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Abstract

The CRISPR-Cas9 system provides unprecedented genome editing capabilities. However, off-

target effects lead to sub-optimal usage and additionally are a bottleneck in the development of 

therapeutic uses. Herein, we introduce the first machine learning-based approach to off-target 

prediction, yielding a state-of-the-art model for CRISPR-Cas9 that outperforms all other guide 

design services. Our approach, Elevation, consists of two interdependent machine learning models

—one for scoring individual guide-target pairs, and another which aggregates these guide-target 

scores into a single, overall summary guide score. Through systematic investigation, we 

demonstrate that Elevation performs substantially better than competing approaches on both tasks. 

Additionally, we are the first to systematically evaluate approaches on the guide summary score 
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problem; we show that the most widely-used method performs no better than random at times, 

whereas Elevation consistently outperformed it, sometimes by an order of magnitude. We also 

introduce an evaluation method that balances errors between active and inactive guides, thereby 

encapsulating a range of practical use cases; Elevation is consistently superior to other methods 

across the entire range. Finally, because of the large scale and computational demands of off-target 

prediction, we have developed a cloud-based service for quick retrieval. This service provides end-

to-end guide design by also incorporating our previously reported on-target model, Azimuth. 

(https://crispr.ml:please treat this web site as confidential until publication).

Introduction

Although the CRISPR-Cas9 system is routinely used, potentially avoidable off-target effects 

can complicate or hinder its use. The best way to mitigate off-target effects is to know when 

and where they occur and then design guides to avoid them while balancing for on-target 

efficiency.1,2 Such a balance may differ for different tasks. For example, the generation of 

cellular and animal models, or therapeutic uses of CRISPR-Cas9, will in general be far less 

tolerant of off-target effects than genome-wide screens wherein redundancy of targeting can 

be used to average out off-target effects. Nevertheless, reduction of off-target effects is 

desirable in all applications.

While GUIDE-seq3, HTGTS4, IDLV capture5, Digenome-seq6,7 CIRCLE-seq8, SITE-seq9, 

BLESS/BLISS10–12 and other laboratory-based assays1 can be used to quantify off-target 

effects, scaling these assays to all guide RNAs (gRNAs) genome-wide is not currently 

practically feasible for most research labs owing to cost, labor and availability of general-

purpose assays.1 In contrast, as we show herein, machine learning-based predictive 

modelling can leverage a small number of such data to learn statistical regularities of gRNA-

target sequence pairs that cause off-target effects, as well as their aggregate effect on a cell. 

Such modelling thus enables inexpensive and rapid in silico screening of off-target effects at 

a genome-wide level for gRNAs never before assayed.1,2,13

There are two main use cases for off-target predictive modelling. The first is to understand 

how active a given gRNA-off-target region is likely to be, which we refer to as gRNA-target 
scoring. This is useful if one is concerned about a particular region of the genome, such as 

accidentally knocking out a tumor-suppressor gene when trying to make an edit to disable an 

HIV entry receptor. The second use case is to obtain an overall summary score of all off-

target region activities for a given gRNA so as to obtain a rank-order of good potential 

gRNAs. Therefore, one can break down the off-target predictive modelling problem into 

three main tasks: given a gRNA to evaluate for off-target activity one needs to:

i. Search and filter genome-wide for potential targets, for example, those regions of 

the genome matching the gRNA up to n number of nucleotide mismatches to the 

target site. Note, these sites are not deemed to be active off-targets until after step 

2, which uses machine learning to distinguish the targets that are expected to be 

active from those that are not.

ii. Score each potential target for activity from step i).
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iii. Aggregate the scores from step ii) into a single off-target potential with which to 

assess the gRNA.

A number of solutions have been presented for the first task of search and filter, including 

Cas-OFFinder14, CRISPOR15, CHOP-CHOP16, e-CRISPR17, CRISPR-DO18, CROP-IT19 

and COSMID20, which differ in the algorithms used to search as well as the completeness of 

the search. Completeness is dictated by options such as maximum number of mismatches, 

allowed protospacer adjacent motifs (PAMs) and the search algorithm used. For 

infrastructural efficiencies and ease of integration with our cloud service, we created our 

own system to perform search and filtering; for the purposes herein, we used the same 

parameters as in ref.1 The second and third steps, of scoring and aggregation, have been 

explored considerably less than the search and filter step and are the focus of this work. A 

list of available gRNA design services that perform one or both of these steps is shown in 

Table 1. The only existing tools that return aggregation scores are the MIT web server21, 

CRISPOR15 and CRISPR-DO18, the latter two which re-implement the MIT web server 

rules. CHOP-CHOP16 counts the number of potential off-targets without scoring them; 

CROP-IT19 uses a hand-crafted series of rules and has been shown to be substantially 

outperformed by the MIT web server.15 Additionally, the CFD method1 has been shown to 

outperform the MIT web server on gRNA-target pair scoring15, but the CFD web server 

does not perform genome-wide off-target aggregation.

Although alternative CRISPR systems that may possess improved specificity (e.g., 

Cpf122,23) are being developed, these systems are still in their relative infancy and Cas9 

from S. pyogenes remains the workhorse endonuclease of choice. Moreover, only Cas9 has 

enough data to perform modelling at this point in time; hence our focus on Cas9 herein.

For each of gRNA-target scoring and gRNA summary scoring we developed a machine 

learning approach which substantially improved upon the state-of-the-art for the respective 

task, as demonstrated through our experiments. Together, we call our end-to-end modelling 

of off-targets, Elevation, which complements our on-target model, Azimuth. A schematic of 

our approach is shown in Figure 1.

For the first task, of gRNA-target scoring, we developed a two-layer regression model 

wherein the first layer learns to predict the off-target activity for single-mismatch (between 

the target and the intended target, thus including alternative PAMs) gRNA-target pairs. The 

second-layer model learns how to combine predictions from the single-mismatch model for 

gRNA-target pairs with multiple mismatches into a single gRNA-target score—our 

“combiner” model. For the combinatorial explosion of possible mismatch combinations, the 

amount of training data for the combiner model is extremely small. Consequently, we used a 

relatively simple model here—(penalized) linear regression. Note that indels contribute to 

the off-target problem24 but to a much lesser extent3, hence we have focused our modeling 

efforts on mismatches.

For the second task, of aggregating the individual target scores for a guide into a single 

number, we first apply our gRNA-target scoring model to a list of potential targets, and then 

use our newly developed modelling approach to aggregate them, while taking into account 

whether each target lies in a gene or not, and allowing these and other features to interact 
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with each other by way of a non-linear modelling approach (boosted regression trees). 

Details and intuitions for development of the two-layer Elevation-score model and the 

Elevation-aggregate model are provided in the Methods.

Results

In this section, we first evaluate gRNA-target pair prediction models, including our newly 

developed Elevation-score. We demonstrate that Elevation-score yields state-of-the-art 

performance. In the next section we evaluate Elevation-aggregate alongside the two 

competing summarization approaches—the MIT web server and CFD aggregation, where 

only the former has an accompanying web service that provides summary scores (CFD 

provides only within-gene rankings). Again, we find that our approach performs best, 

sometimes by an order of magnitude.

Individual gRNA-target pair off-target predictive modelling

We started by evaluating our Elevation-score approach using two independent data sets 

generated from genome-wide unbiased assays—one based on GUIDE-Seq3, and the other 

aggregated data sets curated by Haeussler et al.15 (after removing the GUIDE-Seq data from 

it). Elevation-score outperformed all other models—CFD1, the current state-of-the-art, Hsu-

Zhang2, and CCTop13—in predicting off-target activity (Figure 2). For a break-down of 

performance by number of mismatches, please see Supplementary Figure 3.

Note that for off-target prediction it is generally more consequential to mistake an active off-

target site for an inactive one, rather than the other way around, because only the first type of 

error can disrupt the cell or confound experimental interpretation, while the second may only 

require designing another gRNA. Consequently, we chose an evaluation measure which 

accounts for this asymmetry—the weighted Spearman correlation, where each gRNA-target 

pair is weighted by an amount which is a (monotonic) function of its measured activity. 

Because the precise asymmetry is not a priori known and may vary for different 

applications, we varied the weight continuously between two extremes: from being directly 

proportional to the measured activity (such that false negatives effectively do not count), to a 

uniform weighting (i.e., yielding standard Spearman correlation).

For first-layer (single-mismatch) model features we used (i) the position of the mismatch, 

(ii) the nucleotide identities of the mismatch, (iii) the joint position and identities of the 

mismatch in a single feature, and (iv) whether the mutation was a transition or transversion. 

The relative importance of these features is shown in Figure 3. It is interesting to note that 

using both the joint “position and mismatch nucleotide identity” features—those effectively 

used by CFD—are aided by additionally decoupling these into additional features of 

position and nucleotide identity, even though regression trees can in principle (with enough 

data) recover the joint features from the decoupled ones. Using only the CFD features in our 

model, or using classification instead of regression, or omitting the second-layer of our 

model each caused the model to perform worse (Supplementary Figure 1). Feature 

importances for the second-layer (multiple-mismatch combiner) model show that the total 

number of mismatches and the sum of the first layer single-mismatch predictions are driving 

the model (Supplemental Figure 2).
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Validation of Elevation-score

Finally, we performed two validation experiments of our final Elevation-score model by 

assessing its performance on two independent GUIDE-seq data sets—the first using the wild 

type Cas9 experiments from ref. 31, here referred to as Validation 1 (5 unique gRNAs), and 

the other newly generated experiments we performed, here referred to as Validation 2 (22 

unique gRNAs, Supplementary Table 1, Methods). On the whole, Elevation outperforms the 

other models, with occasional ties (Figure 4). However, the performance ordering of CFD 

and HsuZhang changes between the two experiments, so even when one is close in 

performance to Elevation, it is never consistently so. Breakdown by number of mismatches 

is provided in Supplementary Figure 4.

As a secondary measure of performance, one could consider how each model ranks only the 

active off-targets (i.e., those detected by GUIDE-Seq). Supplementary Tables 2, 3 and 4 

show such results on the validation data. Elevation again outperforms the competing 

methods.

Aggregating individual off-target scores into a single gRNA summary score

The end task, of aggregation, requires obtaining a single off-target summary score for a 

gRNA given all its individual gRNA-target scores. A solution to this task is particularly 

useful for gRNA design wherein users want to scan numerous gRNAs for overall activity. To 

evaluate our approach on this task we made use of two data sets with gRNAs targeting non-

essential genes in viability screens, the Avana1 and Gecko32 libraries. Because each gRNA is 

designed to target one non-essential gene in these screens, the cell should be viable if no off-

target effects are present. In particular, at least three papers have shown evidence that a cell 

is more likely to die when sustaining numerous DNA breaks.1,32,33 Additionally, a fourth 

paper leverages this phenomenon to assess off-target cutting.34 Therefore, there is now 

substantial evidence that cell viability is determined at least in part by the number of DNA 

breaks per cell. A second effect on viability could be off-target activity at an essential gene. 

However, essential genes cover merely 0.2% of the human genome and are therefore not 

likely to have much effect in our experiments. To further elucidate this point, we evaluate the 

performance of our model using only gene essentiality as a feature, which performs vastly 

worse than when we either ignore it altogether, or additionally use the scores from our 

gRNA-target model as features (Supplemental Figure 6). This then empirically shows that 

gene essentiality is not adversely affecting our conclusions using the viability data. Hence 

these viabilty-based experiments serve as bronze standard for the combined task of scoring 

and aggregation.

Using the viability data we found that Elevation-aggregation was the best summary score 

model, yielding up to an 8-fold improvement (and was never worse) in Spearman correlation 

over the best approach for this end-point task, CFD aggregation. Elevation-aggregation 

yielded an even larger improvement over crispr.mit.edu2, the most widely-used but now no 

longer supported gRNA design tool (Figure 5). The importance of each aggregation feature 

is shown in Figure 6.
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Predicting with chromatin accessibility

Several studies have suggested that chromatin accessibility may play a role in the activity of 

CRISPR/Cas9.19,35,36 To investigate the impact of this feature on off-target activity, we were 

restricted to use of the Gecko viability data which was performed in 33 cell types, of which 

three (K562, PANC1, T47D) had matching chromatin accessibility data (DNase I). The 

other data we had access to were performed in cell types which did not have chromatin 

accessibility data. Therefore, we augmented our aggregation model to include DNase I 

features, independently for each of the three Gecko cell types. We included these DNase I 

features in several ways with the aggregation model (Supplementary Figure 5, Methods). We 

found an increase in performance in PANC1 for just one of the four models that included 

DNase I information. In the other two cell types, two different models including DNase I 

increased prediction over DNase I-agnostic models, but only over half the evaluation regime. 

Moreover, the same type of DNase I model was never consistently best. Next we used the 

averaged DNase I data across all 95 available cell types instead of using cell-type-specific 

DNase I data. We found that this cell-type averaged DNase I information did not increase 

the model performance in any of the cell types. Because so few of our data sets have 

matching chromatin data available at this time, and because of the inconclusive results, we 

decided to forgo including this information in our final deployed model for the time being. 

Users interested in augmenting our model with DNase I can use our source code to retrain 

such models, although we believe it would be better to include it into Elevation-score rather 

than Elevation-aggregate even though we were not able to do so here.

Conclusion

We have introduced the first machine-learning based approach to predictive modelling of 

off-target effects for CRISPR-Cas9. Through systematic investigation we demonstrated that 

our newly developed suite of models, Elevation, performs better for each of the two main 

off-target-related tasks in gRNA design: gRNA-target scoring and aggregation. Additionally, 

we are the first to systematically evaluate available competing approaches on the task of 

summary scoring (aggregation), showing that Elevation consistently outperformed 

competing approaches by a substantial margin. We also considered how to balance errors 

between active and inactive gRNAs, developing a new metric to do so, based on the 

weighted Spearman correlation. This type of evaluation encapsulates a range of practical use 

cases, and enabled us to show that Elevation is consistently superior across the entire range. 

We recommend that the community should use such metrics in the future when comparing 

new and existing models for off-target modelling.

As data become available for a richer set of scenarios, including different endonucleases, 

different organisms and in vitro versus in vivo, epigenetics on more cell types, we will 

update our models and tools accordingly.

Elevation-score and Elevation-aggregate, which we together we call Elevation, complement 

our on-target predictive model, Azimuth.1 Together, Azimuth and Elevation, along with our 

cloud service and web front end, provide an integrated end-to-end guide design tool that 

enables users to more effectively deploy CRISPR-Cas9 for research screening experiments 

and that may provide a useful pre-screening tool for identifying potential gRNAs for 
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therapeutic applications—one based on the state-of-the-art machine-learning based methods. 

In future work we will also more carefully investigate the issue of search and filter.

Methods

Data

To train our first-layer, single-mismatch model, we used CD33 data from Doench et al.1 

where all single-mismatch mutations (between the intended target and the potential off-

target, thus including alternate PAMs) were introduced into the target DNA for 65 perfect-

match gRNAs that were effective at knockout. CD33-negative cells were isolated by flow 

cytometry so that their log-fold-change prior to CRISPR-Cas9 introduction could be 

measured by sequencing. After filtering as in Doench et al., we retained 3,826 single-

mismatch observations and 1,027 alternate PAM observations for a total of 4,853 gRNA-

target training examples of which 2,273 were considered active by Doench et al. These data 

measure protein knockout efficiency rather than DNA cleavage. We refer to these data as the 

CD33 data.

To evaluate our second-layer, multiple mismatch model, we used two unbiased/genome-

wide multiple mismatch data sets. The first were GUIDE-Seq data3 comprising nine gRNAs 

assessed for off-target cleavage activity. These gRNAs yielded 354 active off-target sites 

(i.e., non-zero counts) with up to six mismatches. Non-active sites were obtained from 

Doench et al. who used Cas-OFFinder14 to identify all 294,534 sites with six or fewer 

mismatches. The second data comprised off-target data aggregated by Haeussler et al.15, 

after removing GUIDE-Seq data to make it independent from the previously mentioned data 

set. These data consisted of 52 active targets among 10,129 non-active potential targets. We 

set the minimum resulting value to 0.001, the estimated sensitivity of the assay.15 Finally, for 

both the GUIDE-Seq and Haeussler et al. measured activity, we linearly re-scaled them to lie 

in [0,1] before applying a Box-Cox transform.38

For our validation of the gRNA-target model (trained on the CD33 and GUIDE-Seq data) we 

applied the model to two previously unseen data sets assayed with GUIDE-Seq: i) five 

gRNAs yielding a total of 103,040 potential off-targets of which 53 are active, from ref.31, 

and (ii) 22 unique gRNAs in a newly-generated data set, yielding a total of 381,249 potential 

off-targets of which 57 are active (see Supplementary Table 1). The list of potential off-

target sites was obtained using dsNickFury as described below. The gRNAs in the newly 

generated data set were chosen in a manner that was unbiased with respect to favoring any of 

the predictive models. In particular, we used each of CFD, HsuZhang, CCTOP and 

Elevation-score to make off-target predictions for gRNAs in the Gecko library32 (which 

were not used for any of the gRNA-target scoring), excluding any gRNAs which yielded 

non-viable cells (i.e., assay read-out of less than −1.0). We then converted the predictions 

within each method to ranks so as to make the predictions comparable in scale across 

methods, and then averaged the ranks across methods obtaining one estimated activity for 

each gRNA which was model-agnostic. This yielded an ordering of gRNAs from expected 

most to least active (an ordering that was not biased to any one method). From that list, we 

then chose 10 consecutive gRNAs each starting at the top 10%, 20%, and 30% of overall 

activity. For the 20% set, one gRNA had two perfectly matched sites in the genome so we 

Listgarten et al. Page 7

Nat Biomed Eng. Author manuscript; available in PMC 2018 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



instead used the next gRNA on the list. Only gRNAs assayed with wild type Cas9 were used 

from ref. 31; these gRNAs had been selected without any predictive modelling of off-target 

effects, and hence were unbiased with respect to the methods being compared herein. In 

particular, G-N19-NGG sites in a few of the commonly assays genomic amplicons/genes 

had been selected.3,39

To evaluate the aggregation of off-target effects we used two data sets arising from gRNAs 

targeting non-essential genes in a viability screen. The first, from the Avana library1, used 

4,950 gRNAs targeting 880 non-essential genes. The second, from the Gecko library32, used 

4,697 gRNAs targeting 837 non-essential genes). Other than for the DNase I experiments we 

used cell type A375 from Gecko.

DNase I peak file data for 95 human cell types, measuring chromatin accessibility, was 

downloaded from http://genome.ucsc.edu/cgi-bin/hgTables?

hgsid=581299277_DBUyFx88KdBssISoFyqBLBdKNq2M&clade=mammal&org=Human&

db=hg38&hgta_group=regulation&hgta_track=wgEncodeRegDnase&hgta_table=0&hgta_re

gionType=genome&position=chr9%3A133252000-133280861&hgta_outputType=primaryT

able&hgta_outFileName=on March 22nd, 2017.

GUIDE-seq

U2OS cells (ATCC) were cultured at 37°C with 5% CO2 in Advanced DMEM supplemented 

with 10% heat-inactivated fetal bovine serum, 2 mM GlutaMax, and penicillin/streptomycin 

(all cell culture reagents from Thermo Fisher Scientific). Cell line identity was validated by 

STR profiling (ATCC) and routine mycoplasma testing was negative for contamination. 

GUIDE-seq experiments were performed with 22 unique sgRNAs (and the EMX1 site 1 

sgRNA as a control) essentially as previously described.3 Briefly, roughly 2×105 human 

U2OS cells were transfected (SE kit and DN-100 program on a 4D nucleofector; Lonza) 

with 750 ng nuclease plasmid, 250 ng of gRNA RNA plasmid, and 100 pmol of an end-

protected double-stranded oligo (dsODN) GUIDE-seq tag. Approximately 72 hours 

following nucleofection, genomic DNA was extracted via Agencourt DNAdvance Genomic 

DNA Isolation (Beckman Coulter). Gene disruption and GUIDE-seq tag-integration 

efficiencies were evaluated using T7E1 and RFLP assays, respectively, as previously 

described.31 GUIDE-seq sample libraries (prepared as previously described3) were 

sequenced on an Illumina MiSeq sequencer, and data was analyzed using an updated version 

1.1 of the open-source guide-seq software.40 All data related to GUIDE-seq experiments can 

be found in Supplementary Table 1. New GUIDE-seq data generated for this study has been 

deposited with the NCBI Sequence Read Archive (SRA) under accession number 

SRP117146.

Predictive Modelling for Scoring Individual gRNA-Target Pairs

Here we describe the CFD model1, what assumptions it makes, and then describe our model, 

Elevation-score, and how it relates conceptually to CFD. The predictive off-target model, 

CFD, first computes the observed frequency of gRNA-target pair activity for each single-

mismatch type in the CD33 data. CFD then combines these single-mismatch frequencies by 

multiplying them together for gRNA-target pairs with multiple mismatches. For example, if 
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a gRNA-target pair had a A:G mismatch in position 3, a T:C mismatch in position 5 and a 

PAM of “CG” in the target region, then CFD would take the off-target score of this gRNA to 

be CFD score = P(active|A: G,3)× P(active|T: C,5)×P(active|CG), where each of the these 

terms is computed from observed frequencies in the CD33 training data (which contained 

only single-mismatch, or alternate PAMs, but never both).

CFD as Naïve Bayes

One can interpret the CFD algorithm in terms of a known classification model called Naïve 

Bayes41 as follows. First, denote Y = 1 to mean a gRNA-target pair was active, and Y = 0 to 

denote that the pair was not. Next, denote features such as T:C,5 as Xi, where i simply 

indexes some enumeration of these features (i.e., a one-hot encoding). If that feature 

(mismatch) occurred, then Xi = 1, and if it did not occur then Xi = 0. Therefore, in the CD33 

data (with only single mismatches), a particular gRNA-target pair has only one Xi = 1 and 

all others have Xi = 0. In this notation one can re-write CFD as follows for one gRNA-target 

pair:

CFD ≡ ∏
i ∈ i Xi = 1

P Y = 1 Xi = 1 .

In contrast, a Naïve Bayes model would compute the probability that a gRNA-target pair is 

active given the feature values as

Naive Bayes ≡ P Y = 1 X j = P(Y = 1)
P X j

∏
i

P(Xi Y = 1),

which makes only one assumption, namely, that conditioned on a gRNA being active, the 

features Xi are independent so that P({Xj}|Y = 1) = ∏i P(Xi|Y = 1). Using Bayes’ rule, one 

can re-write the Naïve Bayes classifier as

Naive Bayes ≡ P Y = 1 X j = P(Y = 1)
P( X j )

∏
i

P(Y = 1 Xi)
P(Xi)

P(Y = 1)

= 1
P X j

∏
i

P(Y = 1 Xi)P(Xi) .

If we make two further assumptions, we find that Naïve Bayes classifier exactly matches 

CFD. The first assumption is that the features are marginally independent, namely that ∏i 

p(Xi) = p({Xj}), in which case Naïve Bayes simplifies to

Naive Bayes feat . ind . = ∏
i

P Y = 1 Xi .

The CFD assumption of marginal feature independence seems reasonable and yielded good 

results. Consequently, we make the same assumption in our Elevation-score model. If we 
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additionally assume that P(Y = 1|Xi = 0) = 1, then CFD and Naïve Bayes become identical. 

This second CFD assumption (P(Y = 1|Xi = 0) = 1) seems a more difficult one to accept, but 

with some careful thought (and the fact that CFD performs so well), also seems reasonable 

as we explain next; hence also make this assumption. The key insight is to ask which 

properties of the training data one expects to generalize to unseen data sets where the model 

might be applied. In particular, it seems reasonable to assume that P(Y = 1|Xi = 1) is a 

quantity that will generalize to other data sets; intuitively the quantity reflects how likely a 

gRNA is to be active given that we observed a particular kind of mismatch—as such, it is 

independent of the distribution of the types of mismatch in the training versus test data sets. 

In contrast, P(Y = 1|Xi = 0) defines how likely a gRNA is to be active given that we did not 

observe a feature. When computing this quantity, one marginalizes (averages) over all 

examples in the CD33 data set where Xi = 0, which includes all gRNA-target pairs for which 

Xj≠i = 1; as such, this probability specifically depends on the distribution of mismatch types 

in the off-target data set, and their corresponding activities. Therefore, we don’t necessarily 

expect these quantities, P(Y = 1|Xi = 0) to generalize from our training data (CD33-specific) 

to general test sets. Now the question remains, how can we therefore make a reasonable 

approximation? One could try to posit a canonical theoretical or actual data set which will 

best generalize; however, it is extremely difficult to come up with such a set. Furthermore, in 

light of how we are going to use our Naïve Bayes probabilities (described next), getting it 

exactly right is not critical. Hence we make the CFD assumption that P(Y = 1|Xi = 0) = 1.

We have now shown that with two assumptions, the CFD model can be interpreted as a 

Naïve Bayes classifier. The reason for making this connection is not only to put the CFD in a 

proper probabilistic framework, including its assumptions, but more importantly, to then 

generalize this model so as to improve its performance, which we now do in describing our 

Elevation-score model.

Elevation-score as two-layer stacked regression

We generalized away from CFD in three main ways: (i) we moved from classification to 

regression, (ii) we augmented the feature space, and (iii) we replace the a priori manner of 

combining by multiplication to combining using machine learning. We call the model 

implementing only the first two, Elevation-naïve (Supplementary Figure 1), while we refer 

to the model resulting from all three as Elevation-score, or final model class. We now 

explain these in more details.

The first observation in generalizing away from CFD is that it is a classification algorithm, 

which means it discards the real-valued assay measurements, converting them to be binary 

active/in-active. Thus, by design CFD is unable to capture the more nuanced information 

available in the data. In moving from classification to regression, the model has access to 

more fine-grained information. Although not widely used, there exist generalizations of 

Naïve Bayes classification to regression42; however, due to the specifics of our problem, 

they are not convenient to apply. Thus we developed our own approach in which we first 

convert the CD33 log-fold-change (LFC) values to lie in the range [0,1] so that they can, 

loosely speaking, be interpreted as probabilities. To do so, we used a kernel density 

estimator to transform each LFC to the cumulative density of that LFC in the kernel density 
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estimate. We used a Gaussian kernel and choose the bandwidth by 10-fold cross-validation 

(yielding 0.23).

Recall that Elevation-score is a two-layer stacked regression model where the first layer 

makes predictions for gRNA-target pairs with only a single mismatch, while the second 

layer combines these for gRNA-target pairs with multiple mismatches.

To learn each first-layer (single-mismatch) regression model, p(y|{Xj}), we used boosted 

regression trees (using default settings in scikit-learn) on the CD33 data.43 Since each 

gRNA-target pair has only a single Xi = 1 in these data, we could just have well used a linear 

regression model. However, we wanted to include a richer featurization of the gRNA-target 

pair than just features of the form A:G, 5, resulting in the fact that even for single mismatch 

data, more than one Xi = 1 could occur (also some features were numeric rather than 0/1). 

Further, we wanted these features to be able to interact in a non-linear manner. Thus in 

addition to the CFD features, we also used “decoupled” versions of them—one of the form 

“A:G”, which was one-hot encoded (described at the end of this section) and the other an 

integer feature for the position (e.g., 5). We also included whether the mutation was a 

transversion or a transition. We call the model which uses these improvements and combines 

each mismatch just as CFD does, by multiplying the values together, Elevation-naïve. As can 

be seen in Supplementary Figure 1, moving from classification to regression improved the 

performance of the off-target model, as did augmenting the features. Next we describe how 

we improve Elevation-naïve to obtain Elevation-score.

Although Elevation-naive improved upon CFD, there were several aspects of the modelling 

approach which suggested areas for further improvement. The first was that the Naïve Bayes 

assumption of class-conditional independence may not be fully justified. The second is that 

our regression model’s predicted values are not calibrated probabilities of gRNA-target 

activity; hence when we combine them under that assumption (as does Naïve Bayes and 

CFD), we may suffer in performance. Thus it stands to reason that if we could somehow 

loosen these assumptions, we might achieve better performance still. One way to do this is to 

augment the model, here with a second layer, and then to use the limited amount of multiple-

mismatch/PAM gRNA-target pair data to learn the newly added parameters. We refer to this 

second layer of Elevation-score as the combiner because it learns how to combine the 

predictions from the single-mismatch model in a more nuanced way than simply multiplying 

them together like Elevation-naïve and CFD, thereby, allowing some of the stated 

assumptions to be mitigated. Thus where a CFD/Naïve Bayes approach would simply 

multiply single-mismatch probabilities together, we instead use a data-driven machine 

learning approach to fine-tune how they should be combined. In particular, we first use our 

first-layer boosted regression trees model J times to make predictions for each of the J single 

mismatches (i.e., J features for which Xj = 1), yielding J predictions yJ ∈ 0, 1  (one for each 

feature with Xj = 1, and setting yk = 1 for the remaining K features that have Xk = 0). 

Therefore, each gRNA-target pair has T = J + K = 21 boosted regression tree predictions 

yt  (20 for each possible mismatch position, and one for an alternate PAM). The log of 

these 21 features log(yt) , along with their sum, their product, and J —the number of 

mismatches/alternate PAM—are then the input to an L1-regularized linear regression 
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combiner model—the second-layer model. We used each of the GUIDE-Seq data and the 

Hauessler et al. data to train a model, each time testing on the other data set and using 10-

fold cross-validation to set the L1 penalty. Note that Elevation-score’s two-layer model is 

inherently different from both a two-layer neural network44 and from stacked 

generalization45 because the data used to train each Elevation-score layer are different 

(single- vs. multi-mismatch). Also note that owing to the tiny proportion of non-zero values 

in these data (e.g., 0.5%), we subsampled the zero activity examples to match the number of 

non-zero values within each data set, only for training.

Finally, because what we ultimately want are predictions of the probability that a gRNA-

target pair is active, we also apply one final transformation to the output from the L1-

regression model namely, we put them through our calibration model. This model estimates 

p(active|GUIDE-seq normalized counts) using a logistic-regression model trained on 

predictions for the CD33 data using Elevation-naive as inputs (this model makes prediction 

in GUIDE-seq normalized count space) and using the corresponding CD33 binarized 

observed activities1 (LFC>1) as the target variable. Note that this transformation is 

monotonic and as such only affects performance of aggregation, not gRNA-target scoring, 

given that we use a Spearman rank correlation. For the aggregation task, the Spearman 

correlation is computed only after aggregation of scores for a gRNA, thus any change in 

scale of the pre-aggregated scores, even if monotonic (such as our calibration model 

performs) can dramatically influence the quality of the final aggregation. In other words, 

even a simple linear transformation could change the aggregation scores.

One-hot encoding of categorical variables

A “one-hot” encoding refers to taking a single categorical variable and converting it to more 

variables each of which can take on the value 0 or 1, with at most one of them being “hot”, 

or on. For example, with a categorical nucleotide feature which can take on values A/C/T/G, 

each letter would get converted into a vector of length four, with only one entry equal to on, 

corresponding to one of the four letters.

Elevation-aggregate

Elevation-score provides only the starting ingredients for choosing a gRNA with least 

expected off-target activity. To actually rank gRNAs, one needs to coalesce the scores from 

all gRNA-target pairs for a given gRNA into a single number so that gRNAs can be ranked 

by this number for off-target activity. Thus we developed Elevation-aggregate, a model 

based on gradient boosted regression trees, to perform this task. Hyper-parameter settings 

were chosen by cross-validation using a random search over these parameters and ranges: 

losses ∈ {least squares; least absolute deviation; Huber}, learning rates ∈ [1e−6, 1] equally-

spaced with 100 points, # estimators ∈ [20,50,80,100,200,300,400,500], max depth from 1 

to 7, min. # samples to split = [2, 3, 4], splitting criterion ∈ [Friedman mean squared error, 

mean squared error, mean absolute error]. We evaluated 10 randomly chosen samples from 

these sets. For Figure 5 and Supplemental Figure 1, we performed 5-fold cross-validation on 

the training data to select the best model before using it to measure performance on the test 

set. For the DNase I experiments we were only able to use Gecko data owing to cell-type 

compatibility and so had to evaluate Gecko itself using cross-validation. Thus, in this setting, 
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we used 20-fold cross-validation to evaluate a model (e.g. dnase1), where within each fold, 

we performed an inner 5-fold cross-validation to select the best hyper-parameter setting. The 

input features for the model were computed from the distribution of gRNA-target Elevation-

score predictions and comprised: the mean, median, variance, standard deviation, 99th, 95th, 

90th percentiles, and sum of off-target scores. We compute these for each of: all off-targets, 

only genic off-targets, and only non-genic off-targets. Additionally, we compute these 

further features: sum of genic [non-genic] off-targets divided by total number of off-targets; 

fraction of targets that are genic; fraction that are non-genic; ratio of number of genic to non-

genic targets; ratio of average genic to non-genic score. The final deployed model was 

trained only on the Avana data, since combining it with Gecko did not increase cross-

validation performance.

Incorporation of chromatin accessibility features

To incorporate DNase I peak data into the aggregation model (the only model for which we 

had training data with corresponding DNase I data), we tried four different approaches: (i) 

using the DNase I as a “mask” on the values output from the gRNA-target scorer (i.e., taking 

the element-wise product between the original features and their corresponding DNase I 

peak values), (ii) adding to our original features, statistics of the DNase I features (same 

summary statistics as with our original features, but computed only on the DNase I features) 

as independent features, (iii) using our original aggregation features in addition to those 

newly added features in i, and (iv) using our original aggregation features in addition to 

those newly added features in i and ii. The track files used in this experiment were 

downloaded from UCSC. We acknowledge the ENCODE Consortium46, the UW Encode 

group for generating these data, and UCSC for processing these data and making them 

available for download. The data’s GEO accession numbers are GSM736629 and 

GSM736566 for K562; GSM736517 and GSM736519 for PANC-1; and GSM1024761 and 

GSM1024762 for T-47D.

Comparison to other approaches

We compared models using the Spearman correlation between predicted and measured off-

target activity. Furthermore, as discussed in the main text, we additionally evaluated the 

weighted-Spearman correlation for various weight settings in order to account for an 

asymmetrical loss with respect to false-positive-active errors as compared to false-negative-

active errors. Specifically, we set the weights as follows. Let {gi} be the values of the 

normalized GUIDE-Seq or Hauessler data (all lying in [0, 1]). Then we set the weight for 

each data point to be wi =
gi + v

max
j

g j + v  (such that wi ∈ [0,1]) where v is varied through 10−5 to 

100 and is denoted on the horizontal axis of the relevant figures. When v = 10−5, the weights 

are effectively equal to the GUIDE-Seq/Hauessler measured values (this is the left-hand side 

of our plots). When v = 100 (right-hand side of our plots), the weights become effectively 

identical for all gRNAs, yielding a standard Spearman correlation. For each v, we assessed 

the effective sample size (the sum of the weights) and only considered weights producing 

effective sample sizes equal to or above 50 so as to remove high-variance estimates which 

could be misleading.
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For implementation of CFD we used Supplementary Table 19 from ref.1. For CCTOP we re-

implemented based on the description in their paper. For Hsu-Zhang gRNA-target pair 

scoring we re-implemented the approach based on the equation in their paper.

To compare Elevation to the aggregation scores of the MIT web server, each gRNA 

sequence was submitted to the MIT CRISPR Design Tool using their RESTful API provided 

for single sequences (http://crispr.mit.edu/). Every sequence was queried using sequence 

type “other region (23-500nt)” and target genome “human (hg19)” to obtain an off-target 

score. The server failed to produce scores for the following three sequences which we 

therefore removed from consideration in our comparison: sequence 

TGACCTGTGACCATGATCACCACAGGGTTG from Avana and sequences 

CAAGCCTGTGTGCTGCAAGCCTGTCTGCTCTGTGCC and 

TCTCTGGCCATCATTTCCTGGGAGAGATGGATGGTG from Gecko. All queries were 

submitted and their results processed between the dates of August 15th-29th 2016, inclusive. 

No software version number was found in the output or web page.

To compare Elevation to the CFD server (http://portals.broadinstitute.org/gpp/public/

analysis-tools/sgrna-design), each gene corresponding to an Avana or Gecko gRNA was 

submitted to between September 21st-23rd 2016, inclusive, and the relevant gRNA rows 

retrieved. A score for a gRNA was obtained by adding the values in the two fields “Tier I 

Match Bin I Matches” and Tier I Match Bin II Matches” as done by Doench et al.1 Although 

the server returns a field off-target rank, this field cannot be readily compared across gRNAs 

as it is within-gene only.

Elevation-search

To perform efficient genomic searches for potential off-targets we developed the program 

dsNickFury which uses seed and extension47 (using two tandem seeds) to find near-match 

CRISPR-Cas9 targets. In brief, dsNickFury can leverage distributed computing to efficiently 

catalog every potential CRISPR-Cas9 target in a genome for any CRISPR-Cas9 system with 

targets that can be abstracted into some maximum length of RNA gRNA followed by a set of 

potential PAM sequences of fixed length. These potential targets are then organized into a 

tree data structure based upon two tandem seed sequences (lengths of 8 and 6 nucleotides 

were used as the first and second seeds here, respectively, but this is a user-specified 

parameter that affects performance and not results) taken from the gRNA sequences 

immediately proximal to the PAM site. The first branch layer of the tree structure is 

comprised of all observed first tandem seeds (most proximal to the PAM) while the second 

layer contains branches for each second tandem seed. Each first and second seed 

combination links to a file containing all of the potential CRISPR-Cas9 targets in the 

genome that have that specific combination of tandem seeds proximal to the PAM site.

Potential off-target matches are defined by a maximum number of mismatches relative to the 

intended target (set by the user) with a certain number of bases distal to the PAM being 

ignored if desired. Here, mismatch tolerance was set to 3, with the 3 most distal bases from 

the PAM being ignored. All PAMs deemed to have non-zero activity in ref. 1 are considered 

(NAG, NCG, NGA, NGC, NGG, NGT, NTG). This strategy was based upon previous 

observations that much CRISPR-Cas9 off-target activity risk is determined by the number of 
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mismatches between on- and off-target sequences with bases more distal to the PAM 

sequence being more mismatch tolerant and contributing less to specificity.3 Potential sites 

are searched initially based upon their tandem seeds, using a depth-first search of the cached 

tree structure. Any leaves with fewer mismatches than the maximum allowed have the same 

check then applied to their extended sequences, ignoring bases distal to the PAM as 

determined by user-specified parameter. Those sequences that pass the filters are considered 

as potential off-targets and are scored by Elevation. These sites can be sorted based on their 

mismatch counts and/or Elevation score and in general can be reported directly to the user 

by way of a file or by deposition in to a NoSQL database as we have done here. We 

additionally use the Ensembl database to determine if each off-target is in an annotated gene 

or not, such that users can obtain an aggregated off-target score across one, the other, or 

both.

Because most sites can be disqualified based upon their seeds without loading the extended 

sequence and have already been annotated by both sequence and locus, searches can be 

conducted using significantly fewer resources than an alignment-based search. This allows 

for many searches to be conducted in parallel on a distributed computing environment. For 

results reported herein we pre-computed and stored all human genome-wide results for both 

on- and off-target predicted activities in a cloud-based database which we make available to 

the community.

Our system is designed to function on several different CRISPR-Cas9 systems with PAM 

sites at the 3’ end of the target. Parameters may be set for different lengths of gRNA 

sequence, PAM sequences with higher activity, and species of origin for the reference 

genome. Potential targets can be ranked for on-target efficiency and off-target risk. The 

system is currently using Azimuth for on-target activity prediction, and Elevation for off-

target activity prediction for the S. pyogenes CRISPR-Cas9 system.

A summary of the search parameters used for all experiments in this paper as well as the on-

line cloud service are as follows: we included all off-targets in the genome with no more 

than 3 mismatches in the 4-20 of the gRNA, with any number of mismatches in the first 

three gRNA nucleotides, and considering any PAM deemed to have non-zero probability 

according to the CFD model (namely, NAG, NCG, NGA, NGC, NGG, NGT, NTG).1 We 

stopped any searches that yielded more than 40,000 potential off-targets according to these 

criteria. For those yielding more than 40,000, we set our Elevation gRNA potential (i.e., the 

final gRNA aggregate value) to be equal to 1,000.

Gini importance as feature importance in regression trees

The Gini importance refers to the decrease in mean-squared error (the criterion used to train 

each regression tree) when that feature is introduced as a node in the tree. This measure has 

a close, empirical correspondence with the importance of the feature that would be obtained 

with a permutation test, and can also be viewed as a relative decrease in entropy provided by 

splitting on that feature. This measure of importance does not convey whether having that 

feature makes a gRNA better or worse in the model because such a notion is impossible for 

regression trees in which the effect of one feature is dependent on the presence/absence of 

other features (i.e., there are non-linear interactions between the features).
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Model interpretability

Our primary goal in this paper was to provide a state-of-the-art tool that the community 

could use, alongside evidence of it outperforming alternative tools. While any biological 

insights that can be derived from such analyses is extremely interesting, we would like to 

caution that the more powerful (and hence complex) a model is, the less interpretable it is. 

That is not to say that people do not try to assign interpretations to complex models, but 

these interpretations are by definition not ideal summaries, and should not be over-

interpreted. To give some intuition into why, consider first a linear regression model. In a 

linear regression model, each “feature” (e.g. in our context might be “A in position 2”) 

contributes to a final regression prediction in a linear, additive manner. Thus, it is fairly 

trivial to assign some importance to each feature independently. In contrast, with a more 

complex model which allows for interactions, the importance of each feature depends 

entirely on what the value for the other features are, and cannot easily be interpreted on its 

own. Additionally, because of this complexity, it is often the case that a near infinity of 

models, each with slight perturbations in effective ranking of features, all achieve the same 

predictive performance. Thus, although we have provided these feature rankings, we have 

not focused too much on them, because we do not want to encourage their over-

interpretation.

Web portal

We pre-computed all on- and off-target scores for the human exome (GRCh38) and made 

them available at https://crispr.ml. The on-target scores were computed using Azimuth1, 

with higher scores indicating higher predicted activity for a given guide. Aggregated off-

target values were computed using Elevation-aggregation, with higher values indicating less 

predicted off-target activity. To further drill down in the specific off-targets for a given 

guide, we also list all of the individual gRNA-off-target scores (i.e., not aggregated), 

computed using Elevation-score. Again, higher scores indicate less predicted off-target 

activity (on the website, we invert the scores as described in the paper to achieve this).

Code Availability

All source code and a front-end website for the cloud service will be made available from 

http://research.microsoft.com/en-us/projects/crispr upon publication.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of Elevation off-target predictive modelling
(a) An example of how to score a gRNA-target pair with two mismatches. First the gRNA-

target pair is broken down into two single-mismatch pseudo-pairs, each of which is scored 

with the first layer (single mismatch) model, f ( t1
→, g 1). Then these scores are combined with 

the second-layer model, m( f ( t1
→, g 1), f ( t2

→, g 2)), yielding a single gRNA-target score that 

accounts for all mismatches. (b) An example of how to aggregate the set of gRNA-target 

scores for a single gRNA into one summary off-target score for a gRNA. The aggregator 

model, a(), computes statistics of the input distribution of gRNA-target scores as features 

and runs them through a model, producing the aggregate score for a gRNA (e.g. 0.78).
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Figure 2. gRNA-target pair scoring
Comparison of Elevation-score performance to other methods, evaluated using a weighted 

Spearman correlation between predictions and assay measurements. The horizontal axis 

shows different weights in the weighted Spearman—at the far left the weight is effectively 

proportional to the rank-normalized GUIDE-Seq counts/cutting frequency, while at the far 

right the weight is effectively uniform, yielding a traditional Spearman correlation. For ease 

of visualization, the vertical axis denotes the percent improvement of each model over 

CCTOP, which by design thus lies constant at zero. (a) CD33 (N=4,853) and GUIDE-Seq 

(N=294,534) data were used to train, while Haeussler et al (N=10,129) data (after removing 

the GUIDE-Seq) were used to test. (b) the role of the GUIDE-Seq and Haeussler data are 

reversed from a. The final Elevation-score model deployed in our cloud service uses the 

model trained on GUIDE-Seq data. Note that respectively only 0.12% and 0.51% of count 

values in GUIDE-Seq and Haeussler are non-zero, making the traditional Spearman 

correlation difficult to interpret. For completeness, however, the right-most points 

correspond to a correlation of respectively 0.117, 0.100, 0.101 and 0.007 for Elevation, 

CFD, Hsu-Zhang and CCTOP in a) and 0.059, 0.057, 0.053 and 0.043 in b). The p-values 

computed for each Elevation correlation were less than floating point error (approximately 

1×10−16); these demonstrate that despite the apparent low correlations, a tremendous amount 

of signal is present. Note that the apparent low correlations likely arise from the massive 

imbalance of inactive to active gRNAs.
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Figure 3. First-layer gRNA-target scoring feature importances
Average importances (Gini importances; see Methods) for type of features in the first-layer 

single-mismatch model (mutation nucleotide identities and position jointly; mutation 

identity; mutation position; mutation transversion vs. transition). This model was trained 

with CD33 single-mismatch data. Feature importances from the second layer model are 

shown in Supplementary Table 2.

Listgarten et al. Page 21

Nat Biomed Eng. Author manuscript; available in PMC 2018 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Validation of the Elevation gRNA-target scoring model
Performance of our final Elevation-score model on two independent validation sets (a) 

“Validation 1” (N=103,040 guide-target pairs of which 53 are active, arising from 5 

sgRNAs), (b) and “Validation 2” (N=381,249 guide-target pairs of which 57 are active, 

arising from 22 sgRNAs), (c) (N=484,289 guide-target pairs of which 110 are active, arising 

from 27 sgRNAs). Although we believe our weighted Spearman correlation metric (top row) 

to be a particularly suitable evaluation metric, it is not necessarily intuitive to understand. 

Therefore, we also included (bottom row) ROC curve plots for classifier performance such 

as Haeussler et al. use for this same purpose. Note that random performance on the ROC is 

the dashed diagonal line and corresponds to AUC=0.50. Their corresponding AUC is written 

in the legend (higher is better), as these are more intuitive. The ROC/AUC evaluation 

measure is sub-optimal in that it only uses whether GUIDE-Seq found activity or not, rather 

than how much (which our Spearman-based metric does make use of). However, one can see 

that the ROC evaluation roughly tracks our Spearman-based metric. (For ease of 

visualization, ROC curves and AUCs are averages over 100 random samples of inactive 

guides equal in number to the number of active guides in each data set. Missing true positive 

rates at a given false positive rate, owing to the sampling, were linearly interpolated from the 

two nearest neighbors, within a curve).
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Figure 5. Joint scoring and aggregation on viability screens
Weighted spearman correlation of Elevation to the crispr.mit.edu server. (a) Avana data 

(N=4,950) was used to train and Gecko to test (N=4,697), (b) the reverse of a. Note that the 

MIT website often yields correlation in the wrong direction. The final Elevation model 

deployed in our cloud service uses the model trained on Avana.
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Figure 6. Aggregator feature importances
Weights from aggregator model in Elevation which uses Gradient Boosted regression trees. 

The features were: the mean; median, variance (var), standard deviation (std), 99th, 95th, 90th 

percentiles, and sum of the Elevation gRNA-target scores for each gRNA. We compute these 

for each of: all off-targets (no postfix), only genic off-targets (“genic”), and only non-genic 

targets (“non-genic”), where is-genic is obtained from ENSEMBL.37 Additionally, we 

compute these further features: fraction of targets that are genic; fraction that are non-genic; 

ratio of number of genic to non-genic targets; ratio of mean genic to non-genic score. The 

Gini importance is described in Methods.

Listgarten et al. Page 24

Nat Biomed Eng. Author manuscript; available in PMC 2018 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Listgarten et al. Page 25

Ta
b

le
 1

Su
m

m
ar

y 
of

 C
R

IS
PR

 g
R

N
A

 d
es

ig
n 

se
rv

ic
es

 w
hi

ch
 in

cl
ud

e 
of

f-
ta

rg
et

 s
co

ri
ng

Sh
or

th
an

d
O

n-
ta

rg
et

 s
co

ri
ng

O
ff

-t
ar

ge
t 

sc
or

in
g

O
ff

-t
ar

ge
t 

ag
gr

eg
at

or
O

n-
ta

rg
et

 in
te

rf
ac

e
O

ff
-t

ar
ge

t 
in

te
rf

ac
e

E
le

va
tio

n 
(t

hi
s 

w
or

k)
 &

 A
zi

m
ut

h1
ne

w
 m

ac
hi

ne
-l

ea
rn

in
g 

ba
se

d 
m

od
el

s
ne

w
 m

ac
hi

ne
-l

ea
rn

in
g 

ba
se

d 
m

od
el

s
Y

es
, m

ac
hi

ne
-l

ea
rn

in
g 

ba
se

d
hu

m
an

 e
xo

m
e 

ta
rg

et
s 

pr
e-

co
m

pu
te

d;
 c

lo
ud

 A
PI

 f
or

 r
e-

us
e 

in
 c

od
e 

an
d 

E
xc

el
; s

ou
rc

e 
co

de

hu
m

an
 e

xo
m

e 
ta

rg
et

s 
pr

e-
co

m
pu

te
d 

w
eb

 s
ite

; s
ou

rc
e 

co
de

 f
or

 a
ny

 ta
rg

et

M
IT

 s
er

ve
r21

ne
w

 h
an

d-
cr

af
te

d 
ru

le
s

ne
w

 h
an

d-
cr

af
te

d 
ru

le
s

Y
es

, h
an

d-
cr

af
te

d 
ru

le
s

w
eb

 s
ite

w
eb

 s
ite

C
R

IS
PR

-D
O

18
re

-u
se

s 
ru

le
s 

fr
om

 X
u 

et
 a

l.25
re

-u
se

s 
ru

le
s 

fr
om

 M
IT

 s
er

ve
r21

Y
es

, a
s 

in
 M

IT
 s

er
ve

r
w

eb
 s

ite
; s

ou
rc

e 
co

de
w

eb
 s

ite
; s

ou
rc

e 
co

de

C
R

IS
PO

R
15

re
-u

se
s 

ru
le

s 
fr

om
 m

ul
tip

le
 

pa
pe

rs
1,

25
–3

0
re

-u
se

s 
ru

le
s 

fr
om

 M
IT

 s
er

ve
r21

Y
es

, a
s 

in
 M

IT
 s

er
ve

r
w

eb
 s

ite
; s

ou
rc

e 
co

de
w

eb
 s

ite
; s

ou
rc

e 
co

de

B
ro

ad
 G

PP
1

ne
w

 m
ac

hi
ne

-l
ea

rn
in

g 
ba

se
d 

m
od

el
s

ne
w

ly
 d

ev
el

op
ed

 r
ul

es
 b

as
ed

 o
n 

da
ta

N
ot

 g
en

om
e-

w
id

e 
(o

nl
y 

re
la

tiv
e 

w
ith

in
-g

en
e 

sc
or

es
)

w
eb

 s
ite

; s
ou

rc
e 

co
de

w
eb

 s
ite

; s
ou

rc
e 

co
de

E
-C

R
IS

PR
17

ne
w

 h
an

d-
cr

af
te

d 
ru

le
s,

 a
nd

 r
ul

es
 

fr
om

 r
ef

.18
,2

5,
27

ne
w

 h
an

d-
cr

af
te

d 
ru

le
s

Y
es

, h
an

d-
cr

af
te

d 
ru

le
s

w
eb

 s
ite

w
eb

 s
ite

C
H

O
P-

C
H

O
P16

re
-u

se
s 

ru
le

s 
fr

om
 X

u 
et

 a
l.

25
 b

y 
de

fa
ul

t, 
an

d 
re

f.
1,

26
,2

7
co

un
ts

 #
 o

f 
of

f-
ta

rg
et

s 
bu

t d
oe

s 
no

t s
co

re
 th

em
N

o
w

eb
 s

ite
w

eb
 s

ite

Nat Biomed Eng. Author manuscript; available in PMC 2018 July 09.


	Abstract
	Introduction
	Results
	Individual gRNA-target pair off-target predictive modelling
	Validation of Elevation-score
	Aggregating individual off-target scores into a single gRNA summary
score
	Predicting with chromatin accessibility

	Conclusion
	Methods
	Data
	GUIDE-seq
	Predictive Modelling for Scoring Individual gRNA-Target Pairs
	CFD as Naïve Bayes
	Elevation-score as two-layer stacked regression
	One-hot encoding of categorical variables
	Elevation-aggregate
	Incorporation of chromatin accessibility features
	Comparison to other approaches
	Elevation-search
	Gini importance as feature importance in regression trees
	Model interpretability
	Web portal
	Code Availability

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1

