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Abstract

Acinar cells in the adult pancreas show high plasticity and can undergo transdifferentiation to a 

progenitor-like cell type with ductal characteristics. This process, termed acinar-to-ductal 

metaplasia (ADM), is an important feature facilitating pancreas regeneration after injury. Data 

from animal models show that cells that undergo ADM in response to oncogenic signalling are 

precursors for pancreatic intraepithelial neoplasia lesions, which can further progress to pancreatic 

ductal adenocarcinoma (PDAC). As human pancreatic adenocarcinoma is often diagnosed at a 

stage of metastatic disease, understanding the processes that lead to its initiation is important for 

the discovery of markers for early detection, as well as options that enable an early intervention. 

Here, the critical determinants of acinar cell plasticity are discussed, in addition to the intracellular 

and extracellular signalling events that drive acinar cell metaplasia and their contribution to 

development of PDAC.

Of the adult cell lineages of the pancreas, acinar cells show the highest plasticity1,2. 

Pancreatic acinar cells can dedifferentiate or transdifferentiate to an embryonic progenitor 

phenotype that expresses ductal markers, in a process termed acinar-to-ductal metaplasia 

(ADM)3. Multiple factors have been implicated in mediating ADM, including KRAS 

hyperactivity and increased inflammatory signalling4–7 (FIG. 1). The implication of ADM in 

the development of pancreatic adenocarcinoma was first demonstrated in mice by transgenic 

overexpression of transforming growth factor (TGF)-α8. ADM was also demonstrated in 
vitro in 3D cell culture, in which mouse acinar cell clusters, in the presence of internal or 

external stress signalling, oncogenic KRAS, inflammatory cytokines or growth factors that 

activate epidermal growth factor receptor (EGFR), spontaneously transdifferentiate into 

duct-like structures4,6,9–11. Similar 3D cell culture experiments showed that ADM in human 

acinar cells can be induced by TGFβ12.

ADM is a common and reversible process during pancreatic inflammation (pancreatitis) or 

injury in mouse and human tissue4,13, and the resulting cells are believed to contribute to the 

regeneration of acinar structures and repopulation of the pancreas. Transgenic mouse models 

showed that ADM becomes irreversible when cells acquire oncogenic Kras mutations or 

persistent aberrant growth factor signalling, which prevent redifferentiation and initiate 
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further progression. Oncogenic KRAS in mouse acinar cells alter gene expression profiles 

and lead to: silencing of acinar genes such as Mist1 (also known as Bhlha15), Cpa1 or those 

encoding elastase and amylase; the induction of ductal genes encoding cytokeratin 19 

(Krt19) and mucin 1 (Muc1); and the upregulated expression of pancreatic and duodenal 

homeobox 1 (Pdx1) and Sry-related high-mobility group box 9 (Sox9)4,11. Lineage tracing 

in mice has shown that acinar cells undergoing such changes due to persistent expression of 

oncogenic KrasG12D transdifferentiate to ADM cells that are incapable of redifferentiating, 

but instead further progress to duct-like cells that form precancerous pancreatic 

intraepithelial neoplasia (PanIN) 1A or 1B (early dysplastic) or PanIN2 lesions (increasing 

levels of dysplasia)14. However, oncogenic KRAS alone does not drive carcinogenesis 

beyond this initiation level; secondary events are needed for further progression to 

carcinoma in situ (PanIN3; high-grade dysplasia) and pancreatic ductal adenocarcinoma 

(PDAC). Such events include additional activation of wild-type KRAS alleles through EGFR 

signalling6,15–17, inflammation5,18–20 and acquisition of additional gene mutations21. 

However, comparative studies of human tissues and transgenic mice (using the Pdx1-

Cre;KrasLSL-G12D model) suggest that ADM also can give rise to dysplastic lesions other 

than PanIN22,23.

Although ADM as an initiating event for the development of pancreatic cancer has been 

demonstrated in mice, the proof that ADM has a role in the development of human cancer is 

still outstanding. On the basis of knowledge mainly obtained with genetic mouse models, 

this Review will discuss how acinar cell identity is maintained, how ADM (either reversible 

or irreversible) is initiated, as well as the currently favoured progression model via PanIN.

Acinar cell identity factors

Several basic helix–loop–helix (bHLH) transcription factors contribute to acinar cell identity 

and their genetic ablation in mouse models leads to dedifferentiation and ADM. Pancreas 

transcription factor 1 complex (PTF1) has a central role in not only maintaining the 

differentiation of acinar cells, but also their function by regulating the production of 

digestive enzymes24. The PTF1 complex in adult pancreas is a trimeric transcription factor 

formed by recombining binding protein suppressor of hairless (RBPJ) and a dimer of the 

bHLH transcription factor pancreas specific transcription factor 1 alpha (PTF1A, also known 

as p48)25. This complex then recruits p300/CREB (also known as histone acetyltransferase 

KAT2B), which acetylates PTF1A to further enhance transcriptional activity26. This 

interaction can be blocked by inhibitor of β-catenin and TCF4 (ICAT; also known as β-

catenin-interacting protein 1) with the net effect of negatively-regulating acinar cell 

differentiation26. Ptf1a has been demonstrated to be epigenetically silenced during 

inflammation and during oncogenic KRAS-driven ADM in mice27. Furthermore, ablation of 

Ptf1a in mice is sufficient to induce ADM, potentiate inflammation and accelerate 

development of invasive PDAC by sensitizing cells to KRAS-mediated transformation28.

Another key regulator of proper development of the exocrine pancreas, as well as 

maintenance of identity and organization of adult acinar cells, is the bHLH factor MIST1, 

which functions as a homodimer29. In acinar cells, MIST1 regulates apical–basal polarity, 

formation of gap junctions, proper positioning of zymogen granules and exocytosis30. 
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Acinar cells in which MIST1 homodimerization is blocked are predisposed to conversion to 

a duct-like phenotype, which becomes evident by increased expression of SOX9 (REF. 31), 

as well as upregulation of EGFR and Notch signalling pathways32. Ablation of MIST1 

function leads to depletion of gap junctions, loss of polarity, dedifferentiation and 

ADM31,33, but also acquisition of proliferative potential due to a decrease in p21 gene 

expression34,35. In the context of KrasG12D mice, these effects, owing to a loss of MIST1, 

accelerate ADM and the occurrence of PanIN32.

GATA6 is a transcription factor that maintains acinar cell differentiation by suppressing pro-

inflammatory and EGFR signalling pathways. Its ablation in mice results in extensive ADM, 

and in the context of an activating KrasG12V mutation, accelerates tumour development36. 

Interestingly, smoking is a risk factor for the development of pancreatic cancer and nicotine 

has been shown to decrease GATA6 promoter activity, leading to loss of its expression37.

Other factors that regulate acinar cell identity in mice are the bHLH transcription factor E47 

(also known as TFE2), NR5A2, DICER1 and PAF1 (also known as pancreatic differentiation 

protein 2)38–41. NR5A2 maintains the mature acinar differentiation state, and in the context 

of an oncogenic Kras mutation, loss of NR5A2 accelerates the occurrence of ADM and 

PanIN40,42. Processing of microRNA (miRNA) by DICER1 is required for the maintenance 

of adult pancreatic acinar cells, and deletion of DICER1 increased acinar cell plasticity 

owing to a loss of polarity41. Additionally, deletion of DICER1 accelerates KRAS-driven 

acinar cell dedifferentiation and ADM, but not progression of PanIN43. PAF1 expression is 

normally restricted to acinar cells in the pancreas, but its depletion promotes ADM, 

indicating a role in maintenance of acinar cell identity39. Consequently, its expression is 

gradually lost during PDAC initiation39.

Acinar cell dedifferentiation factors

CDKN1B and SOX9

Loss of cyclin-dependent kinase inhibitor 1B (CDKN1B; also known as p27Kip1) occurs 

frequently in human PDAC and is associated with decreased survival44. Nuclear CDKN1B 

suppresses the expression of key factors that regulate acinar cell dedifferentiation and 

transdifferentiation to a ductal phenotype, such as the transcription factors SOX9 and PDX1 

(REF. 45). KRAS activation can decrease nuclear CDKN1B localization, which increases 

the expression of both SOX9 and PDX1.

In the normal (mouse and human) adult pancreas, SOX9 is expressed in centroacinar cells, at 

very low levels in acinar cells and in a subpopulation of ductal cells46,47. Under 

inflammatory conditions, or in the presence of oncogenic KRAS, SOX9 is increasingly 

expressed in acinar cells and stimulates gene expression that leads to ADM48, development 

of pre-malignant lesions and initiation of PDAC in mice14. In line with these findings, SOX9 

expression in patient tumour samples is elevated at all stages of preneoplastic lesions and 

PDAC49, correlating with increased expression of EGFR pathway-related genes50. Similarly, 

in mice, the absence of SOX9 reduces EGFR signalling and pancreatic tumorigenesis50. 

However, EGFR signalling can also regulate expression of SOX9 through activation of 

NFATC1 and NFATC4 (REFS 51,52).
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PDX1

In the adult mouse pancreas, PDX1 is mainly expressed in islets and only at low levels in 

acinar cells53,54. As shown by lineage tracing, during mouse development, PDX1-positive 

cells represent progenitors of all mature pancreatic cell types55. PDX1 is involved in 

regulation of morphologic changes needed for branching morphogenesis during pancreas 

organogenesis56,57, but it is also required at a later stage in development for differentiation 

of islet β cells58 and the formation of acinar tissue59. Transgenic persistent expression of 

PDX1 in mice leads to smaller pancreata, in which acinar cells are replaced by duct-like 

structures60. In line with this finding, PDX1 is upregulated during pancreatitis, in all types of 

precursor lesions including PanIN, intraductal papillary mucinous neoplasms (IPMN) and 

mucinous cystic neoplasms (MCN), as well as in PDAC, pancreatic endocrine neoplasms 

and acinar cell carcinoma53,60. PDX1 regulates ADM and the metaplastic phenotype 

through activation of signal transducer and activator of transcription 3 (STAT3)60. STAT3 is 

a regulator of stem cell self-renewal and inflammation, and its activity is also upregulated 

via IL-6 (REF. 61) and KRAS–YAP1/TAZ signalling62,63.

Notch signalling

Human PanIN samples show increased Notch activity64. During mouse and zebrafish 

pancreas development, expression of Notch1 intracellular domain (NICD; activated Notch1) 

prevents differentiation of pancreatic acinar cells and endocrine and exocrine development, 

indicating that it functions to maintain the undifferentiated state of pancreatic precursor 

cells65,66. In mice, Notch can be activated downstream of both EGFR–KRAS signalling and 

oncogenic KRAS activation to drive acinar cell dedifferentiation into a duct-like progenitor 

phenotype9,64,67, but its activation is not sufficient to drive progression of preneoplastic 

lesions to invasive adenocarcinoma64. Furthermore, NICD induces SOX9 expression68, but 

SOX9 function is also required for maintaining Notch signalling69, indicating a mechanism 

for signal amplification.

Other factors

In addition to the previously discussed molecules, MYC and KLF4 are other factors that are 

required to initiate the ADM process in mice70,71. Moreover, ectopic expression of 

hepatocyte nuclear factor 6 (HNF6) in mouse or human acinar cells represses acinar genes 

and upregulates ductal genes48.

Data also indicate that ADM might be induced by alteration of acinar cell polarity or cell–

cell contacts72. For example, deletion of liver kinase B1 (LKB1, a regulator of energy 

homeostasis) in mouse pancreas (Pdx1-Cre;KrasLSL-G12D model) leads to defective acinar 

cell polarity, cytoskeletal alterations and loss of tight junctions, with all in combination 

resulting in increased ADM7. Additionally, loss of NUMB, a protein that regulates integrins 

and cell junctions, results in dedifferentiation of acinar cells and accelerates the ADM 

process in mice in the presence of oncogenic KRAS73. In addition to cell–matrix 

connections, E-cadherin-based cell–cell adhesions have important functions in maintaining 

the acinar cell phenotype. E-cadherin stability in epithelial cells is regulated by p120 catenin 

and deletion of this protein in epithelial lineages of the developing pancreas in mice leads to 

ADM and PanIN1A74.
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Inflammatory macrophages drive acinar cell dedifferentiation and reversible ADM

Inflammation can be a driver of acinar cell transdifferentiation and the resulting ADM cells 

might contribute to regeneration after pancreatitis4,75. During pancreatic inflammation, 

cellular programmes downregulate factors that drive acinar cell identity such as MIST1 

(REFS 76,77). Forced expression of MIST1 counteracts ADM and leads to dramatic 

increases in acinar cell death, organ damage and failure of pancreas repopulation77. In 

caerulein-induced pancreatitis in mice, the formation of metaplastic ductal intermediates was 

also associated with increased Hedgehog signalling78, which is necessary to prevent acinar 

cell damage and to facilitate regeneration. Ablation of macrophages in mice indicated that 

caerulein-driven ADM is dependent on the presence of macrophages4. Moreover, 

macrophages were shown to affect acinar cell identity in the absence or presence of an 

oncogenic Kras mutation4,20.

Inflammatory macrophages initiate the ADM process via secretion of inflammatory 

mediators (FIG. 2), including IL-6 (REF. 61), TNF and CCL5 (also known as RANTES)4. 

IL-6 contributes to ADM through activation of JAK–STAT3 signalling61. TNF and CCL5 

both activate NF-κB in acinar cells to induce expression of a multitude of genes including 

those that regulate the degradation of extracellular matrix and ADM, such as matrix 

metalloproteinase (MMP)-9 (REF. 4). Additionally, macrophage-secreted MMP7 might 

activate Notch signalling. Consequently, MMP inhibition in mice completely blocked 

caerulein-induced ADM4. Other transcription factors activated in acinar cells after 

inflammation that contribute to ADM are NFATC1 and NFATC4 (REFS 51,52).

Oncogene-driven irreversible ADM

Oncogenic KRAS activates transcription factors similar to inflammatory macrophages (FIG. 

3), but also facilitates persistent signalling resulting in irreversibility of the ADM process79. 

Major signalling targets for activated KRAS during ADM are the RAF–MEK–ERK 

pathway, the phosphatidylinositol 3-kinase (PI3K)–AKT pathway and serine/threonine-

protein kinase D1 (PRKD1).

The PI3K–AKT pathway

PI3K acts downstream of KRAS and in mice, oncogenic KRAS-induced plasticity of 

pancreatic cells, formation of preneoplastic lesions and cancer initiation are all dependent on 

p110α (also known as PIK3CA, the catalytic subunit of PI3K)80,81. In line with this finding, 

ADM, PanIN and the formation of invasive PDAC can also be observed after transgenic 

expression of a constitutively-active form of p110α82. PI3K-mediated transdifferentiation of 

acinar cells is mediated through ERK1/2 signalling82, and small molecule inhibitors 

targeting the activation of ERK1/2 indicate that these MAP kinases are involved in 

KrasG12D-driven dedifferentiation of acinar cells, ADM and PanIN formation11,83. To drive 

these processes, PI3K also initiates actin reorganization processes that are orchestrated by 

Rho GTPases80,81,84. Pancreas-specific deletion of phosphatase and tensin homolog 

(PTEN), which negatively regulates PI3K signalling, leads to ductal metaplasia and 

malignant transformation in mice85. In the context of an oncogenic Kras mutation, loss of 

PTEN leads to even more accelerated formation of PDAC86,87. Similarly, expression of a 
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constitutively-active allele of Akt1, one of the downstream targets for PI3K signalling, 

induces ADM88 and cooperates with Kras oncogenic mutations to drive the onset and 

progression of PDAC89. However, only a subset (2–3%) of human patients with pancreatic 

cancer carry activating mutations in PIK3CA90, which suggests that increased PI3K activity 

might mainly be achieved by signalling through oncogenic KRAS in patients.

The PRKD1 pathway

Another emerging signalling pathway that drives ADM and progression to PanIN in mice 

(p48-Cre;KrasLSL-G12D mouse model) is regulated by PRKD1. This enzyme converges 

signalling initiated by oncogenic KRAS and wild-type KRAS downstream of EGFR6,9, and 

increases Notch1 activity to upregulate SOX9 and PDX1. This process is mediated through 

PRKD1-induced downregulation of suppressors of Notch signalling, such as SEL1L and 

CBL9, and upregulation of inducers of Notch activation, such as ADAM10, ADAM17 and 

MMP7 (REFS 9,91). PRKD1 also links oncogenic KRAS signalling to activation of NF-

κB6, and activation of the PRKD1–NF-κB pathway is driven by metabolic changes initiated 

by KRAS that lead to an increase in mitochondrial reactive oxygen species (ROS)6. ROS–

PRKD1–NF-κB signalling in acinar cells then upregulates expression of EGFR and its 

ligands, TGFα and EGF, further potentiating the oncogenic effects of mutant KRAS in a 

feedback loop6. Notch and NF-κB signalling pathways can cooperate to mediate formation 

of preneoplastic lesions92. Thus, PRKD1 brings together two important pathways that drive 

the formation of precancerous lesions. Notch can also act synergistically with other 

transcription factors such as STAT3 and the combined inhibition of Notch and JAK2–STAT3 

signalling in KrasLSL-G12D/+;Trp53−/+;Pdx1-Cre (KPC) mice has been shown to impair 

ADM and its progression93.

Oncogene-driven microinflammation

Acinar cells with an oncogenic KrasG12D mutation have also been shown to produce 

chemoattractants for inflammatory macrophages18. This process causes a persistent 

microinflammation that contributes to acinar cell transdifferentiation. One of the factors 

released by acinar cells is intracellular adhesion molecule 1 (ICAM1, also known as CD54), 

which can be shed as a soluble form. Blocking ICAM1 using neutralization antibodies has 

been shown to substantially reduce the occurrence and progression of KrasG12D-driven 

preneoplastic lesions in mice20. However, such microinflammation is not sufficient to drive 

the progression to PDAC, and additional inflammatory insults and genetic alterations are 

needed for acceleration of the oncogenic process18,19,94.

ADM as a precursor lesion

Cancer initiation

Mutations in the KRAS proto-oncogenes are the earliest events leading to development of 

human PDAC95. Data from genetic mouse models have shown that transgenic expression of 

oncogenic KRAS in acinar cells initiates ADM and locks them into a transdifferentiated 

duct-like state. To progress from ADM to PanIN and pancreatic cancer, the activities of 

endogenous and mutant alleles of Kras need to be further increased16 (FIG. 4). Such 

increases in KRAS activity can be achieved by additional activation of growth factor 
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signalling or chronic inflammation15,17–20. EGFR signalling, for example, not only further 

activates oncogenic KRAS but also activates the wild-type allele9,15,96. Upregulation of 

inflammatory and EGFR signalling pathways can also be achieved by loss of GATA6 (REFS 

16,36,37).

During the process of cancer initiation, crosstalk between acinar cells with Kras mutations 

and inflammatory macrophages contributes to ADM and formation of early lesions20. 

However, during progression to PDAC, the tumour microenvironment becomes immuno-

suppressive with a predominance of myeloid-derived suppressor cells and regulatory T 

cells97. Furthermore, desmoplasia increases with progression98. Pancreatic cancers can have 

different stromal subtypes, such as stroma characterized by stellate cell expression profiles, 

or more aggressive stroma characterized by activated fibroblasts and alternatively-activated 

macrophages99.

Further progression

In the current model for PDAC development, ADM cells can progress to PanIN1A or 

PanIN1B lesions and PanIN2 lesions, which are high in senescence markers. Clonal 

expansion and progression to PanIN3 and PDAC requires additional signalling and 

mutational events to overcome oncogene-induced senescence, such as loss of cyclin-

dependent kinase inhibitor 2A (CDKN2A, also known as p16INK4A). Eventually, additional 

inactivating mutations of tumour suppressor genes, such as Tp53, Brca2 and Smad4, occur 

during PanIN2 or PanIN3 progression, but at reduced rates (a detailed review on pancreatic 

cancer biology and genetics and photomicrographs of different lesions can be found 

elsewhere100). However, comparative studies of human tissues and transgenic mice (Pdx1-
Cre;KrasLSL-G12D model) suggest that dysplastic lesions other than PanIN can also arise 

from ADM. Such atypical flat lesions might indicate pancreatic cancer development directly 

from ADM without the intermediate step of PanIN22,23.

Early dissemination and stemness

An interesting aspect during development of PDAC is that cells can disseminate from low-

grade lesions with inflammatory foci, with circulating pancreatic epithelial cells present in 

the blood stream of mice and patients before the development of cancer101,102. Some cells in 

PanIN1 or PanIN2 lesions were shown to undergo epithelial-to-mesenchymal transition 

(EMT)101, a programme that enables cells to gain invasive properties. In addition, ADM and 

PanIN1 or PanIN2 lesions contain a subpopulation of cells positive for the serine/threonine-

protein kinase DCLK1 (also known as doublecortin-like kinase 1), and the acinar origin of 

these DCLK-positive cells has been demonstrated by lineage tracing103. A majority of the 

circulating pancreatic epithelial cells express DCLK1 as a marker; interestingly, DCLK1 

expression has also been linked to EMT104.

EMT not only leads to increased invasiveness of cells, but it can also induce stem cell 

formation105. In low-grade PanIN, DCLK1-positive cells were also shown to characterize a 

subpopulation with cancer stem cell properties106,107. These cells are characterized by 

upregulation of Notch and EGFR signalling103,106. However, the signalling pathways that 
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drive the development of DCLK1-positive cells from a clonal population within ADM or 

PanIN cells, as well as their functions, are not yet well characterized.

Is ADM an initiating event for human PanIN and pancreatic cancer?

Although mouse data obtained with different model systems point to oncogene-driven ADM 

as an initiating event for the formation of PanIN lesions, the role of ADM in the 

development of human PDAC is still undefined. That ADM occurs in human pancreatic 

cancer specimens is generally accepted, as it can be observed in proximity to neoplastic 

precursor lesions108,109. Attempts have been made to investigate if human acinar cells that 

underwent ADM can be precursors to PanIN. Analyses of human ADM lesions for KRAS 
mutations indicated that sections with ADM associated with PanIN lesions harboured the 

same KRAS gene mutation. By contrast, ADM lesions that were not associated with PanIN 

had wild-type KRAS. The conclusion was that the ADM lesion associated with PanIN might 

represent retrograde extension of the PanIN95. With the knowledge that inflammation and 

macrophage-released cytokines can lead to ADM independent of KRAS mutations6, the 

detection of ADM lesions that are KRAS wild-type is not surprising. As human PDAC often 

has pancreatitis associated, one would expect both ADM lesions that express wild-type 

KRAS and ADM lesions that express mutant KRAS95. Thus, these data can also be 

interpreted differently: PanIN and ADM lesions associated with PanIN have the same 

mutations because ADM is a precursor for PanIN; and some of the ADM have progressed to 

PanIN owing to additional signalling or mutations that other ADM did not have. As 

discussed earlier, it is also possible that the development of human PDAC from ADM might 

not follow the PanIN progression model, but rather might lead to occurrence of flat 

lesions22.

Conclusions

Although this Review focuses on acinar cell transdifferentiation as an initiating step, data 

does exist that supports other pancreas cell types, including duct cells or centroacinar cells, 

as the tumour-initiating population. For example, centroacinar cell markers were detected in 

patient PanINs, which led to a progression model with centroacinar cells as the origin for 

PDAC110.

In humans, PanIN are the most common of the precursor lesions for pancreatic cancer and 

are usually found in medium-sized ducts, whereas IPMN and MCN are found in the main 

duct and its major branches111. With respect to acinar cells as potential progenitors for 

pancreatic lesions, accumulated conclusive evidence obtained from genetic animal models 

shows that mature acinar cells in the presence of an oncogenic Kras mutation 

transdifferentiate to the duct-like cells that form PanIN lesions112. This finding was 

demonstrated with lineage tracing experiments113–115, but was also shown in different 

animal models in which expression of oncogenic KRAS under acinar cell-specific 

promoters, such as PTF1A, elastase or MIST1, all induce ADM and PanIN in mice116. The 

high plasticity of acinar cells, needed for regeneration processes after pancreatic injury, also 

makes them vulnerable for persistent transdifferentiation to PanIN cells in the presence of an 

oncogenic insult.
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One could argue that, with increasing age, ADM and low-grade PanIN are relatively 

common in humans and rarely progress to pancreatic cancer117. Additionally, PanIN are 

small, clinically difficult to detect (in contrast to IPMN) and the main focus should be on 

developing new treatment strategies for metastatic disease. However, unexpected findings 

suggest that early (low-grade) lesions produce cancer stem cells103,107, and that epithelial 

cells might disseminate into the blood stream at a time point at which no primary tumour is 

formed in the pancreas101. If seeding potentially occurs at an early stage of PanIN 

progression, the development of an efficient treatment strategy for the time of diagnosis will 

be difficult, and a focus should be on detecting and intervening with these early events118. 

With respect to early detection, circulating factors that have been released by oncogenic 

KRAS-expressing PanIN cells might be detected in pancreatic juice or blood. The challenge 

in identifying reliable markers, however, is that they need to be indicative for developing 

cancer and distinct from factors released during pancreatitis. Eventually, understanding the 

crosstalk between precancerous and/or cancerous cells with cells of the desmoplastic 

microenvironment could be of importance to reprogramming pro-tumorigenic signalling into 

antitumorigenic signalling119.
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Key points

• Adult pancreatic acinar cells show high plasticity that enables a change in 

their differentiation commitment

• Acinar-to-ductal metaplasia (ADM) is a mechanism needed for regeneration 

after inflammation or injury

• ADM is a result of epigenetic silencing of markers of acinar cell identity, 

activation of drivers of acinar cell dedifferentiation or loss of acinar cell 

organization

• ADM is driven by intrinsic and extrinsic signalling

• ADM in the presence of oncogenic KRAS signalling is irreversible and leads 

to a duct-like cell type that forms pancreatic intraepithelial neoplasia
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Figure 1. Acinar cell plasticity and metaplasia to duct-like cells in the adult pancreas
In response to pancreatic injury, the loss of cell–cell and cell–matrix contacts (contact-

mediated signalling), loss of polarity, KRAS hyperactivity and increased inflammatory 

signalling can drive acinar cells to undergo dedifferentiation and transdifferentiation to a 

duct-like phenotype that is needed for pancreatic regeneration. Acinar-to-ductal metaplasia 

becomes irreversible in the presence of an oncogenic Kras mutation and persistent growth 

factor signalling, leading to metabolic and signalling changes that lock the duct-like cells in 

their transdifferentiated state and initiate further progression to low-grade precancerous 

lesions.
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Figure 2. Inflammatory macrophage-driven signalling leading to acinar-to-ductal metaplasia
Inflammatory macrophages can initiate acinar-to-ductal metaplasia (ADM) through NF-κB 

activation as caused by secreted inflammatory cytokines such as TNF and the chemokine 

CCL5. Macrophage-secreted IL-6 contributes to ADM and the development of PDAC 

through JAK–STAT3 signalling. In addition, macrophage-secreted matrix metalloproteinases 

(MMPs) contribute to extracellular matrix (ECM) degradation and activate Notch signalling 

(NICD, Notch intracellular domain). Other transcription factors activated in acinar cells after 

inflammation and contributing to ADM are NFATC1 and NFATC4.
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Figure 3. KRAS-driven intrinsic signalling pathways leading to irreversible acinar-to-ductal 
metaplasia in mice
To initiate irreversible acinar-to-ductal metaplasia (ADM), both oncogenic KRAS and wild-

type KRAS activities need to be increased. This KRAS signalling mediates induction of 

similar transcription factors to inflammatory macrophages, but facilitates persistent 

signalling leading to irreversibility of the ADM process. Signalling hubs downstream of 

wild-type and mutant KRAS that relay signals to activate transcription factors driving ADM 

are PRKD1 and phosphatidylinositol 3-kinase (PI3K). PRKD1 can be activated by mutant 

KRAS-initiated metabolic changes and increases in mitochondrial reactive oxygen species 

(mROS). PRKD1 then initiates NF-κB and Notch (NICD; Notch intracellular domain) 

signalling and upregulated expression of matrix metalloproteinases (MMPs), epidermal 

growth factor (EGF), EGF receptor (EGFR) and transforming growth factor (TGF)-α (via 

NF-κB), and SOX9 and PDX1 (via NCID). Increased intrinsic EGFR signalling leads to 

further activation of wild-type KRAS and signal amplification. MMPs can contribute to 

extracellular matrix degradation as well as activation of Notch. PI3K induces cytoskeletal 

reorganization by activating small GTPases such as RAC1 and RHOA, but also activates 

ERK1/2 and AKT. STAT3 and NFATC1 or NFATC4 are activated via PI3K or AKT 

signalling. NFATC1 or NFATC4 mediate upregulation of SOX2 and SOX9. Mutant KRAS 

also upregulates the expression of intercellular adhesion molecule 1 (ICAM1), a surface 

molecule that initiates chemoattraction of inflammatory macrophages into the ADM region. 

Red arrows indicate signalling mediated by oncogenic KRAS. Blue arrows indicate 

signalling mediated by EGFR or wild-type KRAS. Grey arrows indicate signalling 

downstream of both mutant and wild-type KRAS. Green arrows indicate feedback signalling 

that potentiates KRAS-initiated signalling.
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Figure 4. Oncogenic KRAS and inflammation as drivers of acinar-to-ductal metaplasia and 
clonal expansion
Schematic showing how macrophage subtypes and genetic mutations contribute to acinar-to-

ductal metaplasia (ADM), clonal expansion and progression to pancreatic cancer. During 

pancreatitis ADM is a reversible process, but becomes irreversible when an oncogenic Kras 
mutation is present. The accumulation of KRAS activity as caused by oncogenic Kras 
mutations and epidermal growth factor receptor (EGFR)–wild-type KRAS signalling, as 

well as loss of senescence due to an additional inactivation of cyclin-dependent kinase 

inhibitor 2A (CDKN2A, also known as p16INK1A), is needed for progression. Further 

progression to pancreatic intraepithelial neoplasia (PanIN)-2, carcinoma in situ (PanIN3) 

and pancreatic ductal adenocarcinoma (PDAC) occurs after acquisition of additional gene 

mutations inTp53 (p53), Brca2 and Smad4. The progression to cancerous lesions occurs 

with an increase in desmoplasia. Cells positive for the serine/threonine-protein kinase 

DCLK1 are of acinar origin, are formed mainly in low-grade PanIN lesions (PanIN1A, 

PanIN1B and PanIN2) and have cancer stem cell functions.
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