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Despite strong indications that increased consumption of added sugars correlates with greater risks of developing cardiometabolic
syndrome (CMS) and cardiovascular disease (CVD), independent of the caloric intake, the worldwide sugar consumption remains
high. In considering the negative health impact of overconsumption of dietary sugars, increased attention is recently being given to
the role of the fructose component of high-sugar foods in driving CMS. The primary organs capable of metabolizing fructose include
liver, small intestine, and kidneys. In these organs, fructose metabolism is initiated by ketohexokinase (KHK) isoform C of the central
fructose-metabolizing enzyme KHK. Emerging data suggest that this tissue restriction of fructose metabolism can be rescinded in
oxygen-deprived environments. In this review, we highlight recent progress in understanding how fructose metabolism contributes to
the development of major systemic pathologies that cooperatively promote CMS and CVD, reference recent insights into microenvir-
onmental control of fructose metabolism under stress conditions and discuss how this understanding is shaping preventive actions
and therapeutic approaches.
...................................................................................................................................................................................................
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Introduction

Diet-related cardiometabolic syndrome (CMS) is a major burden of
both industrialized and developing countries, largely in response to sed-
entary lifestyle-driven imbalance between caloric intake and consump-
tion.1 Food patterns have a major impact on numerous cardiometabolic
risk factors, all hallmarks of the CMS, including glucose intolerance and
insulin resistance, hypertension, dyslipidaemia, endothelial dysfunction,
obesity, inflammation, and adipocyte dysfunction.2 While the total fat
intake has decreased during the last decades in Europe and the USA,
the amount of added sugar, consumed mainly as sucrose (containing
50% glucose and 50% fructose) and high fructose corn syrup (HFCS;
containing 42–55% fructose) remains high.3 High fructose corn syrup
was first introduced in the USA in 1972 as an inexpensive way to
sweeten soft drinks and processed food.4 Since then the intake of HFCS
has increased dramatically, up to 27.5 kg per capita in 2007.4

Fructose has been considered an ideal replacement for glucose in
the diet of diabetic patients as its ingestion is not coupled to increased
secretion of insulin.5 However, already in 1954 high fructose con-
sumption has been linked to the development of insulin resistance.6

In fact, the increase in prevalence of diabetes, obesity, and coronary
artery disease (CAD) in the past few decades correlate with an expo-
nential rise in HFCS consumption.7,8

In this review, we will first discuss how changes in global sugar
availability has impacted the development of CMS and CAD, outline
the biochemical basis of fructose metabolism and highlight key differ-
ences in the regulation of fructolysis and glycolysis in the context of
the liver. Next, we discuss recent progress in understanding the regu-
lation of fructose metabolism by oxygen-sensitive signalling and the
pathologic consequences in the heart. Finally, we will discuss transla-
tional strategies to prevent and/or treat fructose related-CMS
pathologies.
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Cardiometabolic syndrome: a
major global burden

The dramatic worldwide increase of obesity is leading to a concomitant
rise of CMS, with major impact on cardiovascular, renal, cerebrovascu-
lar, and immunological health. It is important to note that there is no
clear consensus on the definition of CMS, also known as ‘metabolic
syndrome’ or ‘syndrome X’, which complicates comparisons across
studies. The two most common definitions are provided by the World
Health Organization (WHO) and the National Cholesterol Education
Program Adult Treatment Panel III (NCEP-ATP III).9 The WHO crite-
ria require the presence of diabetes and insulin resistance and two risk
factors [obesity, systemic arterial hypertension, dyslipidaemia with high
triglycerides or reduced high-density lipoprotein cholesterol (HDL-C)
levels, or micro-albuminuria]. The NCEP-ATP III criteria focus more
on early disease detection and necessitate any three of the following
clinical abnormalities: hyperglycaemia, central obesity, arterial hyper-
tension, dyslipidaemia [e.g. elevated triglyceride levels, high apolipopro-
tein (Apo) B, and reduced HDL].9 More recently, the presence of non-
alcoholic fatty liver disease (NAFLD) has been shown to predict even
more precisely the presence of insulin resistance than do ATP III crite-
ria.10 Alanine aminotransferase (ALT) levels in serum, and intrahepatic
lipid accumulation, are also diagnostically informative.11–13 The
Japanese government has therefore included a threshold level for ALT
as part of their CMS definition.10

Global obesity has more than doubled since 1980. In 2014, more
than 1.9 billion adults were overweight and 600 millions of them
obese.14 The trend is similar for type 2 diabetes. Since 1980, the num-
ber of diabetic people nearly quadrupled from 108 million to 422 mil-
lion in 2014.15 Today, some form of dyslipidaemia affects more than
50% of Americans and Germans.16,17 The advent of statins has
reduced severe dyslipidaemia, and new treatment options with inhibi-
tors targeting proprotein convertase subtilisin/kexin type (PCSK)9
may lead to a further decrease of this condition.18,19 However, over
50% of people with dyslipidaemia remain undiagnosed, excluding
them from secondary prevention and pharmacological treatments.20

Hypertension is similarly on the rise, with an incidence of around
15% in the 1930 s (USA) to around 30% nowadays or even 45–55%
in many European countries. The increased prevalence for diabetes
and hypertension closely parallels increased rates of CAD and heart
failure, stroke, and renal insufficiency and failure.21 Cardiovascular
disease (CVD), for a long time most prevalent in the western world,
has become the number one cause of death worldwide, as obesity,
type 2 diabetes, and dyslipidaemia spread globally.22

The role of fat, added sugar, and
dietary patterns in
cardiometabolic syndrome and
cardiovascular disease

Whereas there is little doubt about over-nutrition and inactivity
being main causative factors for CMS and CVD, there remains
ongoing debate about which nutrient class is a main culprit. In the last
six decades, this debate was dominated by the diet-heart hypothesis

that focuses on cholesterol and fats. The hypothesis goes back to dis-
coveries of Anitschkow and Chaltow23 in 1913, who induced athero-
sclerosis in rabbits by feeding them a cholesterol-rich diet, but the
idea was popularized most notably by Ancel Keys24 in the 1950’s.
Keys argued that elevated mean cholesterol levels and cardiovascular
mortality positively correlated with the amount of saturated fats and
cholesterol in the diet, suggesting (though not proving) a causal rela-
tionship.25 In response, the American Heart Association (AHA) rec-
ommended in 1961 to reduce daily cholesterol consumption below
300 milligrams.26 The Multiple Risk-factor Intervention Trial (MR-
FIT) as well as the Lipid Research Clinics Coronary Primary
Prevention Trial (CPPT) supported the diet-heart hypothesis and the
dietary guidelines by the AHA in principle. The influence of a recom-
mended intake of mono- and polyunsaturated fatty acids (e.g. olive oil
rich in alpha linoleic acid and oily fish), instead of saturated fats on
blood cholesterol levels and cardiovascular outcome during a 10-
year observational period was however small when cleared for par-
ticipants who died of heart attack or during the study period.27,28

These results already suggested that blood cholesterol levels are only
marginally influenced by low-cholesterol diets. Moreover, no
randomized controlled trial has shown that the exclusive replace-
ment of saturated fat with linoleic acid significantly reduces CAD
events or deaths.29 In the light of this absence of evidence, the AHA
and the Dietary Guidelines Advisory Board in the USA removed diet-
ary cholesterol as a nutrient of concern in 2015.30

Of note, the historical AHA guidelines on the reduction of choles-
terol intake are an oversimplification of the ‘good Mediterranean diet’
proposed by Keys, which is mainly vegetarian and low in saturated
fats, which are replaced with mono- and polyunsaturated fats.31 The
Mediterranean diet likely remains a quite powerful and cost-effective
method to reduce cardiovascular risk and the prevalence of CMS.32

However, this is rather due to a mixture of fruits, vegetables, nuts,
complex carbohydrates, and moderate alcohol consumption, in com-
bination with low intake of added sugars and meats. Indeed, the Lyon
Heart Study showed a 50–70% lower risk of recurrent heart disease,
independent of body mass index (BMI), in the Mediterranean diet
group supplemented with alpha linoleic acid, compared to the con-
trol group receiving a prudent western diet.33 The PREDIMED trial
demonstrated most prominently a reduction in stroke in response to
Mediterranean diets enriched with extra-virgin olive oil or mixed
nuts, compared to a control group advised only to limit fat intake.28

Thus, controlling the amount and type of ingested fat alone is insuffi-
cient to positively affect the cardiovascular outcome.

John Yudkin34 introduced in 1959 the concept that sugar rather
than fat drives obesity and cardiovascular mortality.35 Numerous clin-
ical studies support the hypothesis of Yudkin that there is no link
between the consumption of saturated fatty acids and cardiovascular
death.36 In contrast, randomized clinical trials and epidemiologic stud-
ies in adults and children have demonstrated that an increased intake
of added sugar, in particular through sweetened beverages, leads to
more weight gain37 and higher risk of (visceral) obesity,38 hyperten-
sion, type 2 diabetes,39 dyslipidaemia,40,41 and CVD.8,42,43 Convincing
evidence of a causal relation between intake of added sugars and car-
diovascular risk factors other than body weight are often denied.
However, a systematic review and meta-analyses of 39 randomized
controlled trials suggest a causal relationship between sugar con-
sumption and elevated blood pressure and lipids.44 In a prospective
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cohort of nationally representative US adults, the association
between added sugar intake and CVD mortality remained significant
even when adjusted for conventional cardiovascular risk factors such
as blood pressure or serum cholesterol.42 Moreover, the detected
relationship was consistent across BMI, physical activity levels, age,
sex, ethnicity (except non-Hispanic blacks), and diet quality.42

Whereas the consumption of saturated fatty acids has decreased
in the previous six decades, the intake of free sugars (added sugars
and natural sugar sources, e.g. from honey and fruit juices) in the USA
has steadily increased since the beginning of the 19th century, from
2.9 kg/year/person in 1822 to 48.9 kg/year/person in 1999.10 Free
sugar consumption in Europe has shown signs of a decrease since
2000, but it remains still 35 kg/year/person nowadays, which equals
to about 20% of total energy content, far more than the WHO rec-
ommendation of 9.1 kg per year, i.e., 5% of total energy content.45

People who derive 10–25% of their caloric intake from sugar have a
30% higher risk for cardiovascular mortality. Those deriving more
than 25% calories from sugar, which is roughly on par with average
sugar consumption in the USA and Germany, the relative risk of car-
diovascular mortality is nearly tripled.42 Remarkably, nearly 50% of
added sugars are ingested through sugar-sweetened beverages (e.g.
soda, tea, fruit drinks).46 In consequence, the current European
guidelines in CVD prevention highly discourage the intake of sweet-
ened beverages.32 Another significant contribution of added sugar
comes from the consumption of processed food like bakery products
and snacks.46 In industrially produced food, sugar is often used for
both to enhance flavour and attenuate suppression of appetite.47

This is especially true for fructose, which affects ghrelin production in
the gastrointestinal tract and leptin secretion from adipocytes.48 The
anorexigenic hormone leptin was found in higher postprandial levels
after glucose than after fructose ingestion, whereas the orexigenic
ghrelin was reduced.49 Interestingly, leptin-responsive neurons can
also activate pathways in the periphery that are critical for stimulating
energy expenditure and fat oxidation.50 People with high-fructose
intake may thus have decreased energy expenditure compared to
people with equal caloric intake of diets rich in glucose or starch, and
thus gain more weight. This conclusion is supported by several epide-
miological studies indicating a significant relationship between
fructose-sweetened beverage consumption and BMI, even after
adjusting for total energy intake.51–55 In addition to the production of
adipocytokines also endocannabinoid release is altered in response
to increased fructose intake. The induced hypothalamic endocannabi-
noid synthesis is linked with increased appetite56 whereas elevated
endocannabinoids from the adipose tissue lead to coronary circula-
tory dysfunction.57

Fructose uptake and metabolism

Dietary sugars are largely ingested either as sucrose, which is cleaved
by the brush-border hydrolase sucrase into glucose and fructose,58

or free glucose and fructose in form of HFCS (Figure 1). The gut
transporters sodium-glucose transporter 1 (SGLT1) and glucose-
transporter (GLUT) 5 take up glucose and fructose, respectively, into
enterocytes.59 The presence of fructose increases the expression of
GLUT5 mRNA and protein in rodents and humans.60 Multiple pro-
teins contribute to this process including Ras-related protein

RAB11a, that is crucial for endosomal protein trafficking of GLUT5.60

Fructose uptake by the gut is limited after one-time consumption.61

Fructose absorption can be increased however, when given in form
of sucrose or in combination with glucose,61 with the highest uptake
when glucose and fructose are provided in equal amounts.61

Moreover, fructose uptake can be increased by chronic fructose
intake.60 Certain amino acids (e.g. alanine, proline, and glutamine) can
also facilitate fructose absorption, most likely by solvent drag and pas-
sive diffusion.62

After gut absorption, fructose enters the portal circulation,
reaches the liver, is taken up by hepatocytes through a GLUT2-medi-
ated process and immediately converted by KHK-C to fructose-1-
phopsphate (F-1-P) (Figures 1 and 2). KHK-C is the protein product
of one of two alternatively spliced isoforms of the KHK gene. It differs
from the KHK-A isoform by a mutually exclusive exon. KHK-C dis-
plays superior affinity for fructose and is also prominently expressed
in the kidney and small intestine, whereas all other tissues express
KHK-A, which lacks high affinity to fructose.63 A main difference
between hepatic fructose and glucose metabolism is that KHK-C-
driven phosphorylation of fructose and its degradation to the triose-
phosphates dihydroxyacetone phosphate (DHAP) and glyceralde-
hyde 3-phosphate (G-3-P) is unrestricted while glycolysis is tightly
regulated according to the cellular energy state at the level of phos-
phofructokinase (PFK). Increased fructose uptake and metabolism
can thereby induce a decline in hepatocellular ATP levels resulting in
a facilitated high glycolytic flux due to absent PFK inhibition.
Moreover, postprandial levels of F-1-P can also allosterically activate
glucokinase-regulatory protein which increases glucose uptake by
inducing the shuttling of glucokinase from nucleus into the cytoplasm
leading to increased phosphorylation to glucose-6-phosphate (G-6-
P), by nearly three-fold compared with the absence of fructose.64 In
addition, experiments with fructose-treated rabbits revealed
increased intracellular levels of fructose-2, 6-biphosphate, a potent
activator of phosphofructokinase. Finally, increased levels of F-1-P
have also shown to induce the liver-type pyruvate kinase.65 Fructose
thus appears to be able to stimulate both hepatic glucose uptake and
glycolysis in the liver, bypassing hormonal regulation.

Fructose metabolism and liver
pathologies

The mechanisms underlying the association between an increased
sugar consumption and cardiometabolic risk are still far from being
understood. However, there is growing evidence that in particular
the fructose component in sucrose plays an important role in the
pathophysiologic consequences of elevated sugar intake.

Once degraded to the two triosephosphates fructose carbons
then in principle be used for gluconeogenesis, lactate production, or
production of Acetyl-CoA to be oxidized in mitochondria or, most
importantly, used for de novo lipogenesis (DNL). Dihydroxyacetone
phosphate is also an important precursor for synthesis of the glycerol
backbone in the formation of neutral lipids. Thus, the unregulated
delivery of excess carbons to the glycolytic pathway in the liver can
overwhelm normal regulatory steps, forcing enhanced DNL and tri-
glyceride synthesis, which explains in part the lipogenic phenotype
that is related to excessive fructose intake.10 This behaviour provides

Fructose metabolism and cardiometabolic risk 2499
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a potential explanation for a key role of KHK-C in the development
of specific features of CMS, a notion underscored by the fact that
wild-type mice getting 32 or 45% of their total energy intake as fruc-
tose develop CMS,66 KHK-deficient mice do not.66 KHK-deficient
mice are also protected from the adverse effects of excess glucose
consumption as the liver converts excess glucose into fructose via
the polyol pathway.67 These observations are consistent with a
broader role of KHK-signalling and fructose metabolism in supporting
multiple key aspects of the CMS.

The typical and most common hepatic manifestation of CMS is
NAFLD, defined as excessive hepatic fat accumulation in individuals
who have no apparent liver disease and whose alcohol intake is less
than 30 g per day for men and 20 g per day for woman.68 It affects
already one billion people worldwide and correlates well with other
manifestations of CMS such as insulin resistance, hypertriglyceridae-
mia, and CVD.69 Individuals with NAFLD typically have elevated cir-
culating levels of triglycerides and Low-density lipoprotein
cholesterol (LDL-C), and low levels of HDL-C.70 The primary cause

Figure 1 Systemic effects of increased fructose uptake. Consequences of fructose ingestion are not limited to the intestine or liver, but also affect
multiple organs including adipose tissue, the vasculature, heart, and kidney, as well as the satiety regulation regions in the brain. HFCS, high fructose
corn syrup; NO, nitric oxide; GLUT5, glucose transporter 5.

2500 P. Mirtschink et al.
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..of death in individuals with NAFLD is coronary heart disease and up
to 80% of people with chronic heart failure have hepatic dysfunc-
tion.71–73 Increased carotid intima media thickness is already present
in children with NAFLD, indicating that adverse systemic consequen-
ces of NAFLD start early.3 In the past, increased fat and caloric intake
combined with decreased physical activity was regarded as the main

cause of NAFLD. More recently, population studies have revealed a
close association between specifically overconsumption of refined
sugar and the development of NAFLD in both adults and chil-
dren.10,74,75 Moreover, adults with biopsy-proven NAFLD have a
two- to three-fold higher fructose consumption, compared to
healthy controls.76,77 In addition, sugar-driven NAFLD has a higher

Figure 2 Consequences of hepatic fructose metabolism. Increased sugar consumption results in increased uptake of fructose, resulting in ATP
depletion that may cause increased uric acid production and hyperuricemia leading to arterial hypertension. Fructose is further metabolized to glycer-
aldehyde 3-phosphate and dihydroxyacetonephosphate inducing triacylglycerol synthesis and DNL, leading to hepatic steatosis, whereas fatty acid
oxidation is repressed. Diacylglycerol activates PKCepsilon, resulting in decreased hepatic insulin sensitivity and induction of gluconeogenesis.
Fructose produced by the polyol pathway may also be transported back to the blood stream leading to hyperfructosemia. ACC, acetyl-coa carboxy-
lase; ACLY, ATP citrate lyase; CPT1, carnitine-palmitoyltransferase 1; ChREBP, carbohydrate-responsive element-binding protein; DAG, diacylgly-
cerole; FAS, fatty acid synthase; FATP5, fatty acid transport protein 5; GLUT2, glucose transporter 2; GLUT9, glucose transporter 9; LPA,
lysophosphatidic acid; NO, nitric oxide; PFK, phosphofructokinase; PA, phosphatidic acid; PKCe, protein kinase C epsilon type; SREBP1, sterol regula-
tory element binding transcription factor 1; TAG, triacylglycerole; XBP-1, X-box binding protein 1.
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risk of hepatic inflammation and fibrosis, and fructose restriction
improves NAFLD.78–81 Isotope analyses have revealed that, normally,
dietary fatty acids have only a minor contribution to liver triglycer-
ides, in the range of 5–15%, while fatty acids derived from lipolysis in
adipose tissue label up to 60% of liver triglycerides.82,83 Strikingly, the
contribution of DNL in the liver becomes more prominent in the
presence of NAFLD, rising from 10% up to 26%.82,83

Although both increased fat and sugar intake can induce NAFLD,
enzymes of DNL are particularly upregulated in fructose-rich diets.68

Fructose readily enters the portal vein after ingestion to be directly
delivered to the liver. In contrast, long-chain fatty acids absorbed in
the intestine first enter the lymphatic system as chylomicrons and are
delivered to the systemic circulation. The liver exposure to dietary
fat is thus not different compared to other tissues, which is in con-
trast to fructose.68 Moreover, high-carbohydrate diets cause the
cytosolic production of Acetyl-CoA from citrate.84 Cytosolic Acetyl-
CoA is a mandatory carbon donor in the de novo synthesis of fatty
acids, the first step of which is acetyl-CoA carboxylase-mediated syn-
thesis of malonyl-CoA.84 Malonyl-CoA directly inhibits fatty acid oxi-
dation by inhibiting carnitine-palmitoyltransferase 1 (CPT1)85 (Figure
2). Furthermore, in addition to fructose, cytosolic Acetyl-CoA acti-
vates lipogenic transcription factors like sterol regulatory element-
binding transcription factor 1c (SREBP1c) and carbohydrate-
responsive element-binding protein (ChREBP), stimulating every step
of DNL.68 ChREBP was also shown to induce hepatic fibroblast
growth factor 21 (FGF-21) expression upon acute fructose intake,
leading to elevated circulating FGF-21.86 Plasma levels of FGF-21
faithfully reflect intrahepatic lipid accumulation, suggesting FGF-21 as
a promising biomarker for fructose-induced NAFLD.87

Elevated fructose intake does not only drive DNL but also hepatic
insulin resistance. When the capacity to convert diacylglycerol
(DAG) to triacylglycerol is exceeded, protein kinase C epsilon
becomes activated, leading to inhibition of insulin receptor kinase-
mediated tyrosine phosphorylation of insulin receptor substrate-1
and -2 and ultimately to reduced phosphoinositol 3-kinase and AKT
Serine/Threonine Kinase 2 (AKT2) activation.88 Reduced AKT2 acti-
vation diminishes glycogen production by glycogen synthase and
releases the suppression by insulin of gluconeogenesis and GLUT2
mediated glucose release.88 Consequently, even though fructose
consumption results in only a minimal rise of blood glucose levels, a
chronic fructose-rich diet may lead to hepatic insulin resistance and
glucose intolerance. Insulin also can activate SREBP1c, and thereby
hepatic uptake of free fatty acids and DNL.89 If insulin sensitivity is
impaired, the suppression of hepatic gluconeogenesis is altered, but
paradoxically the effect on DNL is unaffected.68 Thus, obese patients
with impaired glucose tolerance or diabetes and NFLD have induced
DNL.

The main product of hepatic DNL is palmitic acid.90 Palmitic acid
has been demonstrated to be a major driver of atherosclerosis and
CAD by increasing the lectin-type oxidized LDL receptor 1 (LOX-1)
expression and uptake of oxidized LDL in macrophages.91,92

Moreover cholesterol efflux from macrophages is inhibited thereby
eliciting inflammation.93 In two studies in which normal and over-
weight subjects consumed 25% of energy in form of either HFCS,
fructose or glucose for 14 days, post-prandial triglycerides and fasting
and post-prandial levels of LDL, non-HDL-C, apoB, and apoB to
apoA ratio were significantly increased in the HFCS and fructose but

not glucose group.94 LDL particle size was reduced in fructose con-
taining diets and a more atherogenic LDL-subclass distribution was
seen.95 A study under similar conditions but conducted over
10 weeks resulted in a similar outcome.96 Yet another study per-
formed by the same group demonstrated that consumption of bever-
ages providing 10, 17.5, or 25% of energy requirements (Ereq) from
HFCS leads to a dose-dependent increases of several risk factors for
CVD within 2 weeks in young male and female volunteers. For exam-
ple, the concentrations of non–HDL-C, LDL-C, apoB, uric acid, post-
prandial apoCIII, and post-prandial triglyceride increase in proportion
with the intake dose of HFCS.97 The same amount of fructose intake
results in increased hepatic DNL and hepatic lipid content, compared
with a complex carbon diet for 9 days.98 Also acute post-prandial lev-
els of total cholesterol, LDL, and HDL-C were increased after inges-
tion of 50 g fructose compared with the same amount of glucose or
sucrose.99 In another double-blind, randomized, cross-over trial, nine
healthy, normal weight males consumed each four different sugar-
sweetened beverages (medium fructose at 40 g/day; high fructose,
high glucose, or high sucrose all at 80 g/day) for three consecutive
weeks.100 Energy intake was controlled by food-records. LDL- and
total cholesterol were significantly higher after medium fructose, high
fructose and high sucrose.100 Moreover, clamp experiments revealed
that hepatic suppression of glucose production by insulin was much
lower after high fructose than after high glucose diet.100 In a similar
trial, male or female volunteers were fed with a diet containing just
17% fructose or glucose for 6 weeks. Dietary fructose intake was
associated with increased fasting and postprandial plasma triacylgly-
cerol concentrations only in men. No effects were observed regard-
ing total-, HDL, or LDL-C in either men or women.101 These studies
differ from results of other meta-analyses where no association
between fructose consumption and uric acid, LDL-C or postprandial
triglyceride levels have been obvious.102–104 Possible explanations for
the contrasting results include lack of a proper control group, since
fructose ingestion was compared to sucrose-diets,105,106 a noticeable
energy restriction that prevents uric acid formation,107,108 the use of
milk as a vehicle for the sugars, leading to milk overconsumption
compared to normal population,97,109 the statistical analyses
employed,97,109 and lack of an objective measure of compliance, e.g.
by addition of riboflavin in the beverage.96,97

Another important meta-analysis focused on the link between
fructose and NAFLD.110 The authors argued that the apparent link
between added sugar/HFCS consumption and NAFLD is confounded
by excessive energy intake and recommended that the evidence is
not sufficiently robust to draw a conclusion on a possible association
between added sugar/HFCS intake and NAFLD.110 This conclusion
was reached since only the hypercaloric-fructose and not weight-
maintenance diets were leading to increased liver fat.110 However,
the follow-up in the iso-caloric fructose diets study was only
4 weeks.110 Intervention studies with a duration of 6 months clearly
showed an increase in liver fat after consumption of 1 L/d cola com-
pared with the same amount of milk, diet cola, or water consuming
an iso-caloric diet,38 and a decrease in liver fat in adults and children
with diagnosed NAFLD when fructose intake was limited.111,112

In sum, several reasons account for increased postprandial trigly-
ceride levels and NAFLD following consumption of fructose-
containing sugars increases post-prandial triglyceride levels and
NAFLD for several reasons: KHK-C is not regulated by hepatic

2502 P. Mirtschink et al.
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energy status and results in unregulated hepatic fructose uptake. The
excess substrate leads to increased DNL while inhibiting fatty acid
oxidation resulting in decreased hepatic insulin sensitivity. Increased
intrahepatic lipid content promotes very low density lipoprotein
(VLDL) production and excretion leading to increased postprandial
triglycerides (Figure 1). Moreover, the unrestricted KHK-C activity
results in ATP depletion and uric acid production via the purine deg-
radation pathway. Postprandial hypertriglyceridaemia and increased
uric acid levels are both risk factors for CVD113–115

Regulation of fructose
metabolism by environmental
cues: the hypoxia connection

Oxygen fuels the generation of energy in form of ATP through oxida-
tive phosphorylation, which is designed to maximize ATP yield.
Anaerobic energy production through glycolysis is inefficient in gen-
erating ATP. Thus, oxygen is a central component of cellular metabo-
lism and harnessing it is critical for maintaining cell and tissue
function. Accordingly, disrupted oxygen homeostasis is associated
with multiple disease states ranging from obesity and diabetes to can-
cer, ischaemia, and heart disease.

Physiologic or pathophysiologic conditions that lead to a reduction
in the amount of O2 available to a tissue, activate the transcription
factor hypoxia-inducible factor (HIF). Hypoxia-inducible factor plays
a central role in the transcriptional response to changes in oxygen
availability. It is composed of an O2-labile a-subunit (HIF1a, HIF2a,
HIF3a) and a stable b-subunit (HIF1b).116 Together, these subunits
bind hypoxia-responsive elements and induce the transcriptional acti-
vation of target genes whose protein products contribute to various
cellular processes including cell survival, angiogenesis, and metabolic
reprogramming (Figure 3).

While HIF activation is well known to mediate a shift from oxida-
tive phosphorylation to glycolysis, recent evidence suggests that HIF
also impacts fructose metabolism in the context of cardiac pathologic
stress-induced hypertrophic growth.117 The underlying molecular
mechanism involves functional interactions between HIF and compo-
nents of the core splicing machinery resulting in KHK isoform switch-
ing. This process can be triggered by increased left ventricular wall
stress and tissue hypoxia that promote accumulation of HIF1a, which
induces the transcriptional activation of splice factor 3 subunit B1
(SF3B1) (Figure 3). SF3B1 is a core component of the U2 (small
nuclear ribonucleoprotein (snRNP) complex of the spliceosome, a
ribonucleoprotein complex central for pre-mRNA splicing. It targets
and binds to the branch point, a distinct region on the intronic pre-
mRNA, upstream of the next exon to be included.118 In the healthy
heart, the U2snRNP complex targets primarily the branchpoint
region upstream of exon 3 of the KHK pre-mRNA. Consequently,
regular cardiomyocytes express KHK-A isoform, which is character-
ized by a low affinity towards fructose, avoiding fructose uptake and
metabolism.117 Increased levels of SF3B1 in response to hypoxia
drive the use of an alternative branch-point upstream of the mutually
exclusive exon 4 of the KHK pre-mRNA, leading to expression of
KHK-C117 (Figure 3). KHK-C expression activates fructose metabo-
lism and uptake, while genetic deletion of Khk in the mouse or the

expression of KHK-A diminishes fructose metabolism.66,117

Increased fructose uptake has been linked to cardiac, renal, and adi-
pose tissue hypertrophy.117,119–121 However, it is so far unclear if this
link is a direct effect of increased fructose uptake or rather due to
secondary effects induced by increased DNL, insulin resistance,
inflammation, or reactive oxygen species production.122

Chronic stabilization of HIF-1a, triggered for example by myocar-
dial ischaemia, causes pathologic hypertrophic growth and contractile
dysfunction (Figure 3). The role of HIF in driving the SF3B1-KHK-C
axis suggests a mechanistic link between hypoxia-mediated activation
of anabolic cellular growth and fructose metabolism. Activated car-
diac fructolysis ensures a high glycolytic turnover, achieved by the
unrestricted phosphorylation of incoming fructose by KHK-C result-
ing in increased ATP utilization, in line with the observed relative
decline of ATP in diseased hearts of hypertrophic cardiomyopathy
and aortic stenosis patients where the HIF1a-SF3B1-KHK-C axis is
active.117,123,124 Consequently, the ATP depletion prevents allosteric
inhibition of PFK1 by too high levels of ATP or citrate, allowing the
maintenance of a high glycolytic flux and sufficient ATP generation,
critical for anabolic growth (Figure 3). Similarly as observed in the dis-
eased heart, increased fructose uptake and metabolism was recently
identified as being highly activated in naked-mole rats under extreme
hypoxia, preventing inhibition of glycolysis by phosphofructokinase
and thus, ensuring survival even in prolonged anoxia.125 This observa-
tion implicates a therapeutic strategy, that activation of cardiac fruc-
tose metabolism in response to myocardial infarction might improve
the short-term ischaemia tolerance of the heart.

Glycolysis is the starting point of various biosynthetic pathways
within the cell. Hypoxia-inducible factor stabilization in cardiomyo-
cytes can thus result in increased amino acid biosynthesis, induction
of both the non-oxidative and oxidative pentose phosphate path-
ways, and nucleotide and triacylglycerol biosynthesis. Redox balance
can also be significantly affected, due to extensive use of reducing
equivalents for macromolecular biosynthesis. In addition, fructolysis
may support anabolic growth also by channelling additional carbons
into DHAP, which are further metabolized into triacylglycerol,
nucleotide, and amino acid biosynthesis (Figure 3). Moreover, KHK-C
expression is accompanied by transcriptional induction of GLUT5, as
has also been noted in hypoxic adipocytes.126 Consistent with these
findings, metabolomic experiments revealed that the anabolic state
of the cell during HIF1 stabilization depends in large part on KHK-C
expression, whereas depletion of KHK-A had no effect.117

Finally, recent work suggests that excessive hepatic glucose which
is converted to fructose via the polyol pathway and is not completely
metabolized to F-1-P can also be secreted systemically,67 likely
explaining why diabetic patients have increased plasma fructose lev-
els.127 Increased circulating fructose drives fructose and glucose
uptake in cardiomyocytes, leading to cardiac hypertrophy.117,119

Consequently, the HIF1-SF3B1-KHK-C axis might explain in part why
diabetic patients are at higher risk for heart disease.

Dietary restrictions and
molecular therapies

Cardiovascular disease is the primary cause of death in patients with
CMS. Primary prevention is thus imperative. This should include
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.
weight management, consumption of a heart-healthy diet, restriction
of sugar as close as possible to 25 g daily as recommended by the
WHO, increased physical activity, smoking cessation, and reduction
of mental stress.32 However, many studies have revealed the difficulty
of successful lifestyle interventions,128,129 with only moderate effects
on reduction of major risk factors of CAD, including hypertension,
dyslipidaemia, and insulin resistance. Drug therapies targeting blood
pressure, lipid, and sugar metabolism and insulin sensitivity are thus
widely used.130–132

In light of the consequences of induced hepatic and cardiac fruc-
tose metabolism discussed here, inhibitors that target specifically
KHK-C could be promising new therapeutic agents. In experiments
with Khk null mice, fructose-induced NAFLD and NASH as well as
left ventricular hypertrophy caused by pressure-overload were pre-
vented.66,117 Thus, KHK-C specific inhibitors might offer a powerful

therapeutic option, without significant systemic side effects. Early
screening results are promising,133,134 but experimental data in mod-
els of NAFLD or cardiac hypertrophy have not yet been reported.

Conclusions

Ample clinical and basic biological evidence indicates that consump-
tion of excess sugar promotes the development of CMS, CVD, and
type 2 diabetes. This occurs both directly and indirectly. In the liver,
GLUT2 and KHK-C mediated unrestricted hepatic fructose uptake
and metabolism causes intrahepatic lipid accumulation, dyslipidaemia,
decreased insulin sensitivity, and hyperuricemia. In the heart, HIF1a-
driven activation of fructose uptake and metabolism by an SF3B1-
mediated splice shift resulting in expression of KHK-C instead of

Figure 3 Fructose-driven cardiac hypertrophy and ATP depletion mediated by the HIF-SF3B1-KHK-C Axis. Pressure overload-induced left ventricu-
lar wall stress activates a hypoxic response, mediated by activation and accumulation of HIF1, which drives the expression of the splice factor SF3B1.
Increased levels of SF3B1 change splicing of KHK pre-mRNA due to different branch point recognition, resulting in KHK-C expression. In parallel with
HIF-induced glycolysis, fructose uptake and metabolism drive anabolic cell growth, by induction of TAG, amino acid and nucleotide biosynthesis.
GLUT1, glucose transporter 1; GLUT5, glucose transporter 5; GA, glyceraldehyde; GA3P, glyceraldehyde 3-phosphate; HK1, hexokinase 1; HIF1a,
hypoxia-inducible factor 1a, KHK-C, ketohexokinase C; LDH, lactate-dehydrogenase; PDH, pyruvate-dehydrogenase; PDK1, pyruvate dehydrogenase
kinase 1; SF3B1, splice factor 3 subunit B1.
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KHK-A supports anabolic cardiac growth and systolic and diastolic
dysfunction in response to cardiac stress. Epidemiological data and
interventional studies corroborate experimental data obtained in
cells and animal models and indicate increased cardiovascular mortal-
ity in people with elevated fructose intake. Moreover, controlled diet
intervention studies in humans revealed increased rate of cardiovas-
cular risk factors, especially increased levels of circulating lipids and
decreased insulin sensitivity, in response to fructose intake. An
important lesson taken from the diet-heart hypothesis is that a
healthy diet and prevention of excessive caloric intake is likely the
most effective nutritional strategy to prevent CMS and CVD.
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