Table 6.
Deformation Error w.r.t LDDMM optimization on T1w-T1w data [mm] | |||||||
---|---|---|---|---|---|---|---|
Data percentile for all voxels | 0.3% | 5% | 25% | 50% | 75% | 95% | 99.7% |
Affine (Baseline) | 0.1664 | 0.46 | 0.9376 | 1.4329 | 2.0952 | 3.5037 | 6.2576 |
T1w-T1w LP | 0.0348 | 0.0933 | 0.1824 | 0.2726 | 0.3968 | 0.6779 | 1.3614 |
T1w-T1w LPC | 0.0289 | 0.0777 | 0.1536 | 0.2318 | 0.3398 | 0.5803 | 1.1584 |
T1w-T2w LP | 0.0544 | 0.1457 | 0.2847 | 0.4226 | 0.6057 | 1.0111 | 2.0402 |
T1w-T2w LPC | 0.0520 | 0.1396 | 0.2735 | 0.4074 | 0.5855 | 0.9701 | 1.9322 |
T1w-T2w LP, 10 images | 0.0660 | 0.1780 | 0.3511 | 0.5259 | 0.7598 | 1.2522 | 2.3496 |
T1w-T2w LPC, 10 images | 0.0634 | 0.1707 | 0.3356 | 0.5021 | 0.7257 | 1.1999 | 2.2697 |
Deformation error (2-norm) per voxel between predicted deformation and optimization deformation. Percentiles over all deformation errors are shown to illustrate the error distribution. LP: prediction network. LPC: prediction+correction network. 10 images: network is trained using 10 images (90 registrations as training cases).