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Abstract

Brain extraction from 3D medical images is a common pre-processing step. A variety of 

approaches exist, but they are frequently only designed to perform brain extraction from images 

without strong pathologies. Extracting the brain from images exhibiting strong pathologies, for 

example, the presence of a brain tumor or of a traumatic brain injury (TBI), is challenging. In such 

cases, tissue appearance may substantially deviate from normal tissue appearance and hence 

violates algorithmic assumptions for standard approaches to brain extraction; consequently, the 

brain may not be correctly extracted.

This paper proposes a brain extraction approach which can explicitly account for pathologies by 

jointly modeling normal tissue appearance and pathologies. Specifically, our model uses a three-

part image decomposition: (1) normal tissue appearance is captured by principal component 

analysis (PCA), (2) pathologies are captured via a total variation term, and (3) the skull and 

surrounding tissue is captured by a sparsity term. Due to its convexity, the resulting decomposition 

model allows for efficient optimization. Decomposition and image registration steps are alternated 

to allow statistical modeling of normal tissue appearance in a fixed atlas coordinate system. As a 
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beneficial side effect, the decomposition model allows for the identification of potentially 

pathological areas and the reconstruction of a quasi-normal image in atlas space.

We demonstrate the effectiveness of our approach on four datasets: the publicly available IBSR 

and LPBA40 datasets which show normal image appearance, the BRATS dataset containing 

images with brain tumors, and a dataset containing clinical TBI images. We compare the 

performance with other popular brain extraction models: ROBEX, BEaST, MASS, BET, BSE and 

a recently proposed deep learning approach. Our model performs better than these competing 

approaches on all four datasets. Specifically, our model achieves the best median (97.11) and mean 

(96.88) Dice scores over all datasets. The two best performing competitors, ROBEX and MASS, 

achieve scores of 96.23/95.62 and 96.67/94.25 respectively. Hence, our approach is an effective 

method for high quality brain extraction for a wide variety of images.
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1. Introduction

Brain extraction1 from volumetric magnetic resonance (MR) or computed tomography 

images [1] is a common pre-processing step in neuroimaging as it allows to spatially focus 

further analyses on the areas of interest. The most straightforward approach to brain 

extraction is by manual expert delineation. Unfortunately, such expert segmentations are 

time consuming and very labor intensive and therefore not suitable for large-scale imaging 

studies. Moreover, brain extraction is complicated by differences in image acquisitions and 

the presence of tumors and other pathologies that add to inter-expert segmentation 

variations.

Many methods have been proposed to replace manual delineation by automatic brain 

extraction. In this paper, we focus on and compare with the following six widely-used or 

recently published brain extraction methods, which cover a wide range of existing 

approaches:

• Brain Extraction Tool (BET): BET [2] is part of FMRIB Software Library (FSL) 

[3, 4] and is a widely used method for brain extraction. BET first finds a rough 

threshold based on the image intensity histogram, which is then used to estimate 

the center-of-gravity (COG) of the brain. Subsequently, BET extracts the brain 

boundary via a surface evolution approach, starting from a sphere centered at the 

estimated COG.

• Brain Surface Extraction (BSE): BSE [5] is part of BrainSuite [6, 7]. BSE uses a 

sequence of low-level operations to isolate and classify brain tissue within T1-

weighted MR images. Specifically, BSE uses a combination of diffusion 

filtering, edge detection and morphological operations to segment the brain. 

1We avoid the commonly used term skull stripping. We are typically interested in removing more than the skull from an image and are 
instead interested only in retaining the parts of an image corresponding to the brain.
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Brain-Suite provides a user interface which allows for human interaction. Hence 

better performance may be obtained by interactive use of BSE. However, our 

objective was to test algorithm behavior for a fixed setting across a number of 

different datasets.

• Robust Learning-based Brain Extraction System (ROBEX): ROBEX [8, 9] is 

another widely used method which uses a random forest classifier as the 

discriminative model to detect the boundary between the brain and surrounding 

tissue. It then uses an active shape model to obtain a plausible result. While a 

modification of ROBEX for images with brain tumors has been proposed [10], 

its implementation is not available. Hence we use the standard ROBEX 

implementation for all our tests.

• Deep Brain Extraction: We additionally compare against a recently proposed 

deep learning approach for brain extraction [11, 12] which uses a 3D 

convolutional neural network (CNN) trained on normal images and images with 

mild pathologies. Specifically, it is trained on the IBSR v2.02 [13], LPBA40 [14, 

15] and OASIS [16, 17] datasets. We use this model as is without additional fine-

tuning for other datasets.

• Brain Extraction Based on non-local Segmentation Technique (BEaST): BEaST 

[18, 19] is another recently proposed method, which is inspired by patch-based 

segmentation. In particular, it identifies brain patches by assessing candidate 

patches based on their sum-of-squared-difference (SSD) distance to known brain 

patches. BEaST allows using different image libraries to guide the brain 

extraction.

• Multi-Atlas Skull Stripping (MASS): MASS [20], uses multi-atlas registration 

and label fusion for brain extraction. It has shown excellent performance on 

normal (IBSR, LPBA40) and close to normal (OASIS) image datasets. One of its 

main disadvantages is its runtime. An advantage of MASS, responsible for its 

performance and robustness, is that one can easily make use of dataset-specific 

brain templates. However, this requires obtaining such brain masks via costly 

manual segmentation. For a fair comparison to all other methods, and to test the 

performance of a given algorithm across a wide variety of datasets, we select 15 

anonymized templates for MASS’s multi-atlas registration. These templates were 

obtained from various studies and are provided along with the MASS software 

package [21], as well as through CBICA’s Image Processing Portal [22].

In addition to these methods, many other approaches have been proposed. For example, 

Segonne et al. [23] proposed a hybrid approach which combines watershed segmentation 

with a deformable surface model. Watershed segmentation is used to obtain an initial 

estimate of the brain region which is then refined via a surface evolution process. 

3dSkullStrip is part of the AFNI (Analysis of Functional Neuro Images) package [24, 25]. It 

is a modified version of BET. In contrast to BET, it uses image data inside and outside the 

brain during the surface evolution to avoid segmenting the eyes and the ventricles.

2This is a different dataset than the IBSR dataset that we use in this paper.
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Even though all these brain extraction methods exist and are regularly used, a number of 

challenges for automatic brain extraction remain:

• Many methods show varying performances on different datasets due to 

differences in image acquisition (e.g., slightly different sequences or differing 

voxel sizes). Hence, a method which can reliably extract the brain from images 

acquired with a variety of different imaging protocols would be desirable.

• Most methods only work for images which appear normal or show very minor 

pathologies. Strong pathologies, however, may induce strong brain deformations 

or strong localized changes in image appearance, which can impact brain 

extraction. For example, for methods based on registration, the accuracy of brain 

extraction will depend on the accuracy of the registration, which can be severely 

affected in the presence of pathologies. Hence, a brain extraction method which 

works reliably even in the presence of pathologies (such as brain tumors or 

traumatic brain injuries) would be desirable.

Inspired by the low-rank + sparse (LRS) image registration framework proposed by Liu et 

al. [26] and our prior work on image registration in the presence of pathologies [27], we 

propose a brain extraction approach which can tolerate image pathologies (by explicitly 

modeling them) while retaining excellent brain extraction performance in the absence of 

pathologies.

The contributions of our work are as follows:

• (Robust) brain extraction: Our method can reliably extract the brain from a wide 

variety of images. We achieve state-of-the-art results on images with normal 

appearance, slight, and strong pathologies. Hence our method is a generic brain 

extraction approach.

• Pathology identification: Our method captures pathologies via a total variation 

term in the decomposition model.

• Quasi-normal estimation: Our model allows the reconstruction of a quasi-normal 

image, which has the appearance of a corresponding pathology-free or 

pathology-reduced image. This quasi-normal image also allows for accurate 

registrations to, e.g., a normal atlas.

• Extensive validation: We extensively validate our approach on four different 

datasets, two of which exhibit strong pathologies. We demonstrate that our 

method achieves state-of-the-art results on all these datasets using a single fixed 

parameter setting.

• Open source: Our approach is available as open-source software.

The remainder of the paper is organized as follows. Section 2 introduces the datasets that we 

use and discusses our proposed model, including the pre-processing, the decomposition and 

registration, and the post-processing procedures. Section 3 presents experimental results on 

3D MRI datasets demonstrating that our method consistently performs better than BET, 
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BSE, ROBEX, BEaST, MASS and the deep learning approach for all four datasets. Section 

4 concludes the paper with a discussion and an outlook on possible future work.

2. Materials and Methods

2.1. Datasets

We use the ICBM 152 non-linear atlas (2009a) [28] as our normal control atlas. ICBM 152 

is a 1×1×1 mm template with 197×233×189 voxels, obtained from T1-weighted MRIs. 

Importantly, it also includes the brain mask. As the ICBM 152 atlas image itself contains the 

skull, we can obtain a brain-only atlas simply by applying the provided brain mask.

We use five different datasets for our experiments. Specifically, we use one (OASIS, see 

below) of the datasets to build our PCA model and the remaining four to test our brain 

extraction approach.

OASIS—We use images from the Open Access Series of Imaging Studies (OASIS) [16, 17] 

to build the PCA model for our brain extraction approach. The OASIS cross-sectional MRI 

dataset consists of 416 sagittal T1-weighted MRI scans from subjects between 18 and 96 

years of age. In this data corpus, 100 of the subjects over 60 years old have been diagnosed 

with very mild to mild Alzheimer’s disease (AD). The original scans were obtained with in-

plane resolution 1 × 1 mm (256 × 256), slice thickness = 1.25 mm and slice number = 128. 

For each subject, a gain-field corrected atlas-registered image and its corresponding masked 

image in which all non-brain voxels have been assigned an intensity of zero are available. 

Each image is resampled to 1 × 1 × 1 mm isotropic voxels and is of size 176 × 208 × 176.

We evaluate our approach on four datasets, which all provide brain masks. Although in our 

study, we focus on T1-weighted images only, our model can be applied to other modalities 

as long as the PCA model is also built from data acquired by the same modality. The 

datasets we use for validation are described below.

IBSR—The Internet Brain Segmentation Repository (IBSR) [29] contains MR images from 

20 healthy subjects of age 29.1±4.8 years including their manual brain segmentations, 

provided by the Center for Morphometric Analysis at Massachusetts General Hospital. All 

coronal 3D T1-weighted spoiled gradient echo MRI scans were acquired using two different 

MR systems: ten scans (4 males and 6 females) were performed on a 1.5T Siemens 

Magnetom MR system (with in-plane resolution of 1 ×1 mm and slice thickness of 3.1 mm); 

another ten scans (6 males and 4 females) were acquired from a 1.5T General Electric Signa 

MR system (with in-plane resolution of 1 ×1 mm and slice thickness of 3 mm).

LPBA40—The LONI Probabilistic Brain Atlas (LPBA40) dataset of the Laboratory of 

Neuro Imaging (LONI) [14, 15] consists of 40 normal human brain volumes. LPBA40 

contains images of 20 males and 20 females of age 29.20 ± 6.30 years. Coronal T1-weighted 

images with slice thickness 1.5 mm were acquired using a 1.5T GE system. Images for 38 of 

the subjects have in-plane resolution of 0.86 × 0.86 mm; the images for the remaining two 

subjects have a resolution of 0.78 × 0.78 mm. A manually segmented brain mask is available 

for each image.
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BRATS—We use twenty T1-weighted image volumes of low and high grade glioma 

patients from the Brain Tumor Segmentation (BRATS 2016) dataset [30] that include cases 

with large tumors, deformations, or resection cavities. We do not use the BRATS images 

available as part of the BRATS challenge as these have already been pre-processed (i.e., 

brain-extracted and co-registered). Instead, we obtain a subset of twenty of the originally 

acquired images. The BRATS dataset is challenging as the images were acquired with 

different clinical protocols and various different scanners from multiple (n = 19) institutions 

[31]. Our subset of twenty images is from six different institutions. Furthermore, the BRATS 

images have comparatively low resolution and some of them contain as few as 25 axial 

slices (with slice thickness as large as 7mm). The in-plane resolutions vary from 0.47×0.47 

mm to 0.94×0.94 mm with image grid sizes between 256×256 and 512×512 pixels. We 

manually segment the brain in these images to obtain an accurate brain mask for validation.

TBI—Finally, we use our own Traumatic Brain Injury (TBI) dataset which contains 8 TBI 

images as well as manual brain segmentations. These are standard MPRAGE [32] T1-

weighted images with no contrast enhancement. They have been resampled to 1×1×1 mm 

isotropic voxel size with image size between 192 × 228 × 170 and 256 × 256 ×176. 

Segmentations are available for healthy brain, hemorrhage, edema and necrosis. To generate 

the brain masks, we always use the union of healthy tissue and necrosis. We also include 

hemorrhage and edema if they are contained within healthy brain tissue.

Fig. 1 shows example images from each dataset to illustrate image variability. IBSR and 

LPBA40 contain images from normal subjects and include large portions of the neck; 

BRATS has very low out-of-plane resolution; and the TBI dataset contains large pathologies 

and abnormal skulls.

2.2. Dataset processing

2.2.1. PCA model—We randomly pick 100 images and their brain masks to build our 

PCA model of the brain. Specifically, we register the brain-masked images to the brain-

masked ICBM atlas using a B-spline registration. We use NiftyReg [33] to perform the B-

spline registration with local normalized cross-correlation (LNCC) as similarity measure. To 

normalize image intensities, we apply an affine transform to the image intensities of the 

warped images so that the 1st percentile is mapped to 0.01 and 99th percentile is mapped to 

0.99 and then clamp the image intensities to be within [0; 1]. We then perform PCA on the 

now registered and normalized images and retain the top 50 PCA modes, which preserve 

63% of the variance, for our statistical appearance model. This is similar to an active 

appearance model [34].

2.2.2. IBSR refined segmentation—For IBSR, segmentations of the brain images into 

white matter, gray matter and cerebrospinal fluid (CSF) are provided. While, in principle, 

the union of the segmentations of white matter, gray matter and CSF should represent the 

desired brain mask, this is not exactly the case (see Fig. 2). To alleviate this issue for each 

segmentation, we use morphological closing to fill in remaining gaps and holes inside the 

brain mask and, in particular, to disconnect the background inside the brain mask from the 

surrounding image background. The structuring element for closing is a voxel and its 18 
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neighborhood3. We then find the connected component for the background and consider its 

complement the brain mask. Fig. 2 shows the pre-processing result after these refinement 

steps, compared to the original IBSR segmentation (i.e., the union of white matter, gray 

matter, and the CSF).

2.3. Review of related models

As mentioned previously, brain extraction is challenging because it requires the 

identification of all non-brain tissue which can be highly variable (cf. Fig. 1). Our brain 

extraction approach is based on image alignment to an atlas space where a brain mask is 

available. However, this requires a reliable registration approach which can tolerate variable 

image appearance as well as pathologies (i.e., brain tumors, traumatic brain injuries, or 

general head injuries resulting in skull deformations and fractures). In both cases, no one-to-

one mapping between image and atlas space may be available and a direct application of 

standard image similarity measures for image registration may be inappropriate.

A variety of approaches have been proposed to address the registration of pathological 

images. For example, cost function masking [35] and geometric metamorphosis [36] exclude 

the pathological regions when measuring image similarities. However, these approaches 

require prior segmentations of the pathologies, which can be non-trivial and/or labor 

intensive. A conceptually different approach is to learn the normal image appearance from 

population data and to estimate a quasi-normal image from a pathological image. Then, the 

quasi-normal image can be used for registration [37]. The low-rank + sparse (LRS) image 

registration framework, proposed by Liu et al. [26], follows this idea by iteratively 

registering the low-rank components from the input images to the atlas and then re-computes 

the low-rank components. After convergence, the image is well-aligned with the atlas.

Our proposed brain extraction model builds upon our previous PCA-based approach for 

pathological image registration [27] which, in turn, builds upon and removes many 

shortcomings of the low-rank + sparse approach of Liu et al. [26]. We therefore briefly 

review the low-rank + sparse technique in Sec. 2.3.1 and the PCA approach for pathological 

image registration in Sec. 2.3.2. We discuss our proposed model for brain extraction in Sec. 

2.4.

2.3.1. Low-Rank + Sparse (LRS)—An LRS decomposition aims at minimizing [38]

E(L, S) = rank(L) + λ S 0 s . t . D = L + S . (1)

I.e., the goal is to find an additive decomposition of a data matrix D = L + S such that L is 

low-rank and S is sparse. Here, ‖S‖0 denotes the number of non-zero elements in S and λ > 0 

weighs the contribution of the sparse part, S, in relation to the low-rank part L. Neither rank 

nor sparsity are convex functions. Hence, to simplify the solution of this optimization 

problem it is relaxed: the rank is replaced by the nuclear norm and the sparsity term is 

replaced by the one-norm. As both of these norms are convex and D = L + S is a linear 

constraint one obtains the convex approximation to LRS decomposition by minimizing the 

energy
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E(L, S) = L ∗ + λ S 1, s . t . D = L + S, (2)

where ‖ · ‖* is the nuclear norm (i.e., a convex approximation for the matrix rank). In 

imaging applications, D contains all the (vectorized) images: each image is represented as a 

column of D. The low-rank term captures common information across columns. The sparse 

term, on the other hand, captures uncommon/unusual information. As Eq. (2) is convex, 

minimization results in a global minimum.

In practice, applying the LRS model requires forming the matrix D from all the images. D is 

of size m × n, where m is the number of voxels, and n is the number of images. For 3D 

images, m ≫ n (typically). Assuming all images are spatially well-aligned, L captures the 

quasi-normal appearance of the images whereas S contains pathologies which are not shared 

across the images. Of course, in practice, the objective is image alignment and hence the 

images in D cannot be assumed to be aligned a-priori. Hence, Liu et al. [26] alternate LRS 

decomposition steps with image registration steps. Here the registrations are between all the 

low-rank images (which are assumed to be approximately pathology-free) and an atlas 

image. This approach is effective in practice, but can be computationally costly, may require 

large amounts of memory, and has the tendency to lose fine image detail in the quasi-normal 

image reconstructions, L. In detail, the matrix D has a large number of rows for typical 3D 

images, hence it can be costly to store. Furthermore, optimizing the LRS decomposition 

involves a singular value decomposition (SVD) at each iteration with a complexity of 

𝒪(min mn2, m2n ) [39] for an m × n matrix. While large datasets are beneficial to capturing 

data variation, the quadratic complexity renders LRS computationally challenging in these 

situations.

However, it is possible to overcome many of these shortcomings while staying close to the 

initial motivation of the original LRS approach. The following Section 2.3.2 discusses how 

this can be accomplished.

2.3.2. Joint PCA-TV model—To avoid the memory and computational issues of the low-

rank + sparse decomposition discussed above, we previously proposed a joint PCA/Image-

Reconstruction model [27] for improved and more efficient registration of images with 

pathologies. In this model, we have a collection of normal images and register all the normal 

images to the atlas once, using a standard image similarity measure. These normal images 

do not need to be re-registered during the iterative approach. We mimic the low-rank part of 

the LRS by a PCA decomposition of the atlas-aligned normal images from which we obtain 

the PCA basis and the mean image. Let us consider the case when we are now given a single 

pathological image I. Let Î denote the pathological image after subtracting the mean image 

M and B the PCA basis matrix. L and T are images of the same size as I4. Specifically, we 

minimize

4Images are vectorized for computational purposes, but the spatial gradient ∇ denotes the gradient in the spatial domain.
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E(T , L, α) = 1
2 L − Bα 2

2 + γ ∇T 2, 1, s . t . I = L + T (3)

where ∇T 2, 1 = ∑i ∇T i 2 and I denotes spatial location. This model is similar to the 

Rudin-Osher-Fatemi (ROF) image denoising model [40]. It results in a total variation (TV) 

term, T, which captures the parts of Î that are (i) relatively large, (ii) spatially contiguous, 

and (iii) cannot be explained by the PCA basis, e.g., pathological regions. The quasi-low-

rank part L remains close to the PCA space but retains fine image detail. The quasi-normal 

image L can then be reconstructed as L = M + L. We refer to this model as our joint PCA-TV 

model.

As in the LRS approach, we can register the quasi-normal image L to atlas space and 

alternate decomposition and registration steps. However, in contrast to the LRS model, the 

PCA-TV model registers only one image (L) in each registration step and consequently 

requires less time and memory to compute. Furthermore, the reconstructed quasi-normal 

image, L, retains fine image detail as pathologies are captured via the total variation term in 

the PCA-TV model.

2.4. Proposed brain extraction approach

The following sections describe how our proposed brain extraction approach builds upon the 

principles of the PCA-TV model (Section 2.4.1), and discusses image pre-processing 

(Section 2.4.2), the overall registration framework (Section 2.4.3), and post-processing steps 

(Section 2.4.4).

2.4.1. Joint PCA-Sparse-TV model—The PCA-TV model captures the pathological 

information well, but it does not model non-brain regions (such as the skull) appropriately. 

The skull is, for example, usually a thin, shell-shape structure and other non-brain tissue 

may be irregularly shaped with various intensities. The only commonality is that all these 

structures surround the brain. Specifically, if a test image is aligned to the atlas well, these 

non-brain tissues should all be located outside the atlas’ brain mask. Hence, we reject these 

non-brain regions via a spatially distributed sparse term. We penalize sparsity heavily inside 

the brain and relatively little on the outside of the brain. This has the effect that it is very 

cheap to assign voxels outside the brain to the sparse term; hence, these are implicitly 

declared as brain outliers. Of course, if we would already have a reliable brain mask we 

would not need to go through any modeling. Instead, we assume that our initial affine 

registration provides a good initial alignment of the image, but that it will be inaccurate at 

the boundaries. We therefore add a constant penalty close to the boundary of the atlas brain 

mask. Specifically, we create two masks: a two-voxel-eroded brain mask, which we are 

confident is within the brain and a one-voxel-dilated brain mask, which we are confident 

includes the entire brain. We then obtain the following model:
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E(S, T , L, α) = 1
2 L − Bα 2

2 + γ ∇T 2, 1 + Λ ⊙ S 1, s . t . I = L + S + T (4)

where Λ = Λ(x) ≥ 0 is a spatially varying weight

Λ(x) =

∞, x ∈ Eroded Mask (inside)
λ, x ∈ Dilated Mask and

x ∉ Eroded Mask (at boundary)
0, x ∉ Dilated Mask (outside)

(5)

with x denoting the spatial location. Further, in Eq. (4), ⊙ indicates an element-wise product 

and γ ≥ 0 weighs the total variation term.

We refer to this model as our joint PCA-Sparse-TV model. It decomposes the image into 

three parts. Similar to the PCA-TV model, the quasi-low-rank part L remains close to the 

PCA space and the TV term, T, captures pathological regions. Here, the PCA basis is 

generated from normal images that have been already brain-extracted. Therefore L only 

contains the brain tissue. Different from the previous model, we add a spatially distributed 

sparse term, S, which captures tissue outside the brain, e.g., the skull. In effect, since Λ is 

very large inside the eroded mask, none of the image inside the eroded mask will be 

assigned to the sparse part. Conversely, all of the image outside the dilated mask will be 

assigned to the sparse part. We then integrate this PCA-Sparse-TV model into the low-rank 

registration framework. This includes three parts: pre-processing, iterative registration and 

decomposition, and post-processing as we will discuss in the following.

2.4.2. Pre-processing—Fig. 3 shows a flowchart of our pre-processing approach as 

discussed in the following paragraphs.

Intensity normalization: Given a test image from which we want to extract the brain, we 

first affinely transform the image intensities to standardize the intensity range to [0, 1000]. 

Note that our PCA model of section 2.2.1 is build based on images with intensities 

standardized to [0, 1]. The different standardization is necessary here as the bias field 

correction algorithm removes negative and small intensity values (< 1) followed by a log 

transform of the intensities. Specifically, we first compute the 1st and the 99th percentile of 

the voxel intensities. We then affinely transform the image intensities of the entire image 

such that the intensity of the 1st percentile is mapped to 100 and of the 99th percentile to 

900. As this may result in intensities smaller than zero or larger than 1000 for the extreme 

ends of the intensity distribution, we clamp the intensities to be within [0, 1000].

Atlas registration: Next, we first align the intensity-normalized input image to the non 

brain-extracted atlas. Then, we affinely register the result from the first step to the brain-

extracted atlas, but this time using a one-voxel-dilated brain mask in atlas space; this step 

has the effect of ignoring parts of the image which are not close to the brain in the 

Han et al. Page 10

Neuroimage. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



registration and it gives us a better alignment in the brain region. For both steps we use 

reg_aladin of NiftyReg [41] disabling symmetric registration ( -noSym). The first 

registration initializes the transformation using the center of gravity (CoG) of the image. 

Note that the differing intensity range of the atlas and the image is immaterial in this step as 

the registration uses local normalized cross-correlation as the similarity measure.

Bias field correction: Next, we use N4ITK [42], a variant of the popular non-parametric 

non-uniform intensity normalization (N3) algorithm [43], to perform bias field correction. 

As the image has been affinely aligned to the atlas in the previous step, we use our two-

voxel-eroded brain mask as the region for bias field estimation. Specifically, we use the 

N4BiasFieldCorrection function in SimpleITK [44], with its default settings.

Histogram matching: The final step of the pre-processing is histogram matching. We match 

the histograms of the bias corrected image with the histogram of the mean image of the 

population data only within the two-voxel-eroded brain mask. This histogram matched 

image is then the starting point for our brain extraction algorithm and it is now in an 

intensity range comparable to the PCA model.

2.4.3. Registration framework—Similar to the PCA-TV model, we alternate between 

image decomposition steps using the PCA-Sparse-TV model and registration to the brain-
extracted atlas. We use a total of six iterations in our framework. In the first iteration (k = 1), 

the images are in the original space. We decompose the input image I1 = I, into the quasi-

normal (L1 = L1 + M), sparse (S1), and total variation (T1) images by minimizing the energy 

from Eq. (4). We then obtain a pathology-free or pathology-reduced image, R1, by adding 

the sparse and the quasi-normal images of the decomposition: R1 = L1 + S1.

For the next two iterations (k = {2, 3), we first find the affine transform Φk
−1 by affinely 

registering the pathology-reduced images from the previous iteration, Rk−1 (i.e., Rk−1 = Lk−1 

+ Sk−1), to the brain-extracted atlas. We use the one-voxel-dilated brain mask for cost-

function masking which allows the registration to focus only on the brain tissue. This is 

important as the first few registrations will not be very precise as they are only based on an 

affine deformation model. The main objective is to reduce the pathology within the brain. 

Only after these initial steps, when a good initial alignment has already been obtained, we 

use the quasi-normal image (excluding the non-brain regions) to perform the registration. 

We then apply the transform Φk
−1 to transform the previous input images to atlas space and 

obtain new input images, Ik, (i.e., Ik = Ik − 1 ∘ Φk
−1. We minimize Eq. (4) again to obtain new 

decomposition results (Lk, Sk, Tk). These decomposition/affine-registration steps are 

repeated two times, which is empirically determined to be sufficient for convergence. These 

affine registration steps result in a substantially improved alignment in comparison to the 

initial affine registration by itself.

The last three iterations (k = {4, 5, 6}) repeat the same process, but are different in the 

following aspects: (i) we now use a B-spline registration instead of the affine registration; 

(ii) we use the pathology-reduced image and cost function masking only for the first B-
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spline registration step, as we did in the previous affine steps. For the remaining two steps, 

we use the quasi-normal images Lk:k= {5,6} as the moving images and we do not use the 

mask during the registrations. The use of the mask is no longer necessary as registrations are 

now performed using the quasi-normal image; (iii) we use the non-greedy registration 

strategy of the original low-rank + sparse framework [45], in which we deform the quasi-

normal image back to the image space of the third iteration (after the affine steps) in order to 

avoid accumulating deformation errors.

These steps further refine the alignment, in particular, close to the boundary of the brain 

mask. After the last iteration, the image is well-aligned to the atlas and we have all the 

transforms from the original image space to atlas space. As a side effect, the algorithm also 

results in a quasi-normal reconstruction of the image, L6, an estimate of the pathology, T6, 

and an image of the non-brain tissue S6, all in atlas space.

2.4.4. Post-processing—Post-processing consists of applying to the atlas mask the 

inverse transforms of the affine registrations in the pre-processing step and the inverse 

transforms of the registrations generated in the framework described in section 2.4.3. The 

warped-back atlas mask is the brain mask for the original image. To extract the brain in the 

original image space, we simply apply the brain mask on the original input image. All 

subsequent validations are performed in the original image space.

Algorithm 1 summarizes these steps as pseudo-code.

3. Experimental results

The following experiments are for brain-extraction from T1-weighted MR images. However, 

our method can be easily adapted to images from other modalities, as long as the atlas image 

and the images from which the PCA basis is computed are from the same modality.

3.1. Experimental setup

We evaluate our method on all four evaluation datasets. For comparison, we also assess the 

performance of BET, BSE, ROBEX, BEaST, MASS and CNN on these datasets. We use 

BET v2.1 as part of FSL 5.0, BSE v.17a from BrainSuite, ROBEX v1.2, BEaST (mincbeast) 

v1.90.00, and MASS v1.1.0. We solve our PCA model via a primaldual hybrid gradient 

method [46]. In addition, we implement the decomposition on the GPU and run it on an 

NVIDIA Titan X GPU [47] [48].

3.2. Evaluation Measures

We evaluate the brain extraction approaches using the measures listed below.

Dice coefficient—Given two sets X and Y (containing the spatial voxel positions of a 

segmentation), the Dice coefficient D(X, Y) is defined as

D(X, Y) = 2 X ∩ Y
X + Y , (6)
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where X ∩ Y denotes set intersection between X and Y and |X| denotes the cardinality of set 

X.

Average, maximum and 95% surface distance—We also measure the symmetric 

surface distances between the automatic brain segmentation and the gold-standard brain 

segmentation. This is defined as follows: the distance of a point x to a set of points (or set of 

points of a triangulated surface SA) is defined as

d(x, SA) = min
y ∈ SA

d(x, y), (7)

where d(x, y) is the Euclidean distance between the point x and y. The average symmetric 

surface distances between two surfaces SA and SB is then defined as

ASD(SA, SB) = 1
SA + SB

× ( ∑
x ∈ SA

d(x, SB) + ∑
y ∈ SB

d(y, SA)), (8)

where |SA| denotes the cardinality of SA [49] (i.e., number of elements if represented as a set 

or surface area if represented in the continuum). To assess behavior at the extremes, we also 

report the maximum symmetric surface distance as well as the 95th percentile symmetric 

surface distance, which is less prone to outliers. These are defined in analogy, i.e., by 

computing all distances from surface SA to SB and vice versa followed by the computation 

of the maximum and the 95th percentile of these distances.

Sensitivity and specificity—We also measure sensitivity, i.e., true positive (TP) rate and 

specificity, i.e., true negative (TN) rate. Here TP denotes the brain voxels which are correctly 

labeled as brain; TN denotes the non-brain voxels correctly labeled as such. Furthermore, 

the false negatives (FN) are the brain voxels incorrectly labeled as non-brain and the false 

positives (FP) are the non-brain voxels which are incorrectly labeled as brain. Let V be the 

set of all voxels of an image, and X and Y the automatic brain segmentation and gold-

standard brain segmentation, respectively. The sensitivity and specificity are then defined as 

follows [50]:

sensitivity = TP
TP + FN = X ∩ Y

Y (9)

specificity = TN
TN + FP = V − X ∪ Y

V − Y (10)

3.3. Datasets of normal images: IBSR/LPBA40

IBSR results—Fig. 4 shows the box-plots summarizing the results for the IBSR dataset. 

Overall, ROBEX, BEaST*, BSE, BET and our model perform well on this dataset, with a 
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median Dice coefficient above 0.95. BEaST does not work well when applied directly on the 

IBSR images. This is due to failures with the initial spatial normalization (in 5 cases the 

computations themselves fail and in 10 cases the results are poor). Therefore, in our 

experiment, we first applied the same affine registration to atlas space as in the pre-

processing step for our PCA model for all images. This affine transformation corresponds to 

a composition of the two affine transformations in Fig. 3. BEaST is then applied to the 

affinely aligned images. We use the same strategy for BRATS. We refer to the resulting 

approach as BEaST*. BEaST* performs well on most cases with high Dice scores and low 

surface distances. MASS works well on some cases, but performs poorly on many cases. 

CNN does not perform satisfactorily, with low Dice scores, low sensitivity, large distance 

errors, and overall high variance. Our PCA model has similar performance to BEaST*, but 

does not result in extreme outliers and hence results in higher mean Dice scores than 

BEaST*. Both methods outperform all others with respect to Dice scores (median close to 

0.97) and distance measures in most cases. BSE also works well on most cases, but it shows 

larger variability and exhibits two outliers which represent failure cases. ROBEX and BET 

show the highest sensitivity, but reduced specificity. Conversely, our PCA model, BEaST*, 

BSE, and CNN have high specificity but reduced sensitivity (the CNN model dramatically 

so).

Algorithm 1

Algorithm for Brain Extraction

Input: Image I, Brain-Extracted Atlas A, Atlas Mask AM

Output: Brain-Extracted Image IB and mask IM

1
I1, Φ1

−1 = pre‐processing(I);

2 for k ← 1 to 6 do

3  if k ≥ 2 then

4  if k ≤ 3 then

5
 find Φk

−1, s.t., Rk − 1 ∘ Φk
−1 = A and Φk

−1is affine;

6  else if k == 4 then

7
 find Φk

−1, s.t., Rk − 1 ∘ Φk
−1 = A and Φk

−1is B-spline;

8  else

9
 find Φk

−1, s.t., (Lk − 1 ∘ Φk − 1) ∘ Φk
−1 = A and Φk

−1is B-spline;

10  end

11
  Ik = Ik − 1 ∘ Φk

−1;

12  Decompose Ik, s.t., Ik = Lk + Sk + Tk;

13  if k ≤ 3 then

14  Rk = Lk + Sk;

15  end
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16 end

17
IB, IM = post‐processing(AM, Φk

−1 )

Table 2 (top) shows medians, means and standard deviations for the test results on this 

dataset. Our PCA model achieves the highest median and mean Dice overlap scores (both at 

0.97) with the smallest standard deviation. BEaST* also shows high median Dice scores, but 

results in reduces mean scores due to the presence of outliers. ROBEX and BET show 

slightly reduced Dice overlap measures (mean and median around 0.95). BSE also shows 

slightly reduced median Dice scores, but greatly reduced mean scores. MASS show reduced 

median Dice scores. CNN shows the lowest performance. Our PCA model also performs 

best for the surface distance measures; it has the lowest mean and median surfaces distances. 

Overall our PCA model performs best.

In addition, we perform a one-tailed paired Wilcoxon signed-rank test (to safeguard against 

deviations from normality) to compare results between methods. We test the null hypothesis 

that the paired differences for the results of our PCA model and of the compared method 

come from a distribution with zero median, against the alternative that the median of the 

paired differences is nonzero.6. Table 1 (top) shows the corresponding results. We apply the 

Benjamini-Hochberg procedure [51] for all the tests, in order to reduce the false discovery 

rate for multiple comparisons. We select an overall false discovery rate of 0.05 which results 

in an effective significance level of α ≈ 0.0351. Our model outperforms all other methods 

on Dice and surface distances except for BEaST* which is significant only in Dice and 

average surface distance. In addition, our approach performs better than MASS, BSE and 

CNN on sensitivity and better than ROBEX, BEaST*, MASS, and BET on specificity.

LPBA40 results—Fig. 5 shows the box-plots summa-rizing the validation results for the 

LPBA40 dataset. All seven methods perform well. ROBEX, BEaST, BET and BSE all have 

a median Dice score between 0.96 and 0.97. MASS has a median Dice score slightly above 

0.97. Our PCA model obtains the highest median Dice score (0.974). All methods except for 

the CNN approach have a median average surface distance smaller than 1 mm. Table 2 

(second top) shows the medians, means and standard deviations for all validation measures 

for this dataset. Again, all methods have satisfactory median, mean Dice scores and surface 

distances with low variances. Compared with other methods, the PCA model achieves the 

best results.

Table 1 (second top) shows the one-sided paired Wilcoxon signed-rank test results. Again 

we use the Benjamini-Hochberg procedure, resulting in a significance level α ≈ 0.0351. All 

methods perform well on this dataset, but our PCA approach still shows statistically 

significant improvement. We outperform other methods on Dice and all surface distances 

with statistical significance except for BEaST on maximum surface distance and for MASS 

6We perform a one-tailed test, thus we test for greater than zero for the Dice overlap scores, sensitivity and specificity, and less than 
zero for the surface distances.
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on 95% surface distance. We perform better than all other methods except BET on 

sensitivity and better than BET and ROBEX on specificity.

Fig. 9 (left) visualizes the average brain mask errors for IBSR and LPBA40. All images are 

first affinely registered to the atlas. Then we transform the gold-standard expert 

segmentations as well as the automatically obtained brain masks of the different methods to 

atlas space. We compare the segmentations by counting the average over- and under-

segmentation errors over all cases at each voxel. This results in a visualization for areas of 

likely mis-segmentation. Our PCA model, ROBEX, BEaST (BEaST*) and BET perform 

well on these two datasets. Compareed to our model, ROBEX, BEaST (BEaST*) and BET 

show larger localized errors, e.g., at the boundary of the parietal lobe, the occipital lobe and 

the cerebellum. While MASS, BSE and CNN perform well on the LPBA40 dataset, they 

perform poorly on the IBSR dataset. This is in particular the case for the CNN approach.

3.4. Datasets with strong pathologies: BRATS/TBI

BRATS results—Fig. 6 shows the box-plots for the validation measures for the BRATS 

dataset. BSE and CNN, using their default settings, do not work well on the BRATS dataset. 

This may be because of the data quality of the BRATS data. Many of the BRATS images 

have relatively low out-of-plane resolutions. BSE results may be improved by a better 

parameter setting. However, as our goal is to evaluate all methods with the same parameter 

setting across all datasets, we do not explore dataset specific parameter tuning. BEaST also 

fails on the original BRATS images due to the spatial normalization. As for the IBSR 

dataset, we therefore use BEaST*, our adaptation of BEaST using the affine transformation 

of our PCA model. BET shows good performance, but suffers from a few outliers. ROBEX 

and BEaST* work generally well, with a median Dice score around 0.95 and an average 

distance error of 1.3 mm. MASS also works well on most cases. However, as for IBSR and 

LPBA40, our PCA model performs generally the best with a median Dice score 0.96 and a 1 

mm average distance error. The PCA model results also show lower variance, as shown in 

table 2 (second bottom), underlining the very consistent behavior of our approach.

Table 1 shows (via a one-sided paired Wilcoxon signed-rank test with a correction for 

multiple comparisons using a false discovery rate of 0.05) that our model has statistically 

significantly better performance than ROBEX, BEaST*, BET, BSE, CNN on most measures. 

The improvement over MASS, however, is not statistically significant.

TBI results—Fig. 7 shows the box-plots for the results on our TBI dataset. Our PCA model 

still outperforms all other methods. Our method achieves the largest Dice scores, and the 

lowest surface distances among all methods with best mean and lowest variance as shown in 

table 2 (bottom). Table 1 shows the one-sided paired Wilcoxon signed-rank test results with 

multiple comparisons correction with a false discovery rate of 0.05. Our model performs 

significantly better than ROBEX, BEaST, BET, BSE and CNN on most measures. The 

improvement over MASS is only statistically significant on Dice and 95% surface distance.

Finally, Fig. 9 (right) shows the average segmentation errors on the BRATS and TBI 

datasets: our PCA method shows fewer errors than most other methods in these two 

abnormal datasets. MASS also shows few errors, while ROBEX, BEaST (BEaST*) and BET 
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exhibit slightly larger errors at the boundary of the brain. CNN and BSE particularly show 

large errors for the BRATS dataset presumably again due to the coarse resolution of the 

BRATS data.

In addition to extracting the brain from pathological datasets, our method also allows for the 

estimation of a corresponding quasi-normal image in atlas space, although this is not the 

main goal of this paper. Fig.8 shows an example of the reconstructed quasi-normal image 

(L) for an image of the BRATS dataset, as well as an estimation of the pathology (pathology 

image T and non-brain image S). Compared to the original image, the pathology shown in 

the quasi-normal image has been greatly reduced. Hence this image can be used for the 

registration with a normal image or a normal atlas. This has been shown to improve 

registration accuracy for the registration of pathological images [27]. Furthermore, an 

estimate of the pathology (here a tumor) is also obtained which may be useful for further 

analysis. Note that in this example image the total variation term captures more than just the 

tumor. This may be due to inconsistencies in the image appearance between the normal 

images (obtained from OASIS data) and the test dataset. As our goal is atlas alignment 

rather than quasi-normal image reconstruction or pathology segmentation, such a 

decomposition is acceptable, although we could improve this by tuning the parameters or 

applying regularization steps as in [27].

3.5. Runtime and memory consumption

Decomposition is implemented on the GPU. Each decomposition takes between 3 to 5 

minutes. Currently, the registration steps are the most time-consuming parts of the overall 

algorithm. We use NiftyReg on the CPU for registrations. Each affine registration step 

takes less than 3 minutes and the B-spline step takes 5 minutes. However, in the current 

version of NiftyReg a B-spline registration can take up to 15 minutes when cost function 

masking is used. Overall our brain extraction approach takes around 1 hour to 1.5 hours for 

each case, including the pre-processing step.

Storing the PCA basis requires the most memory. Each 197×232×189 3D image (stored as 

double) consumes about 66MB of memory. Hence it requires less than 7 GB to store the 100 

PCA basis images, in addition to the atlases and masks. As our model only uses 50 PCA 

bases, stored in B, and requires two variable copies during runtime, our overall algorithm 

requires less than 7 GB of memory and hence can easily be run on modern GPUs.

4. Discussion

We presented a PCA-based model specifically designed for brain extraction from 

pathological images. The model decomposes an image into three parts. Non-brain tissue 

outside of the brain is captured by a sparse term, normal brain tissue is reconstructed as a 

quasi-normal image close to a normal PCA space, and brain pathologies are captured by a 

total-variation term. The quasi-normal image allows for registration to an atlas space, which 

in turn allows registering the original image to atlas space and hence to perform brain 

extraction. Although our approach is designed for reliable brain extraction from strongly 

pathological images, it also performs well for brain extraction from normal images, or from 

images with subtle pathologies.
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This is in contrast to most of the existing methods, which assume normal images or only 

slight pathologies. These algorithms are either not designed for pathological data (BET, 

BSE, BEaST) or use normal data for training (e.g., ROBEX and CNN). Consequently, as we 

have demonstrated, these methods may work suboptimally or occasionally fail when 

presented with pathological data. While our PCA model is built on OASIS data which 

contains abnormal images (from patients with Alzheimer’s disease), OASIS data does not 

exhibit strong pathologies as, for example, seen in the BRATS and the TBI datasets. 

However, as our algorithm is specifically modeling pathologies on top of a statistical model 

of normal tissue appearance, it can tolerate pathological data better and, in particular, does 

not require pathology-specific training.

In fact, one of the main advantages of our method is that we can use a fixed set of 

parameters (without additional tuning or dataset-specific brain templates) across a wide 

variety of datasets. This can, for example, be beneficial for small-scale studies, where 

obtaining dataset-specific templates may not be warranted, or for more clinically oriented 

studies, where image appearance may be less controlled. We validated our brain extraction 

method using four different datasets (two of them with strong pathologies: brain tumors and 

traumatic brain injuries). On all four datasets our approach either performs best or is among 

the best methods. Hence, our approach can achieve good brain extraction results on a variety 

of different datasets.

There are a number of ways in which our method could be improved. For example, our 

decomposition approach is a compromise between model realism and model simplicity to 

allow for efficient computational solutions. However, it may be interesting to explore more 

realistic modeling assumptions to improve its quality. While the total variation term 

succeeds at capturing the vast majority of large tumor masses and would likely work well for 

capturing volumes of resected tissue, the texture of pathological regions will not be 

appropriately captured and will remain in the quasi-normal image. To obtain a more faithful 

quasi-normal image reconstruction would require more sophisticated modeling of the 

pathology. A possible option could be to train a form of auto-encoder (i.e., a non-linear 

generalization of PCA) to remove the pathology as in our prior work [37]. A natural 

approach could also be to perform this in the setting of a general adversarial network [52] 

(GAN) to truly produce normal-looking quasi-normal images. As tumor images, for 

example, frequently exhibit mass effects, training and formulating such a model could be 

highly interesting as one could attempt to model the expected mass effect as part of the GAN 

architecture.

The way we integrate our PCA model into the decomposition could also be improved. 

Specifically, for computational simplicity we only use the eigenspace created by a chosen 

number of PCA modes, but we do not use the strength of these eigenmodes. This is a simple, 

yet reasonable strategy, to form a low-dimensional subspace capturing normal tissue 

appearance as long as a pathology remains reasonably orthogonal to this subspace and hence 

would get assigned to the total variation part of the decomposition.

We effectively constructed a form of robust PCA decomposition, which prefers outliers that 

jointly form regions of low total variation. Instead of modeling the decomposition in this 
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way, it could be interesting to explore an LRS model which uses a partially-precomputed L 
matrix and gets adapted for a given single image. Such a strategy may allow more efficient 

computations of the LRS decomposition, but would require keeping the entire training 

dataset in memory (instead of only a basis of reduced dimension). Such an approach could 

likely also be extended to a form of low-rank-total variation decomposition if desired.

Regarding our PCA decomposition, it would be natural to use a reconstruction that makes 

use of a form of Mahalanobis distance [53]. This would then emphasize the eigendirections 

that explain most of the variance in the training data. Note, however, that our model is 

relatively insensitive to the number of chosen PCA modes. In fact, while different numbers 

of chosen PCA modes may affect how well the quasi-normal image is reconstructed, the 

number of PCA modes has only slight effects on the brain extraction results.

Tumors or general pathologies may also affect some of the pre-processing steps. For 

example, we perform histogram matching over the entire initial brain mask which includes 

the pathology. In practice, we visually assessed that such a histogram matching strategy 

produced reasonable intensity normalizations. However, this step could be improved, for 

example, by coupling it or alternating it with the decomposition in such a way that regions 

that likely correspond to pathologies are excluded from the histogram computations for 

histogram matching.

While our model’s simplicity allowed it to work well across a wide variety of datasets, this 

generality likely implies suboptimality. For example, a likely reason why the CNN approach 

performs poorly on some of the datasets is because these datasets do not correspond well to 

the data the CNN was trained on. Dataset-specific fine-tuning of the model would likely help 

improve the CNN performance. Similarly, approaches, including our own, relying on some 

form of registration and a model of what a well-extracted brain looks like would likely also 

benefit from a dataset-specific atlas (including a dataset-specific PCA basis in our case) or 

dataset-specific registration templates. Such dataset-specific templates can, for example, 

easily be used within MASS and improve performance slightly. Similarly, we observed that 

the performance for BEaST can be improved if we use dataset-specific libraries. In practice, 

large-scale studies may warrant the additional effort of obtaining dataset-specific manually 

segmented brain masks for training. However, in many cases such manual segmentation may 

be too labor-intensive. In this latter case our proposed approach is particularly attractive as it 

is only moderately affected by differing image appearances and works well with a generic 

model for brain extraction.

Runtime of the algorithm is currently still in the order of an hour. It could be substantially 

reduced by using a faster registration method. For example, it may be possible to use one of 

the recently proposed deep learning approaches for fast registration [54, 55]. Furthermore, to 

speed-up the decompositions one could explore numerical algorithms with faster 

convergence or reformulations of the decomposition itself, as discussed above.

Exploring formulations for different image sequences or modalities (or combination of 

modalities) would be interesting future work as well. It would also be interesting to explore 

if the generated quasi-normal image and the identified pathology could be used to help 
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assess longitudinal image changes, for example for comparing the chronic and the acute 

phases of TBI.

Our software is freely available as open source code at https://github.com/uncbiag/pstrip.
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Appendix A. NiftyReg settings

This section introduces the settings for NiftyReg used in this paper. We mainly use the 

affine registration reg_aladin and the B-spline registration reg_f3d.

Affine Registration

For affine registration, we use reg_aladin in NiftyReg. The options for affine registration 

are -ref, -flo, -aff, -res, which stand for reference image, floating image, affine 

transform output, warped result image, respectively. If the symmetric version is disabled, we 

add ” -noSym”. If center of gravity is used for the initial transformation, we add ” -cog”.

B-spline Registration

For B-spline registration, we use reg_f3d in NiftyReg. In addition to the options as shown 

in affine (except for reg_f3d we use -cpp for output transform), we also use options -sx 

10, –lncc 40, -pad 0, which include local normalized cross-correlation with standard 

deviation of the Gaussian kernel of 40, grid spacing of 10 mm along all axes, and padding 0.

Appendix B. Methods settings

This section introduces the settings that are used for all methods.

PCA

We use λ = 0.1 for the sparse penalty and γ = 0.5 for the total variation penalty.

ROBEX/CNN

ROBEX and CNN do not require parameter tuning. Therefore, we use the default settings, 

and for ROBEX we add a seed value of 1 for all datasets.

BET

We use the parameter settings suggested in the literature [8][11] for the IBSR and LPBA40 

datasets. For the BRATS and TBI datasets, we choose the option “-B” for BET, which 

corrects the bias field and “cleans-up” the neck.
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BSE

We use the parameter settings suggested in the literature [8][11] for the IBSR and LPBA40 

datasets. For the BRATS and TBI datasets, we use the default settings.

BEaST

We use the ICBM and ADNI BEaST libraries to run all our experiments. We first normalize 

the images to the icbm152_model_09c template in the BEaST folder. Then, we run BEaST 

with options “ -fill“, “ -median“ and with configuration file “ default.1mm.conf“. 

The spatial normalization step does not work reliably on the original IBSR and BRATS data. 

Thus, for these two datasets, we first apply the same affine transform as in our PCA pre-

processing and then perform BEaST on the affine aligned images.

MASS

We use the default parameters for MASS and use the 15 anonymized templates, provided 

with the MASS software package.
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Figure 1. 
Illustration of image appearance variability on a selection of images from each (evaluation) 

database. From top to bottom: IBSR, LPBA40, BRATS and TBI.
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Figure 2. 
Example coronal slice of (a) an IBSR MR brain image, (b) the corresponding original IBSR 

brain segmentation (i.e., union of white matter, gray matter and CSF) and (c) the refined 

brain segmentation result.
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Figure 3. 
Preprocessing flow chart: Input image is the original image. Eventually, the output image 

will be fed into the registration/decomposition framework.
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Figure 4. 
Box plot results for the IBSR normal dataset. We show the results from seven methods: 

PCA, RBX (ROBEX), BST* (BEaST*), MAS (MASS), BET, BSE and CNN. Due to the 

poor results of MASS and CNN, and the outliers of BSE on this dataset, we limit the range 

of the plots for better visibility. On each box, the center line denotes the median, and the top 

and the bottom edge denote the 75th and 25th percentile, respectively. The whiskers extend 

to the most extreme points that are not considered outliers. The outliers are marked with ‘+’ 

signs. In addition, we mark the mean with green ‘*’ signs. ROBEX, BET, and BSE show 

similar performance, but BSE exhibits two outliers. MASS works well on most images, but 

fails on many cases. BEaST fails on the original images. We therefore show the BEaST* 

results using the initial affine registration of our PCA model. BEaST* performs well with 

high Dice scores and low surface distances, but with low mean values. CNN performs poorly 

on this dataset. Our PCA model has similar performance to BEaST* but with higher mean 

values. Both methods perform better than other methods on the Dice scores and surface 

distances.
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Figure 5. 
Box plot results for the LPBA40 normal dataset. All seven methods work well on this 

dataset. Our PCA model has the best Dice and surface distances. ROBEX, BEaST, MASS, 

BET and BSE show similar performance, but BET exhibits larger variance and BSE exhibits 

two outliers indicating failure. The CNN model shows overall slightly worse performance 

than the other methods.
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Figure 6. 
Box plot results for the BRATS tumor dataset. BSE and CNN fail on this dataset. BEaST 

also fails when applied directly to the BRATS dataset due to spatial normalization failures. 

We therefore show results for BEaST* here, our modification which uses the affine 

registration of the PCA model first. BET shows better performance, but also exhibits 

outliers. ROBEX, BEaST*, MASS, and our PCA model work well on this dataset. Overall 

our model exhibits the best performance scores.
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Figure 7. 
Box plot results for the TBI dataset. Our PCA model shows the best evaluation scores. BET, 

BEaST, MASS and ROBEX also perform reasonably well. BSE and CNN exhibit inferior 

performance on this dataset.
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Figure 8. 
Example BRATS image with its decomposition result in atlas space. (a) Input image after 

pre-processing; (b) quasi-normal image L + M; (c) non-brain image S; (d) pathology image 

T.
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Figure 9. 
Examples of 3D volumes of average errors for the normal IBSR and LPBA40 datasets, as 

well as for the pathological BRATS and TBI datasets. For IBSR/BRATS, we show results 

for BEaST*. Images and their brain masks are first affinely aligned to the atlas. At each 

location we then calculate the proportion of segmentation errors among all the segmented 

cases of a dataset (both over- and under-segmentation errors). Lower values are better (a 

value of 0 indicates perfect results over all images) and higher values indicate poorer 

performance (a value of 1 indicates failure on all cases). Clearly, BSE and CNN struggle 
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with the BRATS dataset whereas our PCA method shows good performance across all 

datasets.
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