Skip to main content
. Author manuscript; available in PMC: 2018 Sep 1.
Published in final edited form as: Neuroimage. 2017 Jul 11;158:378–396. doi: 10.1016/j.neuroimage.2017.07.008

Table 6.

Evaluation result for multi-modal image-to-image tests.

Deformation Error w.r.t LDDMM optimization on T1w-T1w data [mm]
Data percentile for all voxels 0.3% 5% 25% 50% 75% 95% 99.7%
Affine (Baseline) 0.1664 0.46 0.9376 1.4329 2.0952 3.5037 6.2576
T1w-T1w LP 0.0348 0.0933 0.1824 0.2726 0.3968 0.6779 1.3614
T1w-T1w LPC 0.0289 0.0777 0.1536 0.2318 0.3398 0.5803 1.1584
T1w-T2w LP 0.0544 0.1457 0.2847 0.4226 0.6057 1.0111 2.0402
T1w-T2w LPC 0.0520 0.1396 0.2735 0.4074 0.5855 0.9701 1.9322
T1w-T2w LP, 10 images 0.0660 0.1780 0.3511 0.5259 0.7598 1.2522 2.3496
T1w-T2w LPC, 10 images 0.0634 0.1707 0.3356 0.5021 0.7257 1.1999 2.2697

Deformation error (2-norm) per voxel between predicted deformation and optimization deformation. Percentiles over all deformation errors are shown to illustrate the error distribution. LP: prediction network. LPC: prediction+correction network. 10 images: network is trained using 10 images (90 registrations as training cases).