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Abstract

This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver 

registration for image-pairs works by patch-wise prediction of a deformation model based directly 
on image appearance. A deep encoder-decoder network is used as the prediction model. While the 

prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic 

Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of 

LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical 

properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong 

regularization. We also provide a probabilistic version of our prediction network which can be 

sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, 

we introduce a new correction network which greatly increases the prediction accuracy of an 

already existing prediction network. We show experimental results for uni-modal atlas-to-image as 

well as uni-/multimodal image-to-image registrations. These experiments demonstrate that our 

method accurately predicts registrations obtained by numerical optimization, is very fast, achieves 

state-of-the-art registration results on four standard validation datasets, and can jointly learn an 

image similarity measure. Quicksilver is freely available as an open-source software.
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1. Introduction

Image registration is a key component for medical image analysis to provide spatial 

correspondences. Image registration is typically formulated as an optimization problem [1], 

optimizing the parameters of a transformation model. The goal is to achieve the best 
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possible agreement between a transformed source and a target image, subject to 

transformation constraints. Apart from simple, lowdimensional parametric models (e.g., 

rigid or affine transformations), more complex, high-dimensional parametric or non-

parametric registration models are able to capture subtle, localized image deformations. 

However, these methods, in particular, the non-parametric approaches, have a very large 

numbers of parameters. Therefore, numerical optimization to solve the registration problems 

becomes computationally costly, even with acceleration by graphics processing units 

(GPUs).

While computation time may not be overly critical for imaging studies of moderate size, 

rapid registration approaches are needed to (i) allow for interactive analysis, to (ii) allow 

their use as building blocks for more advanced image analysis algorithms; and to (iii) time- 

and cost- efficiently analyze very large imaging studies. As a case in point, sample sizes of 

neuroimaging studies are rapidly increasing. While, only two decades ago, neuroimaging 

studies with few tens of subjects were not unusual, we are now witnessing the emergence of 

truly large-scale imaging studies. For example, the UK Biobank study is, at the moment, the 

world’s largest health imaging study and will image “the brain, bones, heart, carotid arteries 

and abdominal fat of 100,000 participants” using magnetic resonance (MR) imaging within 

the next few years [2]. Furthermore, image sizes are increasing drastically. While, a decade 

ago, structural MR images of human brains with voxel sizes of 2 × 2 × 2 mm3 were typical 

for state-of-the-art MR acquisitions, today we have voxel sizes smaller than 1 × 1 × 1 mm3 

as, for example, acquired by the human connectome project [3]. This increase in image 

resolution increases the data size by an order of magnitude. Even more dramatically, the 

microscopy field now routinely generates gigabytes of high-resolution imaging data, for 

example, by 3D imaging via tissue clearing [4]. Hence, fast, memory-efficient, and 

parallelizable image analysis approaches are critically needed. In particular, such approaches 

are needed for deformable image registration, which is a key component of many medical 

image analysis systems.

Attempts at speeding-up deformable image registration have primarily focused on GPU 

implementations [5], with impressive speed-ups over their CPU-based counterparts. 

However, these approaches are still relatively slow. Runtimes in the tens of minutes are the 

norm for popular deformable image registration solutions. For example, a GPU-based 

registration of a 128 × 128 × 128 image volume using LDDMM will take about 10 minutes 

on a current GPU (e.g., a Nvidia TitanX). This is much too slow to allow for large-scale 

processing, the processing of large datasets, or close to interactive registration tasks. Hence, 

improved algorithmic approaches are desirable. Recent work has focused on better 
numerical methods and approximate approaches. For example, Ashburner and Friston [6] 

use a Gauss–Newton method to accelerate convergence for LDDMM and Zhang et al. [7] 

propose a finite-dimensional approximation of LDDMM, achieving a roughly 25× speed-up 

over a standard LDDMM optimization-based solution.

An alternative approach to improve registration speed is to predict deformation parameters, 

or deformation parameter update steps in the optimization via a regression model, instead of 

directly minimizing a registration energy [8, 9, 10]. The resulting predicted deformation 

fields can either be used directly, or as an initialization of a subsequent optimization-based 
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registration. However, the high dimensionality of the deformation parameters as well as the 

non-linear relationship between the images and the parameters pose a significant challenge. 

Among these methods, Chou et al. [10] propose a multi-scale linear regressor which only 

applies to affine deformations and low-rank approximations of non-linear deformations. 

Wang et al. [11] predict deformations by key-point matching using sparse learning followed 

by dense deformation field generation with radial basis function interpolation. The 

performance of the method heavily depends on the accuracy of the key point selection. Cao 

et al. [12] use a semi-coupled dictionary learning method to directly model the relationship 

between the image appearance and the deformation parameters of the LDDMM model [13]. 

However, only a linear relationship is assumed between image appearance and the 

deformation parameters. Lastly, Gutierrez et al. [9] use a regression forest and gradient 

boosted trees [8] based on hand-crafted features to learn update steps for a rigid and a B-

spline registration model.

In this work, we propose a deep regression model to predict deformation parameters using 

image appearances in a time-efficient manner. Deep learning has been used for optical flow 

estimation [14, 15] and deformation parameter prediction for affine transformations [16]. We 

investigate a non-parametric image registration approach, where we predict voxel-wise 

deformation parameters from image patches. Specifically, we focus on the initial momentum 

LDDMM shooting model [17], as it has many desirable properties:

• It is based on Riemannian geometry, and hence induces a distance metric on the 

space of images.

• It can capture large deformations.

• It results in highly desirable diffeomorphic spatial transformations (if regularized 

sufficiently). I.e., transformations which are smooth, one-to-one and have a 

smooth inverse.

• It uses the initial momentum as the registration parameter, which does not need 

to be spatially smooth, and hence can be predicted patch-by-patch, and from 

which the whole geodesic path can be computed.

The LDDMM shooting model in of itself is important for various image analysis tasks such 

as principal component analysis [18] and image regression [19, 20].

Our contributions are as follows:

• Convenient parameterization: Diffeomorphic transformations are desirable in 

medical image analysis applications to smoothly map between fixed and moving 

images, or to and from an atlas image. Methods, such as LDDMM, with strong 

theoretical guarantees exist, but are typically computationally very demanding. 

On the other hand, direct prediction, e.g., of optical flow [14, 15], is fast, but the 

regularity of the obtained solution is unclear as it is not considered within the 

regression formulation. We demonstrate that the momentum-parameterization for 

LDDMM shooting [17] is a convenient representation for regression approaches 

as (i) the momentum is typically compactly supported around image edges and 

(ii) there are no smoothness requirements on the momentum itself. Instead, 
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smooth velocity fields are obtained in LDDMM from the momentum 

representation by subsequent smoothing. Hence, by predicting the momentum, 

we retain all the convenient mathematical properties of LDDMM and, at the 

same time, are able to predict diffeomorphic transformations fast. As the 

momentum has compact support around image edges, no ambiguities arise 

within uniform image areas (in which predicting a velocity or deformation field 

would be difficult).

• Fast computation: We use a sliding window to locally predict the LDDMM 

momentum from image patches. We experimentally show that by using patch 

pruning and a large sliding window stride, our method achieves dramatic 

speedups compared to the optimization approach, while maintaining good 

registration accuracy.

• Uncertainty quantification: We extend our network to a Bayesian model which is 

able to determine the uncertainty of the registration parameters and, as a result, 

the uncertainty of the deformation field. This uncertainty information could be 

used, e.g., for uncertainty-based smoothing [21], or for surgical treatment 

planning, or could be directly visualized for qualitative analyses.

• Correction network: Furthermore, we propose a correction network to increase 

the accuracy of the prediction network. Given a trained prediction network, the 

correction network predicts the difference between the ground truth momentum 

and the predicted result. The difference is used as a correction to the predicted 

momentum to increase prediction accuracy. Experiments show that the correction 

network improves registration results to the point where optimization-based and 

predicted registrations achieve a similar level of registration accuracy on 

registration validation experiments.

• Multi-modal registration: We also explore the use of our framework for multi-

modal image registration prediction. The goal of multi-modal image registration 

is to establish spatial correspondences between images acquired by different 

modalities. Multi-modal image registration is, in general, significantly more 

difficult than uni-modal image registration since image appearance can change 

drastically between different modalities. General approaches address multimodal 

image registration by either performing image synthesis [22, 23] to change the 

problem to a uni-modal image registration task, or by proposing complex, hand-

crafted [24, 25, 26, 27] or learned [28, 29, 30, 31, 32] multi-modal image 

similarity measures. In contrast, we demonstrate that our framework can 

simultaneously predict registrations and learn a multi-modal image similarity 

measure. Our experiments show that our approach also predicts accurate 

deformations for multi-modal registration.

• Extensive validation: We extensively validate our predictive image registration 

approach for uni-modal image registration on the four validation datasets of 

Klein et al. [33] and demonstrate registration accuracies on these datasets on par 

with the state-of-the-art. Of note, these registration results are achieved using a 

model that was trained on an entirely different dataset (images from the OASIS 
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dataset). Furthermore, we validate our model trained for multimodal image 

registration using the IBIS 3D dataset [34]. Overall, our results are based on 

more than 2,400 image registration pairs.

The registration method described here, which we name Quicksilver, is an extension of 

the preliminary ideas we presented in a recent workshop paper [35] and in a conference 

paper [36]. This paper offers more details of our proposed approaches, introduces the idea of 

improving registration accuracy via a correction network, and includes a comprehensive set 

of experiments for image-to-image registration.

Organization

The remainder of the paper is organized as follows. Sec. 2.1 reviews the registration 

parameterization of the shooting-based LDDMM registration algorithm. Sec. 2.2 introduces 

our deep network architecture for deformation parameter prediction, the Bayesian 

formulation of our network, as well as our strategy for speeding up the deformation 

prediction. Sec. 2.3 discusses the correction network and the reason why it improves the 

registration prediction accuracy over an existing prediction network. Sec. 3 presents 

experimental results for atlas-to-image and image-to-image registration. Finally, Sec. 4 

discusses potential extensions and applications of our method.

2. Materials and Methods

2.1. LDDMM Shooting

Given a moving (source) image M and a target image T, the goal of image registration is to 

find a deformation map Φ : ℝd ⟶ ℝd, which maps the moving image to the target image 

in such a way that the deformed moving image is similar to the target image, i.e., M ○ Φ
−1(x) ≈ T(x). Here, d denotes the spatial dimension and x is the spatial coordinate of the 

fixed target image T. Due to the importance of image registration, a large number of 

different approaches have been proposed [1, 37, 38, 39]. Typically, these approaches are 

formulated as optimization problems, where one seeks to minimize an energy of the form

E Φ = Reg Φ + 1
σ2Sim I0 ∘ Φ−1, I1 , (1)

where σ > 0 is a balancing constant, Reg [·] regularizes the spatial transformation, Φ, by 

penalizing spatially irregular (for example non-smooth) spatial transformations, and Sim[·,·] 

is an image dissimilarity measure, which becomes small if images are similar to each other. 

Image dissimilarity is commonly measured by computing the sum of squared differences 

(SSD) between the warped source image (I0 ○ Φ−1) and the target image (I1), or via 

(normalized) cross-correlation, or mutual information [26, 1]. For simplicity, we use SSD in 

what follows, but other similarity measures could also be used. The regularizer Reg[·] 

encodes what should be considered a plausible spatial transformation1. The form of the 

regularizer depends on how a transformation is represented. In general, one distinguishes 

1A regularizer is not necessarily required for simple, lowdimensional transformation models, such as rigid or affine transformations.
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between parametric and non-parametric transformation models [1]. Parametric 

transformation models make use of a relatively low-dimensional parameterization of the 

transformation. Examples are rigid, similarity, and affine transformations. But also the 

highly popular B-spline models [40] are examples of parametric transformation models. 

Non-parametric approaches on the other hand parameterize a transformation locally, with a 

parameter (or parameter vector) for each voxel. The most direct nonparametric approach is 

to represent voxel displacements, u(x) = Φ(x) − x. Regularization then amounts to penalizing 

norms involving the spatial derivatives of the displacement vectors. Regularization is 

necessary for nonparametric approaches to avoid ill-posedness of the optimization problem. 

Optical flow approaches, such as the classical Horn and Schunck optical flow [41], the more 

recent total variation approaches [42], or methods based on linear elasticity theory [1] are 

examples for displacement-based registration formulations. Displacement-based approaches 

typically penalize large displacements strongly and hence have difficulty capturing large 

image deformations. Furthermore, they typically also only offer limited control over spatial 

regularity. Both shortcomings can be circumvented. The first by applying greedy 

optimization strategies (for example, by repeating registration and image warping steps) and 

the second, for example, by explicitly enforcing image regularity by constraining the 

determinant of the Jacobian of the transformation [43]. An alternative approach to allow for 

large deformations, while assuring diffeomorphic transformations, is to parameterize 

transformations via static or time-dependent velocity fields [44, 13]. In these approaches, the 

transformation Φ is obtained via time integration. For sufficiently regular velocity fields, 

diffeomorphic transformations can be obtained. As the regularizer operates on the velocity 

field(s) rather than the displacement field, large deformations are no longer strongly 

penalized and hence can be captured.

LDDMM is a non-parametric registration method which represents the transformation via 

spatio-temporal velocity fields. In particular, the sought-for mapping, Φ, is obtained via an 

integration of a spatio-temporal velocity field v(x,t) for unit time, where t indicates time and 

t ∈ [0,1], such that Φt(x, t) = v(Φ(x, t),t) and the sought-for mapping is Φ(x, 1). To single-

out desirable velocity-fields, nonspatial-smoothness at any given time t is penalized by the 

regularizer Reg[·], which is applied to the velocity field instead of the transform Φ directly. 

Specifically, LDDMM aims at minimizing the energy2 [13]

E v = ∫
0

1
v L

2
dt + 1

σ2 M ∘ Φ−1 1 − T 2,

s.t Φt x, t = v Φ x, t , t , Φ x, 0 = id

(2)

where σ > 0, v L
2

= Lv, v , L is a self-adjoint differential operator3, id is the identity map, 

and the differential equation constraint for Φ can be written in the Eulerian coordinates as 

2When clear from the context, we suppress spatial dependencies for clarity of notation and only specify the time variable. E.g., we 
write Φ−1(1) to mean Φ−1 (x, 1).
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Φt
−1 + DΦ−1v = 0, where Φt(x, t) is the derivative of Φ with respect to time t, and D is the 

Jacobian matrix. In this LDDMM formulation (termed the relaxation formulation as a 

geodesic path – the optimal solution – is only obtained at optimality) the registration is 

parameterized by the full spatio-temporal velocity field v(x, t). From the perspective of an 

individual particle, the transformation is simply obtained by following the velocity field over 

time. To optimize over the spatio-temporal velocity field one solves the associated adjoint 

system backward in time, where the final conditions of the adjoint system are determined by 

the current image mismatch as measured by the chosen similarity measure [13]. This adjoint 

system can easily be determined via a constrained optimization approach [45] (see [46] for 

the case of optical flow). From the solution of the adjoint system one can compute the 

gradient of the LDDMM energy with respect to the velocity field at any point in time4 and 

use it to numerically solve the optimization problem, for example, by a line-search [49]. At 

convergence, the optimal solution will fulfill the optimality conditions of the constrained 

LDDMM energy of Eq. (2). These optimality conditions can be interpreted as the continuous 

equivalent of the Karush-Kuhn-Tucker conditions of constrained optimization [49]. On an 

intuitive level, if one were to find the shortest path between two points, one would (in 

Euclidean space) obtain the straight line connecting these two points. This straight line is the 

geodesic path in Euclidean space. For LDDMM, one instead tries to find the shortest path 

between two images based on the minimizer of the inexact matching problem of Eq. (2). The 

optimization via the adjoint equations corresponds to starting with a possible path and then 

successively improving it, until the optimal path is found. Again, going back to the example 

of matching points, one would start with any possible path connecting the two points and 

then successively improve it. The result at convergence is the optimal straight line path.

Convergence to the shortest path immediately suggests an alternative optimization 

formulation. To continue the point matching example: if one knows that the optimal solution 

needs to be a straight line (i.e., a geodesic) one can consider optimizing only over the space 

of straight lines instead of all possible paths connecting the two points. This dramatically 

reduces the parameter space for optimization as one now only needs to optimize over the y-

intercept and the slope of the straight line. LDDMM can also be formulated in such a way. 

One obtains the shooting formulation [17, 19], which parameterizes the deformation via the 

initial momentum vector field m0 = m(0) and the initial map Φ−1(0), from which the map Φ 
can be computed for any point in time. The initial momentum corresponds to the slope of the 

line and the initial map corresponds to the y-intercept. The geodesic equations correspond to 

the line equation. The geodesic equations, in turn, correspond to the optimality conditions of 

Eq. (2). Essentially, the shooting formulation enforces these optimality conditions of Eq. (2) 

as a constraint. In effect, one then searches only over geodesic paths, as these optimality 

conditions are geodesic equations. They can be written in terms of the momentum m alone. 

In particular, the momentum is the dual of the velocity v, which is an element in the 

3Note that we define v L
2

 here as 〈Lv,v〉 instead of 〈Lv,v〉 = 〈L† Lv, v〉 as for example in Beg et al. [13].

4This approach is directly related to what is termed error backpropagation in the neural networks community [47] as well as the 
reverse mode in automatic differentiation [48]. The layers in neural networks are analogous to discretized time-steps for LDDMM. 
The weights which parameterize a neural network are analogous to the velocity fields for LDDMM. Error-backpropagation via the 
chain rule in neural networks corresponds to the adjoint system in LDDMM, which is a partial differential equation when written in 
the Eulerian form in the continuum.
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reproducing kernel Hilbert space V ; m and v are connected by positive-definite, self-adjoint 

differential smoothing operator K by v = Km and m = Lv, where L is the inverse of K. Given 

m0, the complete spatio-temporal deformation Φ(x, t) is determined.

Specifically, the energy to be minimized for the shooting formulation of LDDMM is [50]

E m0 = m0, Km0 + 1
σ2 M ∘ Φ−1 1 − T 2, s.t .

mt + ad ∗ vm = 0,

m 0 = m0,

(3)

Φt
−1 + DΦ−1v = 0,

Φ−1 0 = id,
m − Lv = 0,

(4)

where id is the identity map, and the operator ad* is the dual of the negative Jacobi-Lie 

bracket of vector fields, i.e., advw = − [v,w] = Dvw − Dwv. The optimization approach is 

similar to the one for the relaxation formulation. I.e., one determines the adjoint equations 

for the shooting formulation and uses them to compute the gradient with respect to the 

unknown initial momentum m0 [50, 17]. Based on this gradient an optimal solution can, for 

example, be found via a line-search or by a simple gradient descent scheme.

A natural approach for deformation prediction would be to use the entire 3D moving and 

target images as input, and to directly predict the 3D displacement field. However, this is not 

feasible in our formulation because of the limited memory in modern GPUs. We circumvent 

this problem by extracting image patches from the moving image and target image at the 

same location, and by then predicting deformation parameters for the patch. The entire 3D 

image prediction is then accomplished patch-bypatch via a sliding window approach. 

Specifically, in our framework, we predict the initial momentum m0 given the moving and 

target images in a patch-by-patch manner. Using the initial momentum for patch-based 

prediction is a convenient parameterization because (i) the initial momentum is generally not 

smooth, but is compactly supported at image edges and (ii) the initial velocity is generated 

by applying a smoothing kernel K to the initial momentum. Therefore, the smoothness of the 

deformation does not need to be specifically considered during the parameter prediction 

step, but is imposed after the prediction. Since K governs the theoretical properties or 

LDDMM, a strong K assures diffeomorphic transformations5, making predicting the initial 

momentum an ideal choice. However, predicting alternative parameterizations such as the 

initial velocity or directly the displacement field would make it difficult to obtain 

diffeomorphic transformations. Furthermore, it is hard to predict initial velocity or 

5See [13, 51] for the required regularity conditions.
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displacement for homogeneous image regions, as these regions locally provide no 

information from which to predict the spatial transformation. In these regions the 

deformations are purely driven by regularization. This is not a problem for the initial 

momentum parameterization, since the initial momentum in these areas, for image-based 

LDDMM, is zero. This can be seen as for image-based LDDMM [17, 19, 45] the momentum 

can be written as m(x,t) = λ(x,t)∇I(x,t), where λ is a scalar field and ∇I is the spatial 

gradient of the image. Hence, for homogeneous areas, ∇I = 0 and consequentially m = 0. 

Fig. 1 illustrates this graphically. In summary, the initial momentum parameterization is 

ideal for our patch-based prediction method. Note that since the initial momentum can be 

written as m = λ∇I one can alternatively optimize LDDMM over the scalar-valued 

momentum λ. This is the approach that has historically been taken for LDDMM [13, 45, 

17]. However, optimizing over the vectorvalued momentum, m, instead is numerically better 

behaved [50], which is why we focus on it for our predictions. While we are not exploring 

the prediction of the scalar-valued momentum λ here, it would be interesting to see how 

scalar-valued and vector-valued momentum predictions compare. In particular, since the 

prediction of the scalar-valued momentum would allow for simpler prediction approaches 

(see details in Sec. 2.2).

2.2. Deep network for LDDMM prediction

The overall training strategy for our prediction models is as follows: We assume that we 

already have a set of LDDMM parameters which result in good registration results. We 

obtain these registration results by numerically optimizing the shooting formulation of 

LDMMM. The resulting initial momenta serve as training data. The goal is then to train a 

model to locally predict initial momenta from image patches of the moving and the target 

images. These predicted momenta should be good approximations of the initial momenta 

obtained via numerical optimization. In short, we train our deep learning framework to 
predict the initial momenta from image patches based on training data obtained from 
numerical optimization of the LDDMM shooting formulation. During testing, we predict the 

initial momenta for the test image pairs, and generate the predicted deformation result 

simply by performing LDDMM shooting.

Fig. 2 shows the structure of the initial momentum prediction network. We first discuss the 

deterministic version of the network without dropout layers. We then introduce the Bayesian 

version of our network where dropout layers are used to convert the architecture into a 

probabilistic deep network. Finally, we discuss our strategy for patch pruning to reduce the 

number of patches needed for whole image prediction.

2.2.1. Deterministic network—Our goal is to learn a prediction function that takes two 

input patches, extracted at the same location6 from the moving and target image, and 

predicts a desired initial vector-valued momentum patch, separated into the x, y and z 
dimensions, respectively. This prediction function should be learned from a set of training 

sample patches. These initial vector-valued momentum patches are obtained by numerical 

6The locations of these patches are the same locations with respect to image grid coordinates, as the images are still unregistered at 
this point.
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optimization of the LDDMM shooting formulation. More formally, given a 3D patch of size 

p × p × p voxels, we want to learn a function f : ℝ3p × ℝ3p→ℝ9p. In our formulation, f is 

implemented by a deep neural network. Ideally, for two 3D image patches (u, v) = x′, with 

u, v ε ℝ3p, we want y′ = f (x′) to be as close as possible to the desired LDDMM 

optimization momentum patch y with respect to an appropriate loss function (e.g., the 1-

norm). Our proposed architecture (for f) consists of two parts: an encoder and a decoder 
which we describe next.

Encoder: The Encoder consists of two parallel encoders which learn features from the 

moving/target image patches independently. Each encoder contains two blocks of three 3 × 3 

× 3 3D convolution layers and PReLU [52] activation layers, followed by another 2 × 2 × 2 

convolution+PReLU with a stride of two, cf. Fig. 2. The convolution layers with a stride of 

two reduce the size of the output patch, and essentially perform pooling operations. PReLU 

is an extension of the ReLU activation [53], given as

PReLU x = x, if x > 0
ax, otherwise ,

where a is a parameter that is learned when training the network. In contrast to ReLU, 

PReLU avoids a zero gradient for negative inputs, effectively improving the network 

performance. The number of features in the first block is 64 and increases to 128 in the 

second block. The learned features from the two encoders are then concatenated and sent to 

three parallel decoders (one per dimension x, y, z).

Decoder: Each decoder’s structure is the inverse of the encoder, except that the number of 

features is doubled (256 in the first block and 128 in the second block) as the decoder’s 

input is obtained from the two encoder branches. We use 3D transposed convolution layers 

[54] with a stride of 2, which are shown as the cyan layers in Fig. 2 and can be regarded as 

the backward propagation of 3D convolution operations, to perform “unpooling”. We also 

omit the non-linearity after the final convolution layer, cf. Fig. 2.

The idea of using convolution and transpose of convolution to learn the pooling/unpooling 

operation is motivated by [55], and it is especially suited for our network as the two 

encoders perform pooling independently which prevents us from using the pooling index for 

unpooling in the decoder. During training, we use the 1-norm between the predicted and the 

desired momentum to measure the prediction error. We chose the 1-norm instead of the 2-

norm as our loss function to be able to tolerate outliers and to generate sharper momentum 

predictions. Ultimately, we are interested in predicting the deformation map and not the 

patch-wise momentum. However, this would require forming the entire momentum image 

from a collection of patches followed by shooting as part of the network training. Instead, 

predicting the momentum itself patch-wise significantly simplifies the network training 

procedure. Also note that, while we predict the momentum patch-by-patch, smoothing is 

performed over the full momentum image (reassembled from the patches) based on the 

smoothing kernel, K, of LDDMM. Specifically, when predicting the deformation parameters 

for the whole image, we follow a sliding window strategy to predict the initial momentum in 
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a patch-by-patch manner and then average the overlapping areas of the patches to obtain the 

final prediction result.

The number of 3D filters used in the network is 975,360. The overall number of parameters 

21,826,344. While this is a large number of parameters, we also have a very large number of 

training patches. For example, in our image-to-image registration experiments (see Sec. 3), 

the total number of 15 × 15 × 15 3D training patches to train the prediction network is 

1,002,404. This amounts to approximately 3.4 billion voxels and is much larger than the 

total number of parameters in the network. Moreover, recent research [56] suggests that the 

degrees of freedom for a deep network can be significantly smaller than the number of its 

parameters.

One question that naturally arises is why to use independent encoders/decoders in the 

prediction network. For the decoder part, we observed that an independent decoder structure 

is much easier to train than a network with one large decoder (3 times the number of features 

of a single decoder in our network) to predict the initial momentum in all dimensions 

simultaneously. In our experiments, such a combined network easily got stuck in poor local 

minima. As to the encoders, experiments do not show an obvious difference in prediction 

accuracy between using two independent encoders and one single large encoder. However, 

such a two-encoder strategy is beneficial when extending the approach to multi-modal image 

registration [36]. Hence, using a two-encoder strategy here will make the approach easily 

retrainable for multi-modal image registration. In short, our network structure can be viewed 

as a multi-input multi-task network, where each encoder learns features for one patch 

source, and each decoder uses the shared image features from the encoders to predict one 

spatial dimension of the initial momenta. We remark that, if one were to predict the scalar-

valued momentum, λ, instead of the vector-valued momentum, m, the network architecture 

could remain largely unchanged. The main difference would be that only one decoder would 

be required. Due to the simpler network architecture such an approach could potentially 

speed-up predictions. However, it remains to be investigated how such a network would 

perform in practice as the vector-valued momentum has been found to numerically better 

behave for LDDMM optimizations [50].

2.2.2. Probabilistic network—We extend our architecture to a probabilistic network 

using dropout [57], which can be viewed as (Bernoulli) approximate inference in Bayesian 

neural networks [58, 59]. In the following, we briefly review the basic concepts, but refer the 

interested reader to the corresponding references for further technical details.

In our problem setting, we are given training patch tuples xi = (ui, vi) with associated desired 

initial momentum patches yi. We denote the collection of this training data by X and Y. In 

the standard, non-probabilistic, setting we aim for predictions of the form y′ = f (x′) given a 

new input patch x′, where f is implemented by the proposed encoder-decoder network. In 

the probabilistic setting, however, the goal is to make predictions of the form p(y′|x′, X, Y). 

As this predictive distribution is in tractable for most underlying models (as it would require 

integrating over all possible models, and neural networks in particular), the idea is to 

condition the model on a set of random variables w. In case of (convolutional) neural 
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networks with N layers, these random variables are the weight matrices, i.e., w = Wi i = 1
N . 

However, evaluation of the predictive distribution p(y′|x′, X, Y) then requires the posterior 

over the weights p(w|X, Y) which can (usually) not be evaluated analytically. Therefore, in 

varia tional inference, p(w|X, Y) is replaced by a tractable variational distribution q(w) and 

one minimizes the Kullback-Leibler divergence between q(w) and p(w|X, Y) with respect to 

the variational parameters w. This turns out to be equivalent to maximization of the log 
evidence lower bound (ELBO). When the variational distribution is defined as

q Wi = Mi ⋅ diag([zi, j] j = 1
Ki ), zi, j Bernoulli d , (5)

where Mi is the convolutional weight, i = 1,…, N, d is the probability that zi,j = 0 and Ki is 

chosen appropriately to match the dimensionality of Mi, Gal et al. [58] show that ELBO 

maximization is achieved by training with dropout [57]. In the case of convolutional neural 

networks, dropout is applied after each convolution layer (with dropout probability d)7. In 

Eq. (5), Mi is the variational parameter which is optimized during training. Evaluation of the 

predictive distribution p(y′|x′, X, Y) can then be approximated via Monte-Carlo integration, 

i.e.,

p(y′ |x′, X, Y) ≈ 1
T ∑

t = 1

T
f (x′, w) . (6)

In detail, this corresponds to averaging the output of T forward passes through the network 

with dropout enabled. Note that f  and w now correspond to random variables, as dropout 

means that we sample, in each forward pass, which connections are dropped. In our 

implementation, we add dropout layers after all convolutional layers except for those used as 

pooling/unpooling layers (which are considered non-linearities applied to the weight 

matrices [58]), as well as the final convolution layer in the decoder, which generates the 

predicted momentum. We train the network using stochastic gradient descent (SGD).

Network evaluation: For testing, we keep the dropout layers enabled to maintain the 

probabilistic property of the network, and sample the network to obtain multiple momentum 

predictions for one moving/target image pair. We then choose the sample mean as the 

prediction result, see Eq. (6), and perform LDDMM shooting using all the samples to 

generate multiple deformation fields. The local variance of these deformation fields can then 

be used as an uncertainty estimate of the predicted deformation field. When selecting the 

dropout probability, d, a probability of 0. 5 would provide the largest variance, but may also 

enforce too much regularity for a convolutional network, especially in our case where 

dropout layers are added after every convolution layer. In our experiments, we use a dropout 

probability of 0.2 (for all dropout units) as a balanced choice.

7with additional l2 regularization on the weight matrices of each layer.
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2.2.3. Patch pruning—As discussed in Sec. 2.2.1, we use a sliding-window approach to 

predict the deformation parameters (the momenta for Quicksilver) patch-by-patch for a 

whole image. Thus, computation time is proportional to the number of the patches we need 

to predict. When using a 1-voxel sliding window stride, the number of patches to predict for 

a whole image could be substantial. For a typical 3D image of size 128 × 128 × 128 using a 

15 × 15 × 15 patch for prediction will require more than 1.4 million patch predictions. 

Hence, we use two techniques to drastically reduce the number of patches needed for 

deformation prediction. First, we perform patch pruning by ignoring all patches that belong 

to the background of both the moving image and the target image. This is justified, because 

according to LDDMM theory the initial momentum in constant image regions, and hence 

also in the image background, should be zero. Second, we use a large voxel stride (e.g., 14 

for 15 × 15 × 15 patches) for the sliding window operations. This is reasonable for our initial 

momentum parameterization because of the compact support (at edges) of the initial 

momentum and the spatial shift invariance we obtain via the pooling/unpooling operations. 

By using these two techniques, we can reduce the number of predicted patches for one 

single image dramatically. For example, by 99.995% for 3D brain images of dimension 229 

× 193 × 193.

2.3. Correction network

There are two main shortcomings of the deformation prediction network. (i) The complete 

iterative numerical approach typically used for LDDMM registration is replaced by a single 
prediction step. Hence, it is not possible to recover from any prediction errors. (ii) To 

facilitate training a network with a small number of images, to make predictions easily 

parallelizable, and to be able to perform predictions for large 3D image volumes, the 

prediction network predicts the initial momentum patch-by-patch. However, since patches 

are extracted at the same spatial grid locations from the moving and target images, large 

deformations may result in drastic appearance changes between a source and a target patch. 

In the extreme case, corresponding image information may no longer be found for a given 

source and target patch pair. This may happen, for example, when a small patch-size 

encounters a large deformation. While using larger patches would be an option, this would 

require a network with substantially larger capacity (to store the information for larger image 

patches and all meaningful deformations) and would also likely require much larger training 

datasets8.

To address these shortcomings, we propose a two-step prediction approach to improve 

overall prediction accuracy. The first step is our already described prediction network. We 

refer to the second step as the correction network. The task of the correction network is to 

compensate for prediction errors of the first prediction step. The idea is grounded in two 

observations: The first observation is that patch-based prediction is accurate when the 

deformation inside the patch is small. This is sensible as the initial momentum is 

concentrated along the edges, small deformations are commonly seen in training images, 

and less deformation results in less drastic momentum values. Hence, more accurate 

8In fact, we have successfully trained prediction models with as little as ten images using all combinations of pair-wise registrations to 
create training data [36]. This is possible, because even in such a case of severely limited training data the number of patches that can 
be used for training is very large.
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predictions are expected for smaller deformations. Our second observation is that, given the 

initial momentum, we are able to generate the whole geodesic path using the geodesic 

shooting equations. Hence, we can generate two deformation maps: the forward warp Φ−1 

that maps the moving image to the coordinates of the target image, and the backward warp 

Φ mapping the target image back to the coordinates of the moving image. Hence, after the 

first prediction step using our prediction network, we can warp the target image back to the 

moving image M via T ○ Φ. We can then train the correction network based on the 

difference between the moving image M and the warped-back target image T ○ Φ, such that 

it makes adjustments to the initial momentum predicted in the first step by our prediction 

network. Because M and T ○ Φ are in the same coordinate system, the differences between 

these two images are small as long as the predicted deformation is reasonable, and more 

accurate predictions can be expected. Furthermore, the correction for the initial momentum 

is then performed in the original coordinate space (of the moving image) which allows us to 

obtain an overall corrected initial momentum, m0. This is for example a useful property 

when the goal is to do statistics with respect to a fixed coordinate system, for example, an 

atlas coordinate system.

Fig. 3 shows a graphical illustration of the resulting two-step prediction framework. In the 

framework, the correction network has the same structure as the prediction network, and the 

only difference is the input of the networks and the output they produce. Training the overall 

framework is done sequentially:

1. Train the prediction network using training images and the ground truth initial 

momentum obtained by numerical optimization of the LDDMM registration 

model.

2. Use the predicted momentum from the prediction network to generate 

deformation fields to warp the target images in the training dataset back to the 

space of the moving images.

3. Use the moving images and the warped-back target images to train the correction 

network. The correction network learns to predict the difference between the 

ground truth momentum and the predicted momentum from the prediction 

network.

Using the framework during testing is similar to the training procedure, except here the 

outputs from the prediction network (using moving and target images as input) and the 

correction network (using moving and warped-back target images as input) are summed up 

to obtain the final predicted initial momentum. This summation is justified from the 

LDDMM theory as it is performed in a fixed coordinate system (a fixed tangent space), 

which is the coordinate system of the moving image. Experiments show that our prediction

+correction approach results in lower training and testing error compared with only using a 

prediction network, as shown in Sec. 2.4 and Sec. 3.

2.4. Datasets/Setup

We evaluate our method using three 3D brain image registration experiments. The first 

experiment is designed to assess atlas-to-image registration. In this experiment, the moving 
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image is always the atlas image. The second experiment addresses general image-to-image 
registration. The final experiment explores multi-modal image registration; specifically, the 

registration of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance images.

For the atlas-to-image registration experiment, we use 3D image volumes from the OASIS 

longitudinal dataset [60] Specifically, we use the first scan of all subjects, resulting in 150 

brain images. We select the first 100 images as our training target images and the remaining 

50 as our test target images. We create an unbiased atlas [61] from all training data using 

PyCA9 [50, 62], and use the atlas as the moving image. We use the LDDMM shooting 

algorithm to register the atlas image to all 150 OASIS images. The obtained initial momenta 

from the training data are used to train our network; the remaining momenta are used for 

validation.

For the image-to-image registration experiment, we use all 373 images from the OASIS 

longitudinal dataset as the training data, and randomly select target images from different 

subjects for every image, creating 373 registrations for the training of our prediction and 

correction networks. For testing, we choose the four datasets ( LPBA40, IBSR18, MGH10, 

CUMC12) evaluated in [33]. We perform LDDMM shooting for all training registrations, and 

follow the evaluation procedure described in [33] to perform pairwise registrations within all 

datasets, resulting in a total of 2168 registration (1560 from LPBA40, 306 from IBSR18, 90 

from MGH10, 132 from CUMC12) test cases.

For the multi-modal registration experiment, we use the IBIS 3D Autism Brain image 

dataset [34]. This dataset contains 375 T1w/T2w brain images from 2 years old subjects. We 

select 359 of the images for training and use the remaining 16 images for testing. For 

training, we randomly select T1w-T1w image pairs and perform LDDMM shooting to 

generate the optimization momenta. We then train the prediction and correction networks to 
predict the momenta obtained from LDDMM T1w-T1w optimization using the image 
patches from the corresponding T1w moving image and T2w target image as network 
inputs. For testing, we perform pair-wise T1w-T2w registrations for all 16 test images, 

resulting in 250 test cases. For comparison, we also train a T1w-T1w prediction+correction 

network that performs prediction on the T1w-T1w test cases. This network acts as the 

“upper-bound” of the potential performance of our multi-modal networks as it addresses the 

unimodal registration case and hence operates on image pairs which have very similar 

appearance. Furthermore, to test prediction performance when using very limited training 

data, we also train a multi-modal prediction network and a multi-modal prediction

+correction network using only 10 of the 365 training images which are randomly chosen 

for training. In particular, we perform pair-wise T1w-T1w registration on the 10 images, 

resulting in 90 registration pairs. We then use these 90 registration cases to train the multi-

modal prediction networks.

For skull stripping, we use FreeSurfer [63] for the OASIS dataset and AutoSeg [64] for the 

IBIS dataset. The 4 evaluation datasets for image-to-image experiment are already skull 

stripped as described in [33]. All images used in our experiments are first affinely registered 

9https://bitbucket.org/scicompanat/pyca
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to the ICBM MNI152 nonlinear atlas [65] using NiftyReg10 and intensity normalized via 

histogram equalization prior to atlas building and LDDMM registration. All 3D volumes are 

of size 229 × 193 × 193 except for the LPBA dataset (229 × 193 × 229), where we add 

additional blank image voxels for the atlas to keep the cerebellum structure. LDDMM 

registration is done using PyCA11 [50] with SSD as the image similarity measure. We set the 

parameters for the regularizer of LDDMM12 to L = − a∇2 − b∇(∇·) + c as [a,b,c] = [0.01, 

0.01, 0.001], and σ in Eqn. 3 to 0.2. We use a 15 × 15 × 15 patch size for deformation 

prediction in all cases, and use a sliding window with step-size 14 to extract patches for 

training. The only exception is for the multi-modal network which is trained using only 10 

images, where we choose a step-size of 10 to generate more training patches. Note that using 

a stride of 14 during training means that we are in fact discarding available training patches 

to allow for reasonable network training times. However, we still retain a very large number 

of patches for training. To check that our number of patches for training is sufficient, we 

performed additional experiments for the image-to-image registration task using smaller 

strides when selecting training patches. Specifically, we doubled and tripled the training size 

for the prediction network. These experiments indicated that increasing the training data size 

further only results in marginal improvements, which are clearly outperformed by a 

combined prediction + correction strategy. Exploring alternative network structures, which 

may be able to utilize larger training datasets, is beyond the scope of this paper, but would be 

an interesting topic for future research.

The network is implemented in PyTorch13, and optimized using Adam [67]. We set the 

learning rate to 0.0001 and keep the remaining parameters at their default values. We train 

the prediction network for 10 epochs for the image-to-image registration experiment and the 

multimodal image registration experiment, and 20 epochs for the atlas-to-image experiment. 

The correction networks are trained using the same number of epochs as their corresponding 

prediction networks. Fig. 4 shows the l1 training loss per patch averaged for every epoch for 

the atlas-to-image and the image-to-image experiments. For both, using a correction network 

in conjunction with a prediction network results in lower training error compared with 

training the prediction network for more epochs.

3. Results

3.1. Atlas-to-Image registration

For the atlas-to-image registration experiment, we test two different sliding window strides 

for our patch-based prediction method: stride = 5 and stride = 14. We trained additional 

prediction networks predicting the initial velocity v0 = Km0 and the displacement field Φ(1) 

10https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg
11https://bitbucket.org/scicompanat/pyca
12This regularizer is too weak to assure a diffeomorphic transformation based on the sufficient regularity conditions discussed in [13]. 
For these conditions to hold in 3D, L would need to be at least a differential operator of order 6. However, as long as the obtained 

velocity fields v are finite over the unit interval, i.e., ∫0

1
v L

2
dt < ∞ for an L of at least order 6, we will obtain a diffeomorphic 

transform [51]. In the discrete setting, this condition will be fulfilled for finite velocity fields. To side-step this issue, models based on 
Gaussian or multi-Gaussian kernels [66] could also be used instead.
13https://github.com/pytorch/pytorch
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− id of LDDMM to show the effect of different deformation parameterizations on 

deformation prediction accuracy. We generate the predicted deformation map by integrating 

the shooting equation 4 for the initial momentum and the initial velocity parameterization 

respectively. For the displacement parameterization we can directly read-off the map from 

the network output. We quantify the deformation errors per voxel using the voxel-wise two-

norm of the deformation error with respect to the result obtained via numerical optimization 

for LDDMM using PyCA. Table 1 shows the error percentiles over all voxels and test cases.

We observe that the initial momentum network has better prediction accuracy compared to 

the results obtained via the initial velocity and displacement parameterization in both the 5-

stride and 14-stride cases. This validates our hypothesis that momentum-based LDDMM is 

better suited for patch-wise deformation prediction. We also observe that the momentum 

prediction result using a smaller sliding window stride is slightly worse than the one using a 

stride of 14. This is likely the case, because in the atlas-to-image setting, the number of atlas 

patches that extract features from the atlas image is very limited, and using a stride of 14 

during the training phase further reduces the available data from the atlas image. Thus, 

during testing, the encoder will perform very well for the 14-stride test cases since it has 

already seen all the input atlas patches during training. For a stride of 5 however, unseen 

atlas patches will be input to the network, resulting in reduced registration accuracy14. In 

contrast, the velocity and the displacement parameterizations result in slightly better 

predictions for smaller sliding window strides. That this is not the case for the momentum 

parameterization suggests that it is easier for the network to learn to predict the momentum, 

as it indeed has become more specialized to the training data which was obtained with a 

stride of 14. One of the important properties of LDDMM shooting is its ability to generate 

diffeomorphic deformations. To assess this property, we calculate the local Jacobians of the 

resulting deformation maps. Assuming no flips of the entire coordinate system, a 

diffeomorphic deformation map should have positive Jacobian determinants everywhere, 

otherwise foldings occur in the deformation maps. We calculate the ratio of test cases with 

positive Jacobian determinants of the deformation maps to all test cases, shown as detJ > 0 

in Table 1. We observe that the initial momentum and the initial velocity networks indeed 

generate diffeomorphic deformations in all scenarios. However, the deformation accuracy is 

significantly worse for the initial velocity network. Predicting the displacement directly 

cannot guarantee diffeomorphic deformations even for a small stride. This is unsurprising as, 

similar to existing optical flow approaches [14, 15], directly predicting displacements does 

not encode deformation smoothness. Hence, the initial momentum parameterization is the 

preferred choice among our three tested parameterizations as it achieves the best prediction 

accuracy and guarantees diffeomorphic deformations. Furthermore, the initial momentum 

prediction including the correction network with a stride of 14 achieves the best registration 

accuracy overall among the tested methods, even outperforming the prediction network 

alone trained with more training iterations (D, stride 14, 40 epochs). This demonstrates that 

the correction network is capable of improving the initial momentum prediction beyond the 

capabilities of the original prediction network.

14This behavior could likely be avoided by randomly sampling patch locations during training instead of using a regular grid. 
However, since we aim at reducing the number of predicted patches we did not explore this option and instead maintained the regular 
grid sampling.
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Fig. 5 shows one example atlas-to-image registration case. The predicted deformation result 

is very similar to the deformation from LDDMM optimization. We compute the square root 

of the sum of the variance of the deformation in the x, y and z directions to quantify 

deformation uncertainty, and visualize it on the rightmost column of the figure. The 

uncertainty map shows high uncertainty along the ventricle areas where drastic deformations 

occur, as shown in the moving and target images.

3.2. Image-to-Image registration

In this experiment, we use a sliding window stride of 14 for both the prediction network and 

the correction network during evaluation. We mainly compare the following three LDDMM-

based -methods: (i) the numerical LDDMM optimization approach (L0) as implemented in 

PYCA, which acts as an upper bound on the performance of our prediction methods; and two 

flavors of Quicksilver: (ii) only the prediction network (LP) and (iii) the prediction

+correction network (LPC).

3.2.1. LDDMM energy—To test the ability of our prediction networks to replace 

numerical optimization, we compare the LDDMM energies obtained using optimization 

from LO with the energies corresponding to the predicted momenta from LP and LPC. Low 

energies for the predicted momenta, which are comparable to the energies obtained by 

numerical optimization (LO), would suggest that our prediction models can indeed act as 

replacements for numerical optimization. However, note that, in general, a low energy will 

only imply a good registration result if the registration model is fully appropriate for the 

registration task. Ultimately, registration quality should be assessed based on a particular 

task: most directly by measuring landmark errors or (slightly more indirectly) by measuring 

overlaps of corresponding regions as done in Section 3.2.2. Table 2 shows the results for 

four test datasets. Compared with the initial LDDMM energy based on affine registration to 

the atlas space in the initial column, both LP and LPC have drastically lower LDDMM 

energy values; further, these values are only slightly higher than those for LO. Furthermore, 

compared with LP, LPC generates LDDMM energy values that are closer to LO, which 

indicates that using the prediction+correction approach results in momenta which are closer 

to the optimal solution than the ones obtained by using the prediction network only.

3.2.2. Label overlap—For image-to-image registration we follow the approach in [33] 

and calculate the target overlap (TO) of labeled brain regions after registration: TO =
lm ∩ lt

lt
, 

where lm and lt indicate the corresponding labels for the moving image (after registration) 

and the target image. We then evaluate the mean of the target overlap averaged first across 

all labels for a single registration case and then across all registration cases within one 

dataset. The evaluation results for other methods tested in [33] are available online. We 

compare our registration approaches to these results. An interesting question is if the 

prediction network and the correction network are identical, and whether the prediction 

network can be used in the correction step. Another question is if the correction network can 

be applied multiple times in the correction step to further improve results Thus, to test the 

usefulness of the correction network in greater depth, we also create three additional 

formulations of our prediction framework: (i) prediction network + using the same 
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prediction network to replace the correction network in the correction step (LPP); (ii) 

applying the correction network twice (LPC2) and (iii) applying the correction network 

three times (LPC3).

Fig. 6 shows the evaluation results. Several points should be noted: first, the LDDMM 

optimization performance is on par with SyN [68], ART [69] and the SPM5 DARTEL 

Toolbox (SPM5D) [70]. This is reasonable as these methods are all non-parametric 

diffeomorphic or homeomorphic registration methods, allowing the modeling of large 

deformations between image pairs. Second, using only the prediction network results in a 

slight performance drop compared to the numerical optimization results (LO), but the result 

is still competitive with the top-performing registration methods. Furthermore, also using the 

correction network boosts the deformation accuracy nearly to the same level as the LDDMM 

optimization approach (LO). The red horizontal lines in Fig. 6 show the lower and upper 

quartiles of the target overlap score of the prediction+correction method. Compared with 

other methods, our prediction+correction network achieves top-tier performance for label 

matching accuracy at a small fraction of the computational cost. Lastly, in contrast to many 

of the other methods Quicksilver produces virtually no outliers. One can speculate that 

this may be the benefit of learning to predict deformations from a large population of 

data, which may result in a prediction model which conservatively rejects unusual 

deformations. Note that such a population-based approach is very different from most 

existing registration methods which constrain deformations based on a regularizer chosen for 

a mathematical registration model. Ultimately, a deformation model for image registration 

should model what deformations are expected Our population-based approach is a step in 

this direction, but, of course, still depends on a chosen regularizer to generate training data. 

Ideally, this regularizer itself should be learned from data.

An interesting discovery is that LPP, LPC2 and LPC3 produce label overlapping scores that 

are on-par with LPC. However, as we will show in Sec. 3.2.3, LPP, LPC2 and LPC3 deviate 

from our goal of predicting deformations that are similar to the LDDMM optimization result 

(LO). In fact, they produce more drastic deformations that can lead to worse label overlap 

and even numerical stability problems. These problems can be observed in the LPBA40 

results shown in Fig. 6, which show more outliers with low overlapping scores for LPP and 

LPC3. In fact, there are 12 cases for LPP where the predicted momentum cannot generate 

deformation fields via LDDMM shooting using PyCA, due to problems related to numerical 

integration. These cases are therefore not included in Fig. 6. PyCA uses an explicit Runge-

Kutta method (RK4) for time-integration. Hence, numerical instability is likely due to the 

use of a fixed step size for this time-integration which is small enough for the deformations 

expected to occur for these brain registration tasks, but which may be too large for the more 

extreme momenta LPP and LPC3 create for some of these cases. Using a smaller step-size 

would regain numerical stability in this case.

To study the differences among registration algorithms statistically, we performed paired t-
tests15 with respect to the target overlap scores between our LDDMM variants (LO, LP, 

LPC) and the methods in [33]. Our null-hypothesis is that the methods show the same target 

overlap scores. We use a significance level of α = 0.05/204 for rejection of this null-
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hypothesis. We also computed the mean and the standard deviation of pair-wise differences 

between our LDDMM variants and these other methods. Table 3 shows the results. We 

observe that direct numerical optimization of the shooting LDDMM formulation via PyCA 

(LO) is a highly competitive registration method and shows better target overlap scores than 

most of the other registration algorithms for all four datasets (LPBA40, IBSR18, 

CUMC12, and MGH10). Notable exceptions are ART (on LPBA40), SyN (on LBPA40), and 

SPM5D (on IBSR18). However, performance decreases are generally very small: −0.017, 

−0.013, and −0.009 mean decrease in target overlap ratio for the three aforementioned 

exceptions, respectively. Specifically, a similar performance of LO to SyN, for example, is 

expected as SyN (as used in [33]) is based on a relaxation formulation of LDDMM, whereas 

LO is based on the shooting formulation of LDDMM. Performance differences may be due 

to differences in the used regularizer and the image similarity measure. In particular, where 

SyN was used with Gaussian smoothing and cross-correlation, we used SSD as the image 

similarity measure and a regularizer involving up to second order spatial derivatives.

LO is the algorithm that our predictive registration approaches ( LP and LPC) are based on. 

Hence, LP and LPC are not expected to show improved performance with respect to LO. 

However, similar performance for LP and LPC would indicate high quality predictions. 

Indeed, Table 3 shows that our prediction+correction approach (LPC) performs similar 

(with respect to the other registration methods) to LO. A slight performance drop with 

respect to LO can be observed for LPC and a slightly bigger performance drop for LP, which 

only uses the prediction model, but no correction model.

To assess statistical equivalence of the top performing registration algorithms we performed 

paired two onesided tests (paired TOST) [71] with a relative threshold difference of 2%. In 

other words, our null-hypothesis is: that methods show a relative difference of larger than 

2%. Rejection of this null-hypothesis at a significance level of α = 0.05/204 then indicates 

evidence for statistical equivalence. Table 4 shows the paired TOST results. For a relative 

threshold difference of 2% LPC can be considered statistically equivalent to LO for all four 

datasets and to many of the other top methods (e.g., LPC vs. SyN on MGH10 and IBSR18).

Overall, these statistical tests confirm that our prediction models, in particular LPC, are 

highly competitive-registration algorithms. Computational cost, however, is very small. This 

is discussed in detail in Sec. 3.4.

3.2.3. Choosing the correct “correction step”—As shown in Sec. 3.2.2, LPP, LPC2 

and LPC3 all result in label overlapping scores which are similar to the label overlapping 

scores obtained via LPC. This raises the question which method should be preferred for the 

correction step. Note that among these methods, only LPC is specifically trained to match the 

LDDMM optimization results and in particular to predict corrections to the initial 

momentum obtained by the prediction model (LP) in the tangent space of the moving 

15To safe-guard against overly optimistic results due to multiple comparisons, we used Bonferroni correction for all statistical tests in 
the paper (paired t-tests and paired TOST) by dividing the significance level α by the total number (204) of statistical tests we 
performed. This resulted in an effective significance level α = 0.05/204 ≈ 0.00025. The Bonferroni correction is likely overly strict for 
our experiments as the different registration results will be highly correlated, because they are based on the same input data.
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image. In contrast, LPP, LPC2 and LPC3 lack this theoretical motivation. Hence, it is 

unclear for these methods what the overall optimization goal is. To show what this means in 

practice, we computed the determinant of the Jacobian of the deformation maps (Φ−1) for all 

voxels for all four registration cases of [33] inside the brain mask and calculated the 

histogram of the computed values. Our goal is to check the similarity (in distribution) 

between deformations generated by the prediction models (LP, LPC, LPP, LPC2, 

LPC3) in comparison to the results obtained via numerical LDDMM optimization (LO).

As an example, Fig. 7 shows the result for the LPBA40 dataset. The other three datasets show 

similar results. Fig. 7 (left) shows the histogram of the logarithmically transformed 

determinant of the Jacobian (log10detJ) for all the methods. A value of 0 on the x-axis 

indicates no deformation or a volume preserving deformation, > 0 indicates volumetric 

shrinkage and < 0 indicates volumetric expansion. We can see that LPC is closest to LO. LP 

generates smoother deformations compared with LO, which is sensible as one-step 

predictions will likely not be highly accurate and, in particular, may result in predicted 

momenta which are slightly smoother than the ones obtained by numerical optimization. 

Hence, in effect, the predictions may result in a more strongly spatially regularized 

deformation. LPP, LPC2 and LPC3 generate more drastic deformations (i.e., more spread 

out histograms indicating areas of stronger expansions and contractions). Fig. 7 (right) 

shows this effect more clearly; it shows the differences between the histogram of the 

prediction models and the registration result obtained by numerical optimization (LO). 

Hence, a method which is similar to LO in distribution will show a curve close to y = 0.

This assessment also demonstrates that the correction network (of LPC) is different from the 

prediction network (LP): the correction network is trained specifically to correct minor 
errors in the predicted momenta of the prediction network with respect to the desired 

momenta obtained by numerical optimization (LO), while the prediction network is not. 

Thus, LPC is the only model among the prediction models (apart from LP) that has the 

explicit goal of predicting the behavior of the LDDMM optimization result (LO). When we 

use the prediction network in the correction step, the high label overlapping scores are due to 

more drastic deformations compared with LP, but there is no clear theoretical justification of 

LPP. In fact, it is more reminiscent of a greedy solution strategy, albeit still results in 

geodesic paths as the predicted momenta are added in the tangent space of the undeformed 

moving image. Similar arguments hold for LPC2 and LPC3: using the correction network 

multiple times (iteratively) in the correction step also results in increasingly drastic 

deformations, as illustrated by the curves for LPC, LPC2 and LPC3 in Fig. 7. Compared to 

the label overlapping accuracy boost from LP to LPC, LPC2 and LPC3 do not greatly 

improve the registration accuracy, and may even generate worse results (e.g., LPC3 on 

LPBA40). Furthermore, the additional computation cost for more iterations of the correction 

network + LDDMM shooting makes LPC2 and LPC3 less favorable, in comparison to LPC.

3.2.4. Predicting various ranges of deformations—Table 5 shows the range of 

deformations and associated percentiles for the deformation fields generated by LDDMM 

optimization for the four image-to-image test datasets. All computations were restricted to 

locations inside the brain mask. Table 5 also shows the means and standard deviations of the 
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differences of deformations between the results for the prediction models and the results 

obtained by numerical optimization (LO). As shown in the table, the largest deformations 

that LDDMM optimization generates are 23.393 mm for LPBA40, 36.263 mm for IBSR18, 

18.753 mm for CUMC12 and 18.727 mm for MGH10.

Among the prediction models, LPC improves the prediction accuracy compared with LP, and 

generally achieves the highest deformation prediction accuracy for up to 80% of the voxels. 

It is also on-par with other prediction models for up to 99% of the voxels, where the largest 

deformations are in the range between 7.317 mm-9.026 mm for the four datasets. For very 

large deformations that occur for 1% of the total voxels, LPC does not drastically reduce the 

deformation error. This is due to the following three reasons: First, the input patch size of the 

deep learning framework is 15 × 15 × 15, which means that the receptive field for the 

network input is limited to 15 × 15 × 15mm3. This constrains the network’s ability to predict 

very large deformations, and can potentially be solved by implementing a multi-scale input 

network for prediction. Second, the deformations in the OASIS training images have a 

median of 2.609 mm, which is similar to the median observed in the four testing datasets. 

However, only 0.2% of the voxels in the OASIS training dataset have deformations larger 

than 10 mm. Such a small number of training patches containing very large deformations 

makes it difficult to train the network to accurately predict these very large deformations in 

the test data. If capturing these very large deformations is desired, a possible solution could 

be to provide a larger number of training examples for large deformations or to weight 

samples based on their importance. Third, outliers in the dataset whose appearances are very 

different from the other images in the dataset can cause very large deformations. For 

example, in the IBSR18 dataset, only three distinct images are needed as moving or target 

images to cover the 49 registration cases that generate deformations larger than 20 mm. 

These large deformations created by numerical LDDMM optimization are not always 

desirable; and consequentially registration errors of the prediction models with respect to the 

numerical optimization result are in fact sometimes preferred. As a case in point, Fig. 8 

shows a registration failure case from the IBSR18 dataset for LDDMM optimization and the 

corresponding prediction result. In this example, the brain extraction did not extract 

consistent anatomy for the moving image and the target image. Specifically, only 

inconsistent parts of the cerebellum remain between the moving and the target images. As 

optimization-based LDDMM does not know about this inconsistency, it attempts to match 

the images as well as possible and thereby creates a very extreme deformation. Our 

prediction result, however, still generates reasonable deformations (where plausibility is 

based on the deformations that were observed during training) while matching the brain 

structures as much as possible. This can be regarded as an advantage of our network, where 

the conservative nature of patch-wise momentum prediction is more likely to generate 

reasonable deformations.

3.3. Multi-modal image registration

In this task, a sliding window stride of 14 is used for the test cases. Table 6 shows the 

prediction results compared to the deformation results obtained by T1w-T1w LDDMM 

optimization. The multi-modal networks (T1w-T2w, LP/LPC) significantly reduce 

deformation error compared to affine registration, and only suffer a slight loss in accuracy 
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compared to their T1w-T1w counterparts. This demonstrates the capability of our network 

architecture to implicitly learn the complex similarity measure between two modalities. 

Furthermore, for the networks trained using only 10 images, the performance only decreases 

slightly in comparison with the T1w-T2w multi-modal networks trained with 359 images. 

Hence, even when using very limited image data, we can still successfully train our 

prediction networks when a sufficient number of patches is available. Again, using a 

correction network improves the prediction accuracy in all cases. Fig. 10 shows one 

multimodal registration example. All three networks (T1w-T1w, T1w-T2w, T1w-T2w using 

10 training images) generate warped images that are similar to the LDDMM optimization 

result.

3.4. Runtime study

We assess the runtime of Quicksilver on a single Nvidia TitanX (Pascal) GPU. 

Performing LDDMM optimization using the GPU-based implementation of PyCA for a 229 

× 193 × 193 3D brain image takes approximately 10.8 minutes. Using our prediction 

network with a sliding window stride of 14, the initial momentum prediction time is, on 

average, 7.63 seconds. Subsequent geodesic shooting to generate the deformation field takes 

8.9 seconds, resulting in a total runtime of 18.43 seconds. Compared to the LDDMM 

optimization approach, our method achieves a 35× speed up. Using the correction network 

together with the prediction network doubles the computation time, but the overall runtime 

is still an order of magnitude faster than direct LDDMM optimization. Note that, at a stride 

of 1, computational cost increases about 3000-fold in 3D, resulting in runtimes of about 5½ 

hours for 3D image registration (eleven hours when the correction network is also used). 

Hence the initial momentum parameterization, which can tolerate large sliding window 

strides, is essential for fast deformation prediction with high accuracy while guaranteeing 

diffeomorphic deformations.

Since we predict the whole image initial momentum in a patch-wise manner, it is natural to 

extend our approach to a multi-GPU implementation by distributing patches across multiple 

GPUs. We assess the runtime of this parallelization strategy on a cluster with multiple 

Nvidia GTX 1080 GPUs; the initial momentum prediction result is shown in Fig. 11. As we 

can see, by increasing the number of GPUs, the initial momentum prediction time decreases 

from 11.23 seconds (using 1 GPU) to 2.41 seconds using 7 GPUs. However, as the number 

of GPUs increases, the communication overhead between GPUs becomes larger which 

explains why computation time does not equal to 11.23/number of GPUs seconds. Also, 

when we increase the number of GPUs to 8, the prediction time slightly increases to 2.48s. 

This can be attributed to the fact that PyTorch is still in Beta-stage and, according to the 

documentation, better performance for large numbers of GPUs (8+) is being actively 

developed16. Hence, we expect faster prediction times using a large number of GPUs in the 

future. Impressively, by using multiple GPUs, the runtime can be improved by two orders of 

magnitude over a direct (GPU-based) LDDMM optimization. Thus, our method can readily 

be used in a GPU-cluster environment for ultra-fast deformation prediction.

16http://pytorch.org/docs/notes/cuda.html/#cuda-nn-dataparallel-instead
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4. Discussion

We proposed a fast registration approach based on the patch-wise prediction of the initial 

momentum parameterization of the LDDMM shooting formulation. The proposed approach 

allows taking large strides for patch-wise prediction, without a substantial decrease in 

registration accuracy, resulting in fast and accurate deformation prediction. The proposed 

correction network is a step towards highly accurate deformation prediction, while only 

decreasing the computation speed by a factor of 2. Our method retains all theoretical 

properties of LDDMM and results in diffeomorphic transformations if appropriately 

regularized, but computes these transformations an order of magnitude faster than a GPU-

based optimization for the LDDMM model. Moreover, the patch-wise prediction approach 

of our methods enables a multi-GPU implementation, further increasing the prediction 

speed. In effect, our Quicksilver registration approach converts a notoriously slow and 

memory-hungry registration approach to a fast method, while retaining all of its appealing 

mathematical properties.

Our framework is very general and can be directly applied to many other registration 

techniques. For nonparametric registration methods with pixel/voxel wise registration 

parameters (e.g., elastic registration [1], or stationary velocity field [44] registration 

approaches), our approach can be directly applied for parameter prediction. For parametric 

registration methods with local control such as B-splines, we could attach fully connected 

layers to the decoder to reduce the network output dimension, thereby predicting low-

dimensional registration parameters for a patch. Of course, the patch pruning techniques 

may not be applicable for these methods if the parameter locality cannot be guaranteed.

In summary, the presented deformation prediction approach is the first step towards more 

complex tasks where fast, deformable, predictive image registration techniques are required. 

It opens up possibilities for various extensions and applications. Exciting possibilities are, 

for example, to use Quicksilver as the registration approach for fast multi-atlas 

segmentation, fast image geodesic regression, fast atlas construction, or fast user-interactive 

registration refinements (where only a few patches need to be updated based on local 

changes). Furthermore, extending the deformation prediction network to more complex 

registration tasks could also be beneficial; e.g., to further explore the behavior of the 

prediction models for multi-modal image registration [36]. Other potential areas include 

joint image-label registration for better labelmatching accuracy; multi-scale-patch networks 

for very large deformation prediction; deformation prediction for registration models with 

anisotropic regularizations; and end-to-end optical flow prediction via initial momentum 

parameterization. Other correction methods could also be explored, by using different 

network structures, or by recursively updating the deformation parameter prediction using 

the correction approach (e.g., with a sequence of correction networks where each network 

corrects the momenta predicted from the previous one). Finally, since our uncertainty 

quantification approach indicates high uncertainty for areas with large deformation or 

appearance changes, utilizing the uncertainty map to detect pathological areas could also be 

an interesting research direction.
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Source code

To make the approach readily available to the community, we open-sourced Quicksilver 

at https://github.com/rkwitt/quicksilver. Our long-term goal is to make our framework the 

basis for different variants of predictive image registration; e.g., to provide Quicksilver 

variants for various organs and imaging types, as well as for different types of spatial 

regularization.
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Figure 1. 
Left: The LDDMM momentum parameterization is ideal for patch-based prediction of 

image registrations. Consider registering a small square (left) to a large square (middle) with 

uniform intensity. Only the corner points suggest clear spatial correspondences. Edges also 

suggest spatial correspondences, however, correspondences between individual points on 

edges remain ambiguous. Lastly, points interior to the squares have ambiguous spatial 

correspondences, which are established purely based on regularization. Hence, predicting 

velocity or displacement fields (which are spatially dense) from patches is challenging in 

these interior areas (right), in the absence of sufficient spatial context. Predicting a 

displacement field as illustrated in the right image from an interior patch (illustrated by the 

red square) would be impossible if both the target and the source image patches are uniform 

in intensity. In this scenario, the patch information would not provide sufficient spatial 

context to capture aspects of the deformation. On the other hand, we know from LDDMM 

theory that the optimal momentum, m, to match images can be written as m(x,t) = λ(x,t)
∇I(x,t), where λ(x,t) ⟼ ℝ is a spatio-temporal scalar field and I(x,t) is the image at time t 
[45, 19, 17]. Hence, in spatially uniform areas (where correspondences are ambiguous) ∇I = 

0 and consequentially m(x, t) = 0. This is highly beneficial for prediction as the momentum 

only needs to be predicted at image edges. Right: Furthermore, as the momentum is not 

spatially smooth, the regression approach does not need to account for spatial smoothness, 

which allows predictions with non-overlapping or hardly-overlapping patches as illustrated 

in the figure by the red squares. This is not easily possible for the prediction of displacement 

or velocity fields since these are expected to be spatially dense and smooth, which would 

need to be considered in the prediction. Consequentially, predictions of velocity or 

displacement fields will inevitably result in discontinuities across patch boundaries (i.e., 

across the red square boundaries shown in the figure) if they are predicted independently of 

each other.
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Figure 2. 
3D (probabilistic) network architecture. The network takes two 3D patches from the moving 

and target image as the input, and outputs 3 3D initial momentum patches (one for each of 

the x,y and z dimensions respectively; for readability, only one decoder branch is shown in 

the figure). In case of the deterministic network, see Sec. 2.2.1, the dropout layers, 

illustrated by , are removed. Conv: 3D convolution layer. ConvT: 3D transposed 

convolution layer. Parameters for the Conv and ConvT layers: In: input channel. Out: output 

channel. Kernel: 3D filter kernel size in each dimension. Stride: stride for the 3D 

convolution. Pad: zero-padding added to the boundaries of the input patch. Note that in this 

illustration B denotes the batch size.
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Figure 3. 
The full prediction + correction architecture for LDDMM momenta. First, a rough 

prediction of the initial momentum, mLP, is obtained by the prediction network (LP) based 

on the patches from the unaligned moving image, M and target image, T, respectively. The 

resulting deformation maps Φ−1 and Φ are computed by shooting. Φ is then applied to the 

target image to warp it to the space of the moving image. A second correction network is 

then applied to patches from the moving image M and the warped target image T ○ Φ to 

predict a correction of the initial momentum, mC in the space of the moving image, M. The 

final momentum is then simply the sum of the predicted momenta, m = mLP + mC, which 

parameterizes a geodesic between the moving image and the target image.
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Figure 4. 
Log10 plot of l1 training loss per patch. The loss is averaged across all iterations for every 

epoch for both the Atlas-to-Image case and the Image-to-Image case. The combined 

prediction + correction networks obtain a lower loss per patch than the loss obtained by 

simply training the prediction networks for more epochs.
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Figure 5. 
Atlas-to-image registration example. From left to right: (a): moving (atlas) image; (b): target 

image; (c): deformation from optimizing LDDMM energy; (d): deformation from using the 

mean of 50 samples from the probabilistic network with stride=14 and patch pruning; (e): 

the uncertainty map as square root of the sum of the variances of the deformation in x, y, and 

z directions mapped onto the predicted deformation result. The coloring indicates the level 

of uncertainty, with red = high uncertainty and blue = low uncertainty. Best-viewed in color.
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Figure 6. 
Overlap by registration method for the image-to-image registration case. The boxplots 

illustrate the mean target overlap measures averaged over all subjects in each label set, 

where mean target overlap is the average of the fraction of the target region overlapping with 

the registered moving region over all labels. The proposed LDDMM-based methods in this 

paper are highlighted in red. LO = LDDMM optimization; LP = prediction network; LPC = 

prediction network + correction network. LPP: prediction network + using the prediction 

network for correction. LPC2/LPC3: prediction network + iteratively using the correction 

network 2/3 times. Horizontal red lines show the LPC performance in the lower quartile to 

upper quartile (best-viewed in color). The medians of the overlapping scores for [LPBA40, 

IBSR18, CUMC12, MGH10] for LO, LP and LPC are: LO: [0.702, 0.537, 0.536, 0.563]; LP: 

[0.696, 0.518, 0.515, 0.549]; LPC: [0.702, 0.533, 0.526, 0.559]. Best-viewed in color.
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Figure 7. 
Distribution of the determinant of Jacobian of the deformations for LPBA40 dataset 

registrations. Left : histograms of the log-transformed determinant of Jacobian for the 

deformation maps (log10detJ) for all registration cases. Right : difference of the histograms 

of log10detJ between prediction models (LP, LPC, LPP, LPC2, LPC3) and LO. For the 

right figure, the closer a curve is to y = 0, the more similar the corresponding method is to 

LO. A value of 0 on the x-axis indicates no deformation, or a volume-preserving 

deformation, > 0 indicates shrinkage and < 0 indicates expansion. Best-viewed in color.
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Figure 8. 
Failure case for IBSR18 dataset where LDDMM optimization generated very extreme 

deformations. From left to right: (a): moving image; (b): target image; (c): LDDMM 

optimization result; (d): prediction+correction result (LPC); (e): heatmap showing the 

di_erences between the optimization deformation and predicted deformation in millimeters. 

Most registration errors occur in the area of the cerebellum, which has been inconsistently 

preserved in the moving and the target images during brain extraction. Hence, not all the 

retained brain regions in the moving image have correspondences in the target image. Best-

viewed in color.
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Figure 9. 
Example test cases for the image-to-image registration. For every figure from left to right : 
(1): moving image; (2): target image; (3): registration result from optimizing LDDMM 

energy; (4): registration result from prediction network (LP); (5): registration result from 

prediction+correction network (LPC).
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Figure 10. 
Example test case for multi-modal image-to-image tests. (a): T1w moving image; (b): T2w 

target image; (c): T1w-T1w LDDMM optimization (LO) result; (d)-(f): deformation 

prediction+correction (LPC) result using (d) T1w-T1w data; (e) T1w-T2w data; (f) T1w-

T2w data using only 10 images as training data.
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Figure 11. 
Average initial momentum prediction time (in seconds) for a single 229 × 193 × 193 3D 

brain image case using various number of GPUs.
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Table 2

Mean and standard deviation of the LDDMM energy for four image-to-image test datasets.

LDDMM energy for image-to-image test datasets

LPBA40

initial LO LP LPC

0.120 ± 0.013 0.027 ± 0.004 0.036 ± 0.005 0.030 ± 0.005

IBSR18

initial LO LP LPC

0.214 ± 0.032 0.037 ± 0.008 0.058 ± 0.013 0.047 ± 0.011

CUMC12

initial LO LP LPC

0.246 ± 0.015 0.044 ± 0.003 0.071 ± 0.004 0.056 ± 0.004

MGH10

initial LO LP LPC

0.217 ± 0.012 0.039 ± 0.003 0.062 ± 0.004 0.049 ± 0.003

initial: the initial LDDMM energy between the original moving image and the target image after affine registration to the atlas space, i.e. 

the original image matching energy. LO: LDDMM optimization. LP: prediction network. LPC: prediction+correction network.
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Table 3

Mean and standard deviation of the difference of target overlap score between LDDMM variants (LDDMM 

optimization (LO), the proposed prediction network (LP) and prediction+correction network (LPC)) and all 

other methods for the image-to-image experiments.

The cell coloring indicates significant differences calculated from a pair-wise t-test: green indicates that the row-method is statistically significantly 
better than the column-method; red indicates that the row-method is statistically significantly worse than the column-method, and blue indicates the 
difference is not statistically significant (best-viewed in color). We use Bonferroni correction to safe-guard against spurious results due to multiple 
comparisons by dividing the significance level α by 204 (the total number of statistical tests). The significance level for rejection of the null-
hypothesis is α = 0.05/204. Best-viewed in color.
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