancers. As back-up pathways
for the major DSB repair pathways, the a-EJ] pathways are
attractive potential therapeutic targets in cancers with defects
in either HR and NHE] because inhibiting a-E]J is unlikely to
impact the growth and survival of normal tissues but should
sensitize the cancer cells that are more dependent on a-EJ path-
ways to repair DSBs generated by endogenous and/or exoge-
nous agents. In support of this model, reducing MME] by
knockdown or knockout of Pol 6 reduced the survival of both
HR- and NHE]J-deficient cells (11, 13, 58). Furthermore,
BRCA2-deficient tumor cells have higher steady-state levels of
Pol 60 (13), suggesting that MME] is up-regulated in these cells
to compensate for the HR defect, and knockdown of Pol 6
enhanced the killing of HR-deficient cells by PARP inhibitors
(13), indicating that MME] enhances the survival of HR-defi-
cient cells by repairing replication-induced DSBs. Although
MME] inhibitors are likely to enhance the efficacy of PARP
inhibitors in HR-deficient tumors, there is a more urgent need
to develop reliable biomarkers to identify HR-deficient spo-
radic tumors that are likely to respond to PARP inhibitors.
Based on initial studies (13), Pol 6 expression levels appear to be
a promising indicator of HR status.

In contrast to HR, there is less evidence linking mutation of
NHE] genes with genome instability in tumor samples. There s,
however, evidence of reduced expression of the NHE] factors,
Ku, Artemis, and LigIV, and a compensatory increase in MME]
factors, PARP1 and Ligllle, in tyrosine kinase-activated leuke-
mias, breast cancer, and neuroblastoma (14-16). Notably,
expression of either BCR-ABL1 or FLT3-ITD in nonmalignant
myeloid cell lines induces expression of ¢c-MYC that in turn
enhances expression of the LIG3 and PARPI genes by suppress-
ing expression of the microRNAs, miR-150 and miR-22 (96).
Furthermore, the extent of the change in the expression levels
of the DSB factors increases in imatinib-resistant chronic mye-
loid leukemia cells (16). An increase in the steady-state levels of
PARP1 and Ligllla was also observed in derivatives of an estro-
gen-responsive breast cell line that had acquired resistance to
either tamoxifen or an aromatase inhibitor (15).

The changes in steady-state levels of the DSB repair proteins
in the breast cancer and BCR-ABL1- expressing myeloid cell
lines correlated with changes in the relative contribution of
NHE] and MME] to the repair of a transfected plasmid sub-
strate (15, 16). As expected, incubation of these cell lines with a
PARP inhibitor and an inhibitor of DNA ligases I and III
reduced the fraction of plasmids repaired by MME] (15, 16).
The cancer cell lines with dysregulated expression of the DSB
repair proteins exhibited sensitivity to the PARP and DNA
ligase inhibitors as single agents and in combination (14-16).
Knockdown of Ligllla expression had similar effects to the
Ligl/III inhibitor suggesting that the activity of the inhibitor is
due to inhibition of LiglIla rather than Ligl (16). The synergis-
tic activity of the PARP and DNA ligase inhibitors observed in
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some cell lines (15) is difficult to reconcile with the inhibition of
two proteins in the same repair pathway. A recent study show-
ing that the DNA ligase inhibitor preferentially targets mito-
chondrial function in cancer cells (97) suggests that the synergy
may be due to effects on both mitochondrial DNA metabolism
and nuclear DNA repair.

Analysis of the expression levels of a-E] and NHE] genes in
neuroblastoma showed that high expression of PARPI, LIG3,
and LIGI and low expression of LIG4 correlated with reduced
survival and higher stage disease (14). Furthermore, elevated
expression of both LIG3 and PARPI was detected by RT-PCR in
bone marrow mononuclear cells from chronic myeloid leuke-
mia patients with imatinib-resistant and imatinib-sensitive dis-
ease (16). Notably, increased sensitivity to the combination of
PARP-1 and DNA ligase inhibitors was observed in cells with
elevated expression of both LIG3 and PARPI (16). Taken
together, these results indicate that MME] is a promising ther-
apeutic target in cancers with elevated expression of genes
encoding key MME] factors and/or reduced expression of
genes encoding NHE] factors.

Concluding comments

In contrast to the two major DSB repair pathways, HR and
NHE]J, the protein participants in and the molecular mecha-
nisms of the minor DSB pathways, known collectively as a-EJ,
are poorly defined. It had been suggested that a-EJ events did
not reflect the activity of distinct DSB repair pathways but
instead represented the action of a group of factors whose par-
ticipation was dictated by the nature of the defect in the NHE]
or HR pathway. This view was based upon the observations that
the repair of DSBs by a-E] was more evident in cells that are
deficient in either of the major DSB repair pathways and that all
of the factors initially implicated in a-EJ] had major roles in other
DNA repair pathways. The recent demonstration that the
major cellular function of Pol #is in a-EJ indicates that there are
distinct a-EJ pathways. This is further supported by emerging
evidence that the a-E] pathways contribute to DSB repair, even
when the major DSB repair pathways are active.

The role of the a-EJ pathways in the formation of large
genomic rearrangements, in particular translocations, that are
characteristic of cancer cells is an active area of investigation.
Although it is evident that the a-E] pathways as well as the
NHE] pathway are capable of contributing to this type of
genome instability, there are apparently contradictory pub-
lished findings. This may reflect differences in the utilization of
DSB repair pathways between mice and humans and between
different cell types. In addition, it is possible that the different
assays used to detect genome rearrangements may produce
different results. There is, however, compelling evidence that
human cancer cells with defects in either the HR or NHE] path-
ways are more dependent upon a-EJ pathways, in particular
MME] for DSB repair, providing a rationale for the develop-
ment of therapeutic strategies that target the MME] pathway.
Furthermore, it appears that elevated expression of MME] fac-
tors, such as PARP-1, Ligllle, and Pol 6, may serve as biomark-
ers for cancers with defects in the two major DSB repair path-
ways, thereby identifying the patient population whose disease
is likely to respond to inhibitors of MME].
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