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Abstract

Background—Observational studies have linked increased adult height with better cognitive 

performance and reduced risk of Alzheimer’s disease (AD). It is unclear whether the associations 

are due to shared biological processes that influence height and AD or due to confounding by 

early life exposures or environmental factors.

Objective—To use a genetic approach to investigate the association between adult height and 

AD.

Methods—We selected 682 single nucleotide polymorphisms (SNPs) associated with height at 

genome-wide significance (p < 5 × 10−8) in the Genetic Investigation of ANthropometric Traits 

(GIANT) consortium. Summary statistics for each of these SNPs on AD were obtained from the 

International Genomics of Alzheimer’s Project (IGAP) of 17,008 individuals with AD and 37,154 

controls. The estimate of the association between genetically predicted height and AD was 

calculated using the inverse-variance weighted method.

Results—The odds ratio of AD was 0.91 (95% confidence interval, 0.86–0.95; p = 9.8 × 10−5) 

per one standard deviation increase (about 6.5 cm) in genetically predicted height based on 682 

SNPs, which were clustered in 419 loci. In an analysis restricted to one SNP from each height-

associated locus (n = 419 SNPs), the corresponding OR was 0.92 (95% confidence interval, 0.86–

0.97; p = 4.8 × 10−3).

Conclusion—This finding suggests that biological processes that influence adult height may 

have a role in the etiology of AD.
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Introduction

Alzheimer’s disease (AD) is the major cause of dementia, and a leading cause of disability, 

morbidity, and mortality [1]. Established non-modifiable risk factors include increasing age 

and genetic variants in the APOE gene, which encodes apolipoprotein E [1]. Low 

educational attainment and certain cardiovascular risk factors have been identified as 

possible modifiable risk factors for AD in observational studies [2, 3], but causal 

associations of high blood pressure, adiposity, and type 2 diabetes with increased AD risk 

have not been corroborated by genetic studies [4, 5]. Observational studies have also found 

that taller stature is associated with better cognitive performance [6–8] and lower risk of 

dementia and AD [9, 10]. Moreover, a recent study showed a genetic correlation between 

greater height and cognitive function measured by a verbal-numerical reasoning test [11]. It 

is unclear whether achieved height may be related to cognitive function and AD via shared 

underlying genetic and biological factors or whether it only serves as a marker of early life 

exposures, childhood nutrition, or social and environmental factors that affect the risk of 

AD. Answers to this question may provide insight into the etiology of AD.

Genetic variants that influence a specific risk factor can be used as instrumental variables to 

investigate the association between the risk factor and disease risk. This genetic approach 

has been utilized to explore the association between adult height and risk of cardiovascular 

disease [12, 13] and cancer [14–16], but has not yet been used to investigate the association 

between height and AD. The aim of this study was to examine whether genetically predicted 

height is associated with AD. We used data for nearly 700 genetic variants (single nucleotide 

polymorphisms; SNPs) that explain one-fifth of the heritability for height, identified in the 

Genetic Investigation of ANthropometric Traits (GIANT) consortium [17], as well as AD-

associated data for the same genetic variants from the International Genomics of 

Alzheimer’s Project (IGAP).

Methods

Alzheimer’s disease data

This study was performed using summary statistics for SNP–AD associations obtained from 

the IGAP consortium [18]. IGAP includes genetic data from 17,008 individuals with AD 

and 37,154 controls of European ancestry. We used data from the first stage of IGAP, which 

genotyped and imputed data on 7,055,881 SNPs to meta-analyze genome-wide association 

studies datasets from four consortia, including the Alzheimer Disease Genetics Consortium 

(ADGC), the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium 

(CHARGE), the European Alzheimer’s disease Initiative (EADI), and the Genetic and 

Environmental Risk in AD consortium (GERAD). All AD cases met internationally 

accepted criteria for possible, probable (National Institute of Neurological and 

Communicative Disorders and Stroke and Alzheimer’s Disease and Related Disorders 

Association, DSM-IV), or definite (Consortium to Establish a Registry for Alzheimer’s 

Disease) AD [18]. All studies included in IGAP had been approved by an Institutional 

Review Board. Informed consent had been obtained from participants or from a caregiver, 

legal guardian, or other proxy.
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Selection of genetic variants

A genome-wide meta-analysis comprising 253, 288 European-descent individuals from 79 

studies included in the GIANT consortium identified 697 SNPs associated with adult height 

at genome-wide significance (p < 5 × 10−8) [17]. The SNPs were clustered in 423 loci, with 

a locus defined as one or multiple jointly associated SNPs located within a 1 Mb window 

[17]. The 697 height-associated SNPs were considered for inclusion in the present analysis. 

For 15 SNPs neither the index SNP nor any proxies (defined as SNPs with linkage 

disequilibrium R2 >0.9) was available in the IGAP dataset, leaving 682 SNPs for inclusion 

in the analysis (Supplementary Table 1). The majority of SNPs were uncorrelated, but some 

SNPs in close physical proximity (for example in the same locus) were in partial linkage 

disequilibrium [17]. We therefore also conducted an analysis that included the lead SNP 

(i.e., the SNP with the smallest p value) from each locus and which had corresponding data 

in IGAP; this analysis included 419 SNPs from separate height-associated loci.

Statistical analysis

The analysis was performed by assessing the height-related SNPs’ associations with AD 

risk, weighting the effect of each SNP by the magnitude of its association with height. 

Estimates for individual SNPs were combined using an inverse-variance weighted approach 

[19]. We estimated the genetic correlation between height and AD using LD score regression 

[20], based on data available from LD Hub (http://ldsc.broadinstitute.org). The reported odds 

ratios (OR) represent the association of a one standard deviation (SD) increase (about 6.5 

cm) in genetically predicted height with AD. All statistical tests were two-sided. Individual 

height-associated SNPs were investigated for association with AD using a Bonferroni-

corrected significance threshold (p < 7.3 × 10−5 [0.05/682 SNPs]). Tests were otherwise 

considered statistically significant at p < 0.05. All analyses were performed using Stata, 

version 14.2 (StataCorp, College Station, Texas, USA).

Sensitivity analyses

In sensitivity analyses, we used the weighted median method and Egger regression analysis 

to explore and adjust for pleiotropy [19]. Pleiotropic associations with birth weight and 

educational attainment, both of which show a genetic correlation with adult height [11, 21, 

22], were investigated by excluding height-associated SNPs that were associated with birth 

weight [22] or years of education [23] at p < 0.05 (Supplementary Table 1). Pleiotropic 

SNPs were identified by searching the PhenoScanner database [24]. We also repeated the 

analysis with the exclusion of SNPs associated with AD at p < 0.05 to assess the influence 

of SNPs that were more strongly associated with AD.

Results

Of the 682 height-associated SNPs, 56 were associated with AD at nominal statistical 

significance (p < 0.05) but none of the associations remained at a Bonferroni-corrected 

significance level (Supplementary Table 1). In an inverse-variance weighted meta-analysis, 

in which estimates of all 682 SNPs were combined, the OR of AD per 1 SD increase (about 

6.5 cm) in genetically predicted height was 0.91 (95% confidence interval [CI], 0.86–0.95; p 
= 9.8 × 10−5) (Fig. 1). The association was similar when the analysis was restricted to one 
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SNP from each height-associated locus (n = 419 SNPs) (OR, 0.92; 95% CI, 0.86–0.97; p = 

4.8 × 10−3) (Fig. 1). A genetic correlation between height and AD was observed in LD score 

analysis (Rg = −0.162; p = 9.0 × 10−3).

Sensitivity analyses were conducted to evaluate the robustness of the association between 

genetically predicted height and AD. Analyses using the weighted median and Egger 

regression methods yielded similar OR estimates but with lower precision (wider CI), and 

there was no evidence of pleiotropy (Supplementary Table 2 and Supplementary Figure 1). 

The association also remained after exclusion of 97 SNPs associated with birth weight and 

in a separate analysis excluding 204 SNPs associated with years of education 

(Supplementary Table 2). In addition, the association was similar when 56 SNPs associated 

with AD at p < 0.05 were excluded (Supplementary Table 2).

Discussion

This study provides evidence that a genetic predisposition to higher adult height is inversely 

associated with AD. Our finding confirms and extends the results from observational studies 

that have shown that taller height is associated with improved cognitive performance [6–8], 

lower rates of death from dementia [9], and reduced risk of AD [10]. The association 

between genetically predicted height and AD is in the same direction as the genetic 

association between height and risk of cardiovascular disease [12, 13] but opposed the 

direction for certain cancers [14–16].

A possible explanation for the observed association between genetically predicted height 

and AD is that genetic variants that affect height also influence biological pathways that are 

involved in the development of AD. Biological pathways recently revealed to possibly 

influence height include signaling pathways for bone morphogenetic protein, transforming 

growth factor-beta, growth hormone, insulin-like growth factor-1, axon-guidance (the 

process whereby growing nerve fibers find their targets in the developing brain), and STAT3 

[13, 17]. Members of the bone morphogenetic protein family of growth factors have been 

implicated as crucial modulators of neurogenesis in the adult hippocampus [25, 26] and have 

been demonstrated to affect amyloid-β-induced neurotoxicity [27, 28] and amyloid plaque 

burden [29]. In addition, available evidence indicates involvement of insulin and insulin-like 

growth factor-1 [30] and STAT3 [31] signaling in AD.

A strong genetic correlation between birth weight and adult height (Rg = 0.41; p = 4.8 × 

10−52) was recently reported [22]. It was revealed that the association between the birth 

weight-raising alleles and adult height were concentrated among a subset of loci, including 

HHIP and GNA12 [22]. Genetic variants in those loci are not associated with AD in the 

IGAP cohort and the association between genetically predicted height and AD remained 

after the exclusion of birth weight-associated variants. This suggests that confounding by 

birth weight does not explain the height-AD relationship.

Strengths of this study include the use of multiple genetic variants that explain a large 

proportion (about 20%) of the heritability for height as well as large number of AD cases 

and controls. The use of a large number of genetic variants and the large sample size 
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increased the statistical power and the possibility to detect an association. A limitation is that 

summary-level data for AD were available for men and women combined only. Hence, we 

could not examine whether there was a sex-specific association between genetically 

predicted height and AD. Moreover, because the IGAP cohort only included individuals of 

European ancestry, our results might not be generalizable to other ethnicities.

Using a genetic approach to investigate the association between height and AD reduces 

potential confounding by early life experiences, such as childhood nutrition. However, it 

does not exclude the possibility that the association may be explained by behaviors or 

lifestyle choices adopted by taller individuals. A recent study showed that genetically 

predicted height was associated with measures of socioeconomic status, including older age 

of completing full time education, higher odds of working in a skilled profession, and higher 

annual household income [21]. Several genetic variants that affect height also influence 

educational attainment [23], which has been associated with AD in observational studies [2]. 

In the present study, the association between genetically predicted height and AD remained 

after exclusion of genetic variants related to educational attainment, and there was no 

evidence of pleiotropy in the sensitivity analysis using Egger regression. Nevertheless, we 

cannot entirely rule out the possibility that the inverse relationship between genetically 

predicted height and AD may partially be mediated by higher socioeconomic status or 

dietary and lifestyle choices (e.g., physical activity and alcohol consumption) adopted by 

taller people and which may reduce the risk of AD.

In conclusion, this study showed that a genetic predisposition to higher adult height is 

associated with a lower risk of AD. This suggests that biological processes that influence 

height may have a role in the etiology of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Odds ratios of Alzheimer’s disease per one standard deviation increase (about 6.5 cm) in 

genetically predicted adult height based on 682 and 419 single-nucleotide polymorphisms. 

CI, confidence interval; SD, standard deviation; SNP, single nucleotide polymorphisms; OR, 

odds ratio. aThis analysis is restricted to one SNP from each height-associated locus.

Larsson et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2018 July 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Methods
	Alzheimer’s disease data
	Selection of genetic variants
	Statistical analysis
	Sensitivity analyses

	Results
	Discussion
	References
	Fig. 1

