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Abstract

Summary: Global quantification of total RNA is used to investigate steady state levels of gene ex-

pression. However, being able to differentiate pre-existing RNA (that has been synthesized prior to

a defined point in time) and newly transcribed RNA can provide invaluable information e.g. to esti-

mate RNA half-lives or identify fast and complex regulatory processes. Recently, new techniques

based on metabolic labeling and RNA-seq have emerged that allow to quantify new and old RNA:

Nucleoside analogs are incorporated into newly transcribed RNA and are made detectable as point

mutations in mapped reads. However, relatively infrequent incorporation events and significant

sequencing error rates make the differentiation between old and new RNA a highly challenging

task. We developed a statistical approach termed GRAND-SLAM that, for the first time, allows to

estimate the proportion of old and new RNA in such an experiment. Uncertainty in the estimates is

quantified in a Bayesian framework. Simulation experiments show our approach to be unbiased

and highly accurate. Furthermore, we analyze how uncertainty in the proportion translates into un-

certainty in estimating RNA half-lives and give guidelines for planning experiments. Finally, we

demonstrate that our estimates of RNA half-lives compare favorably to other experimental

approaches and that biological processes affecting RNA half-lives can be investigated with greater

power than offered by any other method. GRAND-SLAM is freely available for non-commercial

use at http://software.erhard-lab.de; R scripts to generate all figures are available at zenodo

(doi: 10.5281/zenodo.1162340).

Contact: florian.erhard@uni-wuerzburg.de

1 Introduction

Gene expression is a highly dynamic process and determined

by the interplay of RNA transcription, processing and decay

(Schwanhausser et al., 2011). High-throughput techniques such as

microarray and next generation sequencing (NGS) have become

standard tools to quantify gene expression on the level of total

RNA. However, knowing the amount of total RNA for each gene at

the time of cell lysis does not provide information to distinguish be-

tween the processes that constitute gene expression. For instance,

when gene expression changes between some treatment and control

condition are investigated, differences between total RNA levels can

arise due to the treatment affecting transcription, processing or

decay. Moreover, if changes after a short period of time (e.g. 1 h

after infection by a virus) are of interest, considering total RNA lev-

els can be heavily misleading (Marcinowski et al., 2012).

To resolve these issues, powerful biochemical approaches have

been developed in recent years. Most successfully, newly transcribed

RNA can be metabolically labeled using nucleoside analogs such as

4-thiouridine (4sU) in living cells. After RNA extraction, labeled

RNA can be biochemically separated from pre-existing, unlabeled

RNA by thiol-specific biotinylation. Both fractions, in addition to

total RNA, can be quantified using microarrays or RNA sequencing.

This has allowed to precisely measure RNA half-lives (Dölken et al.,

2008), monitor RNA splicing (Windhager et al., 2012) or investigate

extremely short-lived RNAs (Schwalb et al., 2016) or complex regu-

latory processes (Rabani et al., 2014). However, the biochemical

separation step is laborious and error-prone, and requires large

amounts of RNA. Moreover, imperfect biochemical separation may

introduce severe bias and bioinformatic analysis such as data nor-

malization is highly challenging (Uvarovskii and Dieterich, 2017).

Recently, three studies introduced an alternative approach to dif-

ferentiate between new and old RNA: SLAM-seq (Herzog et al.,

2017), Timelapse-seq (Schofield et al., 2018) and TUC-seq (Riml

et al., 2017) directly visualize labeled RNA by sequencing: After

labeling by 4sU and extraction of RNA, chemical agents are used to

convert 4sU to cytosine analogs. The sample is sequenced without

prior separation, and old and new RNA can be differentiated on the
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basis of specific T to C mismatches of reads mapped to the reference

transcriptome. Importantly, the accuracy of this bioinformatic sep-

aration strongly depends on the error rates of sequencing and the

4sU incorporation rates. Even with very long periods of labeling

(24h) and high concentrations of 4sU (100 lM), no more than one

in 40 uridines is substituted by 4sU (Dölken et al., 2008; Herzog

et al., 2017). Thus, only a small fraction of sequencing reads will

contain more than one conversion. Moreover, the error rates of

modern NGS dropped below 0.1%, but still give rise to many reads

with T to C mismatches. Thus, it is not possible to decide with cer-

tainty for each individual read whether it originated from a new or

an old RNA molecule.

Therefore, the computational approach termed SLAM-DUNK

(Herzog et al., 2017) utilizes all observed T to C mismatches of

reads mapped to a gene, and subtracts the observed mismatches

from a control experiment without 4sU labeling. These corrected

conversion rates were used to compute RNA half-lives in pulse-

chase experiments: Efficient 4sU incorporation is achieved by long

periods of labeling, followed by wash-out of free 4sU and monitor-

ing the drop of corrected conversion rates over several time points.

In addition, labeling for 3 h and 12 h was sufficient to reveal changes

of RNA half-life induced by microRNAs and N6 adenosine methyla-

tion of the mRNAs in differential experiments, e.g. by knocking out

an essential factor for microRNA biogenesis and comparing cor-

rected conversion rates between knock-out and wild-type cells.

Here, we expand on this methodology and present the computa-

tional approach Globally refined analysis of newly transcribed RNA

and decay rates using SLAM-seq (GRAND-SLAM) that allows to

infer the proportion and the corresponding posterior distribution of

new and old RNA for each gene in a single SLAM-seq experiment.

Compared to the corrected conversion approach, it provides five

major advantages: First, no control experiment is needed. Second, a

single labeling experiment (as compared to a pulse-chase timecourse)

is in principle sufficient to estimate RNA half-lives. Naturally, more

experiments increase the accuracy of the estimate. Third, by directly

utilizing the posterior distributions, estimated half-lives are more ac-

curate. Fourth, the variance of the posterior distribution, or, alterna-

tively, the size of credible intervals, provide an internal quality

control for each gene and experiment. Finally, and most importantly,

knowing the proportion of new RNA for each gene allows to investi-

gate fast regulatory processes such as induced by virus infection,

which is not possible when only knowing corrected conversion rates.

2 Approach

Our approach is based on a binomial mixture model (Fig. 1):

P y; pe;pc;n; pg

� �
¼ 1� pg

� �
B y; n; peð Þ þ pgB y; n; pcð Þ (1)

B k; n; pð Þ ¼
n

k

 !
� pk 1� pð Þn�k (2)

The sufficient statistics for this model are the number of

observed T to C mismatches (y) for each read mapped to a genomic

region containing n thymines within a gene g. If pg is the fraction of

newly transcribed RNA among all RNAs of gene g, pe is the average

T to C mismatch rate in unlabeled RNA and pc is the average mis-

match rate in labeled RNA, then observed mismatches for a read are

either due to a binomial distribution with success probabilty pe

(with probability 1� pg) or a binomial distribution with success

probability pc (with probability pg).

Thus, our goal is to estimate all pg using Bayesian inference for

observed data y ¼ y1; . . . ; ym and n ¼ n1; . . . ; nm (i.e. for each read,

how many of the potential T to C mismatches have been observed):

f pg; y; n;pe;pc

� �
¼
Q

i P yi; pe; pc; n;pg

� �
� b pg; a; b
� �

P yð Þ (3)

For the sake of simplicity, we use a beta prior with density

function b and hyperparameters a and b. As we have no prior know-

ledge on the proportion for each gene, we here use the uninforma-

tive uniform prior with a ¼ b ¼ 1. In the denominator, the integral

P yð Þ ¼
Ð 1
0

Q
i P yi; pe; pc; n; p0g

� �
� b p0g; a;b
� �

dp0g is computed

numerically.

Here, we assume pe and pc to be constant throughout a sample.

Thus, before solving Equation (3) for each gene, we estimate pe and

pc based on the data from all genes.

3 Materials and methods

3.1 Sufficient statistics
The sufficient statistics for parameter estimation are collected in a

matrix A gð Þ. Each entry a
gð Þ

k;n is the number of reads mapped to a

genomic region within gene g containing n thymines with k observed

T to C mismatches. We only consider reads consistently mapped to a

known transcript (i.e. matching all intron boundaries). Alternatively,

for the SLAM-seq experiments (Herzog et al., 2017) where 3’ ends of

transcripts are sequenced, we only consider reads mapped to the 3’

regions defined by SLAM-DUNK (Herzog et al., 2017). In addition

we identify and exclude potential SNPs defined as thymines where

more than half of the reads covering it show a mismatch.

3.2 Estimating pe

In principle, pe can be directly estimated from either spike-in RNAs

in the same sample, or using an additional sample without 4sU

labeling (no4sU sample) by counting T to C mismatches. However,

utilizing an additional experiment may lead to a bad estimate for the

4sU sample of interest, as a broad range of pe values is observed al-

ready in available no4sU samples (Fig. 4C). However, we noticed

that the other eleven error rates (one of the nucleotides to any of the

other three) are highly correlated to the T to C error rate in the

no4sU samples. Thus, we trained a linear regression model to pre-

dict the T to C error rate from the other error rates. Manual feature

selection revealed that the T to A and T to G error rates alone pro-

vided sufficent prediction performance in a leave-one-out cross val-

idation for the datasets used in this study. Consequently, we used

Fig. 1. GRAND-SLAM overview. After a period of labeling with 4-thiouridine

(4sU), RNA is extracted from cells, treated with IAA and sequenced. Shown is

a theoretical timecourse of the abundances of new and old RNA for a gene g.

IAA converts incorporated 4sU into cytosine analogs with an overall rate pc

(including the incorporation rate, conversion rate and error rate), and uridines

are sequenced as cytosine with an error rate pe. Based on the observed mis-

matches from T to C, the proportion of new to old RNA of gene g, pg, can be

estimated using Bayesian inference. Estimates of pg can be transformed into

estimates of the gene’s RNA half-life or relative abundance measures

GRAND-SLAM i219

Deleted Text: see 
Deleted Text: see 
Deleted Text:  


the linear regression model based on these two features here (Fig.

4D), but our implementation can handle any linear regression model

or, alternatively, estimates from spike-in RNA.

3.3 Estimating pc

To estimate pc, we first compute A ¼ ak;n

� �
¼
P

g A gð Þ. Since y¼0 is

the mode of both component distributions of the binomial mixture

model, standard approaches to estimate pe and pc based on the ex-

pectation maximization (EM) algorithm failed. However, as we can

assume that pe<pc, there is a certain k where only a minor fraction

of reads with at least k T to C mismatches originates from the pe

component. This k can be computed for each n such that less than

1% of the observed reads with � k mismatches is expected to origin-

ate from unlabeled RNA. Thus, for each n and k we compute

ek;n ¼ B k; n; peð Þ �
X

k0

ak0 ;n (4)

and exclude (k, n) if ek;n > 0:01ak;n. More than 99% of the remain-

ing ak;n originate from the pc component, allowing to estimate pc

using an EM algorithm that treats the excluded X ¼ k1; n1ð Þ; . . .f g
as missing data. If enough reads (we used 10 000 reads as threshold)

remain, which was the case in all datasets but the 45 min labeling

experiments from Herzog et al. (2017), pc can be estimated with suf-

ficient precision. Otherwise, our implementation stops with an

error. Importantly, this will only happen when extremely few

labeled RNA was in the sample.

The E step consists of replacing excluded read counts by their

expected values given the current estimate p
tð Þ

c :

a
tþ1ð Þ

k;n ¼
P

k0 ;nð Þ62X B k; n;p
tð Þ

c

� �
� ak0;nP

k0 ;nð Þ62X B k0; n; p
tð Þ

c

� � (5)

The M step computes a better estimate for pc as

p tþ1ð Þ
c ¼

P
k;n ka

tþ1ð Þ
k;nP

k;n na
tþ1ð Þ

k;n

(6)

We noticed that running the EM algorithm led to extremely slow

convergence rates. Thus, we use the following bisection scheme

instead: For the search interval l; r½ � (starting with l¼0 and r¼1),

we set p tð Þ ¼ lþr
2 and compute p tþ1ð Þ by a single EM iteration. If

p tþ1ð Þ < p tð Þ, we continue with the search interval l;p tð Þ� �
, otherwise

with p tð Þ; r
� �

. We stop if r� l < 10�8.

3.4 Estimating the posterior
In principle, we compute the integral by dividing 0; 1½ � into k equi-

sized intervals and employ Newton–Cotes quadrature using the

trapezoidal rule. This also gives straight-forward access to any cred-

ible interval. To allow for relatively small k even for potentially ex-

tremely narrow posterior distributions f, we first identify the mode

m of f by numerically maximizing

g pg; y; n; pe; pc

� �
¼
X

i

log P yi; pe; pc; n; pg

� �� �
þ log b pg; a;b

� �
(7)

Then, we identify the values l<m, where f lð Þ ¼ 10�3f mð Þ and

h>m where f hð Þ ¼ 10�3f mð Þ by bisection. The interval l;h½ � con-

tains most of the probability mass, so we use this interval for the nu-

merical integration.

Finally, we noticed that the posterior distribution for any

gene g closely resembles a beta distribution with density bg.

Importantly, having a closed-form representation for the posterior

is important for subsequent steps. Therefore we fit parameters ag

and bg by numerically minimizing the sum of squares computed be-

tween f and bg for all Newton–Cotes points.

3.5 Estimating RNA half-life
For the abundance a of an RNA with transcription rate r and decay

rate d, the change over time is modeled by the following differential

equation:

da

dt
¼ r� da tð Þ (8)

With an initial abundance a0, this has the following closed-form

solution:

a tð Þ ¼ a0 �
r
d

� �
e�td þ r

d
(9)

Setting the intial abundance to zero for newly synthesized RNA

and to the steady state for pre-existing RNA, we obtain the follow-

ing functions for the abundance of new RNA anew and old RNA

apre:

anew tð Þ ¼ �r
d

e�td þ r
d

(10)

apre tð Þ ¼ r
d

e�td (11)

Thus, at any time t, the proportion of new to old RNA is

p tð Þ ¼ anew tð Þ
anew tð Þ þ apre tð Þ ¼ 1� e�td (12)

This can be used to transform the decay rate into a proportion p

at time t and vice-versa:

dt pð Þ ¼ �1

t
log 1� pð Þ (13)

pt dð Þ ¼ 1� e�td (14)

Hence, for gene g if at any time t, the proportion of new

and old RNA is an approximately beta distributed random variable

P tð Þ � Beta a;bð Þ with density function bg p; a; bð Þ, the density

function d d; a;bð Þ of the distribution of the transformed random

variable D tð Þ ¼ dt P tð Þ� �
can be found by substitution:

d d; a; bð Þ ¼ bg pt dð Þ; a;bð Þ dpt

dd
(15)

¼ t

B a; bð Þ 1� e�td
� �a�1 � e�tbd (16)

Thus, if several approximate posterior beta densities defined

by a1;b1ð Þ; . . . ; an; bnð Þ for proportion parameters measured at

times t1; . . . ; tn are given, the maximum a posteriori (MAP)

estimator for the decay rate d can be found by numerically

maximizing:

l dð Þ ¼
X

i

ai � 1ð Þ log 1� e�tid
� �

� tibid (17)

Finally, the estimated decay rate d can be transformed into an es-

timate of the RNA half-life k by

k ¼ log 2ð Þ
d

(18)
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3.6 Simulation
We utilized the available SLAM-seq data from Herzog et al. (2017)

to determine realistic parameters for simulation. Specifically,

we downloaded the processed table of a random sample

(GSM2666852) from GEO and converted the CPM (read counts per

million) into a read count distribution for genes by multiplying all

CPM values by 20 million. Next, we downloaded the table contain-

ing half-lives estimated from their pulse-chase experiment and

applied Equations (18) and (14) to derive a realistic distribution of

new to old proportions for a putative experiment with 3 h 4sU

labeling.

Data for Figure 2 were simulated by the following procedure:

We simulated as many genes as in the read count distribution. For

each gene, we randomly sampled a read count from this distribution

and a pg from the proportion distribution (except for Fig. 2B, where

we set pg ¼ 0:5 for all genes). For each read, we first sampled the

total number of thymines n from a binomial distribution with

parameters L (read length, here L¼50 as in the available experi-

ments) and u [thymine content, here we set u¼0.3 as computed

from the 3’ end investigated by Herzog et al. (2017)]. Then, we

determined whether this read originated from a new RNA (with

probability pg) or old RNA (with probability 1� pg). Finally, the

number of T to C mismatches k was drawn from a binomial distri-

bution with parameters n and either pe or pc (here we set

pe ¼ 1� 10�4 and pc ¼ 0:023, compare Fig. 4).

Reads for Figure 3 were generated in a similar manner, but here

we directly selected a random read location from the gene 3’ regions

defined by Herzog et al. (2017) and generated mismatches

accordingly (all 12 possible mismatches with rate pe or pe when ap-

propriate). Here, a fixed pg ¼ 0:2 was used. Read locations were ei-

ther directly written to a read mapping file, or sequences were

generated and written to fastq files.

3.7 Read mapping
To map simulated reads or available SLAM-seq data we used STAR

2.5.3a (Dobin et al., 2013) with default parameters against a refer-

ence genome prepared from the murine genomic sequence and gene

annotation from Ensembl version 90. We also mapped the simulated

reads using NGM (Sedlazeck et al., 2013), which is utilized by

SLAM-DUNK (Herzog et al., 2017) and can be parameterized spe-

cifically for SLAM-seq samples. For NGM we used the same param-

eters as used by SLAM-DUNK with the exception that we had to

increase the gap penalty parameters since GRAND-SLAM was not

able to handle the format how Indels were reported by NGM. Of

note, for the simulated data there were no true Indels. We handeled

multi-mapping reads by fractional counts (e.g. if a read maps to

three locations on the genome equally well, there is 1/3 of a read at

each location).

4 Results

4.1 GRAND-SLAM
Metabolic labeling followed by RNA-seq in principle allows to

quantify both pre-existing (i.e. before labeling) and newly tran-

scribed RNA. In the SLAM-seq protocol (Herzog et al., 2017), RNA

is labeled using 4-thiouridine, which is converted into a cytosin ana-

log using iodoacetamide (IAA). Thus, libraries can readily be pre-

pared for sequencing, and pre-existing and newly transcribed RNA

can be distinguished based on observed T to C mismatches of reads

mapped to the reference genome.

However, it is not possible to determine with certainty, whether

an observed read originated from a newly transcribed or pre-

existing RNA molecule: Sequencing errors produce T to C

mismatches also on reads from old RNA, and because of relatively

infrequent 4sU incorporations [�2% of all uridines are replaced

(Dölken et al., 2008; Herzog et al., 2017)], a substantial fraction of

reads from new RNA will not have a T to C mismatch. Of note,

only a minority will contain more than one T to C mismatch.

Nevertheless, based on all reads mapped to a gene, it is possible to

statistically infer the proportion of new and old RNA.

To this end, we developed a statistical model based on a bino-

mial mixture model (Fig. 1). We assume that the number of

observed T to C mismatches for a read is generated by one of two bi-

nomial distributions. One corresponds to old RNA and its success

probability parameter is the average T to C error rate. The other

models new RNA and its parameter is the combined error and in-

corporation rate. Naturally, the mixture parameter of the model

corresponds to the proportion of new and old RNA.

We are not only interested in computing a point estimate of the

proportion, but similarly to our previous work (Erhard and

Zimmer, 2015), we also compute the posterior distribution on this

parameter. This is of great interest here, as the accuracy of the esti-

mator greatly depends on the number of reads mapped to a gene,

and the difference between the conversion and error rates. Thereby,

the size of credible intervals provide a potent quality measure for

SLAM-seq experiments.

A B

C D

Fig. 2. Validation by simulation. (A) Estimation accuracy for the conversion

rate pc is shown as the deviation of the estimated value from the true value in

percentage of the true value. The error rate pe must be known to estimate pc.

Either the true error rate (Known pe) is supplied to the algorithm, or the true

error rate plus a normally distributed error [according to parameters inferred

from the no4sU experiments from Herzog et al. (2017), Fig. 4C; Estimated pe]

(B) 90% credible intervals and the posterior means for the proportion param-

eter pg are shown for 70 randomly sampled simulated genes. Here, the true

pc and pe have been supplied to estimate. (C) Cumulative distributions of the

absolute deviation from the true proportion are shown for all 18.917 simu-

lated genes split by their read count n. Distributions for 100 simulations are

overlayed. (D) The percentage of genes within equal-tailed credible intervals

(CI; x-axis) is shown for all 18.917 simulated genes split by their read count n.

As in (C) 100 simulations are overlayed
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4.2 Validation by simulation
The first step of our method is to estimate the conversion and error

rate parameters pc and pe. Both may vary between samples, but we

assume them to be constant for all genes from a single sample.

Therefore, we use all reads from a sample to estimate pe and pc.

Because both probabilities are relatively small, standard techniques

for estimation on the binomial mixture model failed. However, if pe

is known, it is possible to estimate pc by an EM algorithm (Methods

Section for details). Estimating pe is more problematic, as it depends

on an accurate estimate for p (the overall proportion of new and old

RNA in the sample), which, in turn, depends on accurate estimates

for pc and pe. Again, standard techniques based on EM algorithms

failed. However, in principle, pe can be experimentally determined

by spiking-in unlabeled RNA before IAA treatment. Alternatively,

pe can be measured in additional experiments without 4sU labeling

(no4sU sample). The problem with the approach based on no4sU

samples is that measurements vary between samples and an exter-

nally measured value may not be accurate enough for precisely esti-

mating pc and pg (the proportion of new and old RNA for gene g)

for each gene g. However, we noticed that the 12 different error

rates were highly correlated between samples. Thus, T to C error

rates can be estimated from the other error rates, which are meas-

ured in SLAM-seq experiments (Methods Section for details).

Thus, our first check was how accurately pc could be estimated if

pe is known (e.g. measured by RNA spike-ins) or if pe is estimated

using additional no4sU samples. To this end, we simulated a

hundred datasets with realistic values of pe and pc. Then, we either

supplied the true pe for estimating pc, or a slightly deviating pe

[based on observed deviations in the no4sU datasets from Herzog

et al. (2017)]. The estimates of pc were highly accurate (less than

1% deviation; Fig. 2A). Importantly, this was the case when the true

pe was used and when a slightly deviating pe was used.

Next, we tested how well the individual gene proportions pg

could be estimated when pc and pe are known. Estimates were not

biased, and always within the expected bounds given by credible

intervals (Fig. 2B). Finally, we expanded our simulations on a realis-

tic scenario, i.e. pc and pe were estimated for simulated data, and

then the pg were estimated based on pc and pe. Again, estimates

were not biased, and especially for genes with many reads, highly ac-

curate (less than 0.05 absolute deviation; Fig. 2C). Moreover, the

number of genes within any credible interval exactly matched the

expected number in all cases. This means that observed deviations

are not due to errors in the process of estimation, but are because of

insufficent data. Thus, computed credible intervals provide a potent

mean to judge the quality of a dataset and the estimates for all

genes.

4.3 Influence of read mapping
So far, we directly simulated numbers (ki, ni), i.e. ki T to C mis-

matches were observed for ni thymines in read i. Even if read map-

ping has high sensitivity and specificity in finding the right location

for all reads, correct read mapping is crucial especially for reads

with one or more T to C mismatches. In Herzog et al. (2017), the

authors extended their own read mapping software NGM

(Sedlazeck et al., 2013) specifically for the purpose of mapping

SLAM-seq reads. Therefore, by generating sequencing reads in sil-

ico, we tested whether read mapping by a standard tool [STAR;

Dobin et al. (2013)] or NGM affected our method.

First, we compared how well error and conversion rates could be

estimated when read locations were directly written into read map-

ping files or mapped with STAR or NGM. Interestingly, read map-

ping resulted in significantly reduced estimates for both pe and pc

(Fig. 3A and B), indicating that indeed a substantial number of reads

with simulated mismatches was either not mapped at all, mapped to

more than one location or mapped to a wrong location. Of note,

STAR and NGM read mappings were affected by this to a highly

similar degree. However, this does neither introduce bias into esti-

mating gene proportions pg (Fig. 3C), nor does it affect the size of

credible intervals (Fig. 3D). In summary, there is room for improv-

ing read mapping for SLAM-seq, but our method is robust enough

to handle reads mapped even by widely used standard read mapping

tools.

4.4 Evaluation of mESC datasets
Herzog et al. (2017) conducted several SLAM-seq experiments on

murine embryonic stem cells (mESCs) with different periods of

labeling (45 min, 3 h, 12 h and 24 h). We examined the conversion

and error rates pc and pe estimated by GRAND-SLAM for each of

these experiments. For the 45 min experiments, pc could not be esti-

mated because too few reads had more than one T to C conversion.

In such a case, our implementation prints a warning. Thus, we

excluded these experiments from further analyses.

We first compared the estimated conversion rate with the

observed T to C mismatch rates from exonic and intronic reads for

all samples (Fig. 4A). Estimated conversion rates were spread

around slightly above 0.02 in all cases, and were not correlated to

the period of labeling. Especially for the 3 h samples, both exonic

and intronic mismatch rates were substantially lower than the esti-

mated conversion rates and were correlated to the period of labeling.

A B

C D

Fig. 3. Influence of read mapping. (A and B) We simulated 10 datasets of

reads and either used the true locations of the reads (No mapping) as input

for GRAND-SLAM, or a fastq file for STAR or NGM. Here, the distributions of

the estimated error rates (A) and conversion rates (B) are shown. The true val-

ues are indicated. Read mapping with both STAR and NGM led to slighly, but

significantly biased estimates. (C) The cumulative distribution of the absolute

deviation from the true proportion is shown for reliably quantified genes (at

least 100 reads). In spite of underestimated rates, read mapping effects on

estimating the proportion are neglibible. (D) The percentage of genes within

equal-tailed credible intervals (CI; x-axis) is shown. Read mapping does not

affect the accuracy of credible intervals. Error bars indicate the SD of the 10

simulations
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For exons, this was expected since a substantial fraction of the total

mature RNA is older than 3 h. Interestingly, albeit to a lesser extent,

we also observed this for intronic RNA, which is believed to be

quickly degraded after splicing (Windhager et al., 2012). The fact

that the T to C mismatch rate is significantly higher after 12 h of

labeling than after 3 h of labeling is indicative for frequent intron re-

tention, or that at least some introns are relatively long-lived.

Intronic RNA was excluded from estimating conversion rates,

but there was nevertheless a high correlation (r2 > 0:99) of intronic

T to C mismatch rates with estimated conversion rates. This indi-

cates that conversion rates were estimated very accurately, and that

only a certain amount of intronic RNA was transcribed within 3, 12

or 24 h. Regression analysis revealed these amounts to be 70%,

91% and 92% in mESCSs, respectively (Fig. 4B).

In Herzog et al. (2017), 15 samples have also been measured

without 4sU labeling. For these all RNA is by definition old, and the

mixture model reduces to a model with a single binomial compo-

nent. Thus, pe is directly measured in these samples. Interestingly,

the measured pe varied between 0:8� 10�3 and 1:6� 10�3 (Fig.

4C). Thus, taking such a measured pe for another sample where the

sample specific pe is some value within this range can lead to biased

estimates of the new to old proportions pg. This can be circumvented

by either directly measuring pe in each sample using RNA spike-ins,

or by employing a linear regression based estimation of pe: We

noticed that between the no4sU samples other error rates (e.g. T to

A) were highly correlated to T to C error rates. Thus, we trained a

linear regression model in the no4sU samples to estimate T to C

error rates. Of note, estimated T to C error rates from the samples

with 4sU were in the same range as observed error rates in the

no4sU samples (Fig. 4C), and the T to C error rates in the no4sU

samples could be predicted with high accuracy (Fig. 4D).

4.5 Estimating RNA half-life
The proportion pg of new and old RNA after some period of label-

ing t can be transformed into the RNA half-life kg (Fig. 5A and

Methods Section for details). The functions ft transforming pg into

kg vary greatly for different values of t. Naturally, very short label-

ing periods (e.g. t ¼ 1=2h) can resolve short RNA half-lives (e.g.

kg < 1h) very accurately, but small differences in pg result in large

deviations of kg for genes with long half-life (Fig. 5B).

To analyze the variance in estimating RNA half-lives using

GRAND-SLAM, we first theoretically considered an experiment

with typical parameters as observed in the datasets of Herzog et al.

(2017), and a gene g with 1000 reads with a half-life of kg ¼ 2h. For

different labeling periods, this gives rise to specific posterior distri-

butions on the proportion parameter pg (Fig. 5C) which can be

transformed into posterior distributions on the estimated RNA half-

life (Fig. 5D). Interestingly, the estimate due to 3 h labeling is the

most precise, followed by 6h, 0.5 h and 12h. We expanded this

A C

B D

Fig. 4. Evaluation of mESC data. (A) For all SLAM-seq experiments from Herzog et al. (2017), the estimated conversion rate pc is compared to the intronic and

exonic T to C mismatch rates. (B) Linear regression analysis of pc against the intronic T to C mismatch rate. Slopes (s) and p values are indicated. For all three

regressions r2 > 0:99. (C) The distribution of the error rate pe as measured in the 15 no4sU samples is compared to the estimated error rates in the 27 4sU sam-

ples [see (A)]. (D) pe can be predicted by linear regression of the other error rates. In the no4sU samples, pe can be directly measured by counting T to C mis-

matches. This shows the results of a leave-one-out cross validation in the no4sU samples comparing the predictions (x-axis) against the measured values (y-axis)
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analysis to genes with different RNA half-lives, and computed the

coefficient of variation (CV) of the posterior distribution of the esti-

mated half-lives (Fig. 5E). The CV is the SD divided by the mean

and therefore describes the expected relative deviation. The CV var-

ied greatly depending on the labeling period, with short labeling

periods generally most precise for genes with short RNA half-life. In

addition, each labeling period has a range of true RNA half-lives

where it is most precise and it extremely imprecise for too long or

short-lived genes. For example, with 3 h labeling, estimation preci-

sion deteriorates for genes with a half-life below half an hour or lon-

ger than 8 h. Thus, to precisely estimate the whole range of RNA

half-lives in an experiment, several samples with different labeling

periods are necessary as well as a method that automatically weighs

the contributions of each sample to the overall estimate based on the

varying variances. This can be achieved by MAP estimation of the

RNA decay rate (Methods Section for details).

4.6 RNA half-lives for mESCs
Herzog et al. (2017) estimated RNA half-lives by pulse-chase experi-

ments: To achieve sufficient labeling, cells were supplied with 4sU

for 24 h. After that 4sU was washed out and the drop of conversions

was monitored for several time points via SLAM-seq. RNA half-

lives were then estimated by fitting an exponential decay model

using least squares. These experiment are relatively laborious and

introduce the wash-out efficiency as an additional source for poten-

tial bias. Furthermore, the least squares fitting does not respect the

varying precision of estimating different half-lives with different

labeling periods. For comparison, RNA half-lives were also deter-

mined using actinomycin D (ActD) treatment and monitoring the

drop of RNA levels over time using RNA-seq.

In addition to the pulse-chase and ActD estimates, we used

the 3 h or 12 h labeling data or their combination to estimate

RNA half-lives for mESCs using our MAP approach

(MAP3;MAP12;MAPcomb). The correlation coefficients computed

over all genes also utilized for comparison in Herzog et al. (2017)

showed that MAPcomb performed equally well (R � 0:7) as the

pulse-chase experiments in reproducing the ActD estimates (Fig.

6A). MAP3 resulted in a similarly high correlation but the MAP12

estimates showed worse correlation (R � 0:46). For genes with

ultra-short (<2h) and short (<3h) RNA half-lives however, the

correlation of the pulse-chase experiment was poor (R � 0 and

R � 0:26, respectively) and significantly better for MAP3 and

MAPcomb (R>0.59 and R>0.49). For genes with longer RNA half-

lives, correlations were generally poor, but MAP12 provided the

highest correlations (Fig. 6D).

Furthermore, MAPcomb always resulted in correlation coeffi-

cients (computed for the comparison to the pulse-chase or the ActD

experiment) that were close to the better of MAP3 or MAP12. This

indicates that the MAP estimation of the RNA half-live effectively

weighs the different precisions obtained for measuring with different

labeling periods.

4.7 Differential analysis of RNA half-life changes
Several factors are known to affect the stability of specific RNAs.

Most prominently, microRNAs are small RNAs expressed by virtu-

ally all eukaryotic cells, that (imperfectly) basepair to cognate sites

in mRNAs. Thereby, they guide the RNA induced silencing complex

to target mRNAs, which leads to translational repression and indu-

ces RNA decay (Bartel, 2009; Jonas and Izaurralde, 2015). By

knocking-out Exportin-5 (Xpo5), an essential factor in the biogen-

esis of the most abundant family of microRNAs in mESCs

(miR-291a), repression of mRNA targets of this family is reduced,

effectively prolongating their RNA half-life.

A

B C

ED

Fig. 5. RNA half-life (A) The proportion of new and old RNA of a gene g at any

time t, pgðtÞ, is directly related to its RNA half-life (here, 2h). (B) The functions

are shown that transform the proportion pg to the RNA half-life for different

periods of labeling (see common legend of sub-figures B to E at top right cor-

ner). (C) Posterior distributions of a theoretical gene g with 1000 reads and an

RNA half-life of 2h for the four different periods of labeling. (D) These poster-

ior distributions for pg translate to specific posterior distributions on k, with

the one for t ¼ 3h being the most precise one. (E) Coefficients of variation

(SD divided by the mean) of the posterior distributions on k for theoretical

genes with RNA half-lives between 0 and 10h

A B

C D

Fig. 6. Pearson’s correlation coefficient for RNA half-lifes (A) For n¼ 6.316

genes, the correlation between any pair of methods estimating RNA half-lives

was computed. MAP3, MAP12 and MAPcomb are the maximum a posterior esti-

mators of GRAND-SLAM computed on the 3h, 12h samples or both. Chase is

the exponential decay model fit of Herzog et al. (2017) on the pulse-chase

experiments. ActD is the exponential decay model fit for the ActD experiment.

(B–D) Correlation coefficients for different sub-sets of genes split according to

ultra-short RNA half-life, short RNA half-life and long RNA half-life
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In Herzog et al. (2017), this has been analyzed by considering the

relative RNA stability computed by comparing the (no4sU corrected)

T to C mismatch rates for wild-type (wt) and Xpo5 knock-out (ko)

cells. This indeed revealed different sets of predicted microRNA tar-

gets to have increased RNA stabilities (Fig. 7A). Using GRAND-

SLAM we were able to compute RNA half-lives for both conditions

(wt and ko) and compute their log2 fold changes (Fig. 7B).

Comparing the distributions of RNA stabilities with RNA half-live

log2 fold changes already indicates that the latter is a better measure

to capture the action of the microRNAs. Indeed, receiver operating

characteristic (ROC) analysis revealed RNA half-life log2 fold change

to better agree with predicted microRNA targets than relative RNA

stability. However, the overall difference between genes predicted to

be a microRNA target and the remaining genes is generally poor, pre-

sumably due to secondary effects of knocking down Xpo5 or the diffi-

culty in predicting microRNA targets (Ritchie et al., 2009).

Another cellular mechanism affecting RNA stability is N6 adeno-

sine methylation (m6A; Meyer and Jaffrey, 2014; Yue et al., 2015). It

has been shown that m6A at specific mRNA locations induces mRNA

degradation (Wang et al., 2014). m6A modification is performed by

the protein complex N6-adenosine-methyltransferase. Thus, by

knocking out its 70 kDa sub-unit (Mettl3), genes affected by m6A

mediated degradation that have been experimentally determined in

mESCs (Batista et al., 2014) are de-repressed. Similarly to the

microRNA analyses, relative RNA stabilities can reveal this (Fig. 7A),

but RNA half-lives computed by GRAND-SLAM reveal substantially

more differences between targets and non-targets (Fig. 7B and C).

5 Discussion

The most successful experimental technique to discriminate between

newly transcribed and old RNA is based on metabolic labeling of

RNA. To this end, non-toxic nucleoside analogs are introduced into

living cells, which are then readily incorporated into newly tran-

scribed RNAs. Previously, total RNA was separated into labeled

(newly transcribed) and unlabeled (old) RNA prior to analysis

(Dölken et al., 2008; Rabani et al., 2014). The novel approach

published recently (Herzog et al., 2017; Riml et al., 2017; Schofield

et al., 2018) replaced this biochemical separation with a bioinfor-

matic separation: Nucleoside analogs are chemically converted into

distinct nucleoside types and therefore in principle distinguishable

based on observed mismatches. However, with incorporation rates

of �2%, the discrimination between labeled and unlabeled RNA is

highly challenging.

Here, we presented a statistical method to precisely estimate the pro-

portion of new and old RNA in such experiments. This is based on a

binomial mixture model, where the number of observed, experiment-

specific mismatches is generated from one of two binomial distributions

for reads from labeled and unlabeled RNA molecules. The output of

our method is the full posterior distribution of the proportion of new

and old RNA. This posterior is narrow for genes with many reads and

for experiments with high incorporation and low sequencing error rates.

Thus, it provides a straight-forward mean for quality control.

In addition to sufficient incorporation rates that must be

achieved, additional considerations for planning such experiments

are important: Herzog et al. (2017) used single-end sequencing with

read length 50 bp on a Illumina HiSeq 2500. Longer reads are gener-

ally preferrable, as the probability of catching a modified nucleotide

increases with longer reads.

Furthermore, paired-end sequencing would provide two significant

advantages over single-end reads: First, error rates can be estimated

from the other read, since 4sU converted to cytosine results in a T to C

mismatch in the first read, and in an A to G mismatch in the second

read. Second, especially if RNA is strongly fragmented, read pairs

overlap. All nucleotides in the overlapping part are sequenced twice,

making the differentiation of true conversions from sequencing errors

much easier: The probability for two independent sequencing errors of

the same nucleotide is negligibly small. Thus, in such situations, it is

possible to decide with almost certainty that a read pair originated

from a newly transcribed RNA molecule.

The estimation of sample specific error rates is a crucial compo-

nent of our method. Here, this has been solved by the observation

that error rates were correlated, which we could exploit by a linear

regression model. The model was trained on available samples that

A B C

D E F

Fig. 7. Differential analysis (A and B) We repeated the microRNA target prediction analysis of Herzog et al. (2017). Relative stability values (A) are computed from

the corrected conversion counts from the 3h and 12h experiments, RNA half-life log2 fold changes using GRAND-SLAM (B). The RNA half-lives show a stronger

enrichment of targets upon Xpo5 knock-out for all seed types. (C) We performed ROC analyses by treating predicted microRNA targets as the true objects, and

mRNAs without seed as the false objects. Then, either the relative stability or RNA half-life log2 fold change was taken as prediction score. MicroRNA target pre-

dictions agreed better with RNA half-lives than with relative stabilities for all four seed types. (D–F) We repeated the m6A modification analyses from Herzog

et al. (2017). As expected, no enrichment upon Mettl3 knock-out was found for mRNAs with m6A in the 5’ UTR. For all other mRNA locations defined in Batista

et al. (2014), the RNA half-lives show a substantially stronger enrichment of m6A containing mRNAs
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have not been treated with 4sU, and could predict T to C error rates

with sufficient accurracy. A potent alternative would be to use RNA

spike-ins such as the ERCC mix (Jiang et al., 2011) in each sample.

This way, error rates could be directly estimated by counting mis-

matches on the ERCC RNAs.

We have shown that the estimated proportions of new and old

RNA can be used to compute precise RNA half-lives. Importantly,

this (and all other estimates of RNA half-life based on metabolic

labeling) heavily relies on the incorporation rate of the nucleoside

analog to be constant over time. Considering that they have to cross

cell membranes, the cytoplasm and the nuclear membrane to in-

crease their concentration in the nucleus, we expect this assumption

to be problematic. 4sU needs time to accumulate, and methods are

needed to measure this effectively reduced time of labeling to be con-

sidered in estimating RNA half-lives.

We uncovered that using SLAM-seq, short half-lives can be resolved

more precisely with short periods of labeling. For such it is difficult to

achieve enough 4sU incorporation for our method to estimate the con-

version rate. Thus, labeling periods and 4sU concentrations should be

carefully tested, potentially in a cell type specific manner.

6 Conclusion

SLAM-seq experiments provide an exciting new technique to

access newly transcribed RNA for obtaining RNA half-lives or investi-

gating fast and complex regulatory processes. However, tailored

computational analyses approaches for such high-throughput experi-

ments are an essential factor for the success of any study emplyoing

SLAM-seq. Here, we provide the first statistical method that is able to

precisely delineate the quantities of newly transcribed RNA for each

gene and discriminate it from pre-existing RNA before labeling.
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