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Abstract

Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated 

transcription factor that governs the expression of genes involved in inflammation, redox 

equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and 

glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and 

have the potential to limit the risk of developing brain injuries, such as stroke, by mitigating the 

influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of 

cytoprotective stress responses, improving the chances of cellular survival and recovery of 

homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by 

inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to 

neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in 

injured cells culminates in the repair of gray and white matter, preservation of the blood-brain 

barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term 

functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects 

on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of 
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PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue 

repair. We describe its structure and function and identify the genes that it targets. PPARγ 
regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/

survival), and many other processes also has relevance to other neurological diseases. Therefore, 

PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
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1. Introduction

Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the pleiotropic 

nuclear receptor 1C (NR1C) family (also known as the PPAR family) (Janani and Ranjitha 

Kumari, 2015). This nuclear receptor family encompasses a group of ligand-modulated 

transcription factors with broad tissue distributions and a wide array of target genes and 

functions (Grygiel-Gorniak, 2014). PPARγ is a master gatekeeper of the expression of 

numerous genes, including G-protein coupled receptors, growth factors, antioxidant 

enzymes, stem cell genes, kinases, cytokines/chemokines, pro-inflammatory factors, ion 

channels, and transporters. PPARγ plays a well-established role in the regulation of 

adipocyte differentiation and the metabolism of lipid and glucose (Janani and Ranjitha 

Kumari, 2015). Thus, synthetic PPARγ ligands such as thiazolidinediones (TZDs or 

glitazones) are currently prescibed worldwide to treat hyperglycemia and diabetes and can 

be readily side-tracked for use in other conditions. Aside from its role in metabolic 

regulation, anti-inflammatory and protective effects of PPARγ have also been widely 

studied. For example, PPARγ activation is known to mitigate neuroinflammation and exert 

direct neuronal protection after central nervous system (CNS) injuries (Gillespie et al., 
2011).

Acute CNS injuries are among the leading causes of disability, mortality, and morbidity 

worldwide (Murray and Lopez, 1997). Tissue damage in these conditions is elicited by both 

primary and secondary mechanisms, and impacts almost every component of the CNS, 

including grey matter, white matter, and the vascular network. A growing body of evidence 

indicates that PPARγ is critically involved in the long-term promotion of tissue repair and 

rescue of brain cells. In addition, PPARγ directly or indirectly controls the manifestation of 

comorbid diseases such as diabetes and hypertension, which can profoundly influence the 

onset and outcome of CNS injuries. Given its dominant position as a master gatekeeper of 

gene expression, PPARγ is an attractive therapeutic target for injury conditions such as 

ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), and spinal cord injury 

(SCI).

In this article, we briefly review the numerous functions of PPARγ and their effects on CNS 

injury. We begin by describing the pathophysiological mechanisms underlying CNS injury 

in both the acute injury phase and the chronic repair phase. We discuss the contributions of 

comorbidities to increased disease incidence and negative clinical outcomes and their 
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modulation by PPARγ. The key role of PPARγ in tissue repair and regeneration is 

highlighted throughout this review. Finally, we will end with our perspectives on PPARγ-

related translational therapies.

2. PPARγ overview

2.1 PPARγ structure and CNS distribution

PPARs, or NR1Cs, were first cloned in rodent hepatocytes in the 1990s, and found to be 

activated by a group of peroxisome proliferators (Issemann and Green, 1990). PPARs are 

ligand-activated transcription factors that influence the expression of a number of genes, 

among which metabolism-related genes are the best documented (Michalik and Wahli, 

2006). Three isotypes of PPARs have been identified in mammals—PPARα (NR1C1), δ/β 
(NR1C2), and γ (NR1C3). As with all other nuclear receptors, PPARs share similar 

structural features and contain the following functional domains: a N-terminal ligand-

independent functional domain, a DNA-binding domain that specifically recognizes 

peroxisome proliferator response elements (PPREs), a flexible hinge region, and a C-

terminal ligand binding domain (LBD) (Zoete et al., 2007). The three PPAR isotypes are 

encoded by genes located on different chromosomes (Greene et al., 1995) and exhibit 

distinct tissue distribution patterns and biological functions. PPARα is mainly expressed in 

tissues with high fatty acid metabolism, including liver, kidney, and white and brown 

adipose tissue (Delerive et al., 2000; Lo Verme et al., 2005; Neschen et al., 2007). PPARδ/β 
is ubiquitously and abundantly expressed in a broad range of tissues and regulates fatty acid 

oxidation (Wang et al., 2003b; Stephen et al., 2004). PPARγ consists of two isoforms in 

human and rodents—PPARγ1, a ~54.5 kDa shorter form, and PPARγ2, a ~57.6 kDa longer 

form (Chen et al., 2012) (Figure 1A). PPARγ2 is restricted to adipose tissue and plays an 

important role in adipocyte differentiation. In contrast, PPARγ1 is expressed in various cell 

types, including brain cells such as neurons and glia, and bone marrow derived immune cells 

(Zhu et al., 1995; Elbrecht et al., 1996)

Post-translational modulations (PTMs) of specific amino acids influence PPARγ activity 

and its functional states (Kim et al., 2013). The major types of PTMs that regulate PPARγ 
function are phosphorylation, SUMOylation, and ubiquitination (Figure 1B). Ser112 

phosphorylation decreases PPARγ activity if induced by mitogen-activated protein kinases 

(Hu et al., 1996; Shao et al., 1998), but increases PPARγ activity if induced by cyclin-

dependent kinase (CDK) 7 and CDK9 (Compe et al., 2005; Iankova et al., 2006). CDK5-

mediated Ser273 phosphorylation of PPARγ leads to reduced insulin sensitivity (Choi et al., 
2010; Choi et al., 2011). SUMOylation at Lys107 results in decreased activity, whereas 

Lys395 SUMOylation is strongly associated with PPARγ transrepression of nuclear factor 

(NF)-κB (Yamashita et al., 2004; Pascual et al., 2005; Jennewein et al., 2008; Pourcet et al., 
2010). The latter function is particularly important in anti-inflammatory effects and will be 

descibed in Section 2.3. Ubiquitination of PPARγ tags it for proteasomal degradation, a 

process that is enhanced by interferon (IFN)-γ (Waite et al., 2001) and tumor necrosis factor 

(TNF)-α (He et al., 2008), and repressed by sirtuin 1 (Picard et al., 2004; Floyd et al., 
2008).
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All three subtypes of PPARs are expressed in the CNS, albeit at different levels (Elbrecht et 
al., 1996; Braissant and Wahli, 1998; Cullingford et al., 1998; Moreno et al., 2004). Whereas 

PPAR δ/β is broadly and robustly expressed in the CNS, PPARα and PPARγ exhibit a more 

restricted pattern of distribution (Braissant and Wahli, 1998; Cullingford et al., 1998; 

Moreno et al., 2004). Under physiological conditions, PPARγ is readily detectable in select 

areas, such as the basal ganglia, thalamus, piriform cortex, and hippocampus (Braissant and 

Wahli, 1998 ; Moreno et al., 2004) and this expression is mainly in neuronal cells (Ferguson 

et al., 2014). A fraction of astrocytes (20-40%) also express PPARγ, predominantly in 

processes rather than somata (Warden et al., 2016). Although PPARγ expression has been 

observed in microglial cultures (Bernardo et al., 2000), it is barely detectable in this cell type 

in vivo under physiological conditions. However, lipopolysaccharide (LPS) stiumlation 

significantly increases microglial PPARγ expression in the brain, indicating that microglial 

PPARγ expression may be dependent on inflammation status (Warden et al., 2016).

2.2 PPARγ ligands

PPARγ ligands can be classified into three major categories. Category A includes natural 

(endogenous) agonists, such as unsaturated fatty acids, eicosnanoids, oxidized 

phospholipids, and nitroalkenes. Among these agonists, an eicosanoid termed prostaglandin 

metabolite 15-deoxy-D12, 14 prostaglandin J2 (15d-PGJ2) was the first specific endogenous 

ligand of PPARγ to be identified and has been widely used in studies of PPARγ in various 

disease models (Forman et al., 1995). Category B includes synthetic agonists: 1) TZDs such 

as pioglitazone (PGZ), ciglitazone (CGZ), triglitazone (TGZ), and rosiglitazone (RGZ), 2) 

non-TZD agonists, 3) dual-α/γ agonists, 4) pan-α/β/γ agonists, and 5) selective PPARγ 
modulators. Among these, TZDs were the first to be synthesized and are widely used in 

diabetic patients (Lehmann et al., 1995), as well as in experimental models to assess the 

effects of PPARγ activation. Category C includes synthetic antagonists, such as bisphenol A 

diglyceryl ether, GW9662, LG100641, PD068235, T0070907, and SR-202. Among these, 

GW9662 is an irreversible PPARγ antagonist that has been widely applied in research on 

PPARγ (Leesnitzer et al., 2002; Chen et al., 2012).

It is important to note that almost all of the aforementioned PPARγ agonists not only 

activate PPARγ, but also activate other PPARs, as well as PPAR-independent pathways 

(Park et al., 2003; Bernardo et al., 2009). As a result, the effects of PPARγ agonists, 

including TZDs, work through both PPARγ-dependent and independent mechanisms that 

are not easily differentiated and can confound the interpretations of studies. Furthermore, 

regardless of the route of delivery (iv, ip, oral, or intracerebral), TZDs can affect PPARγ in 

the CNS (Culman et al., 2007), although it is not known whether all TZDs cross the blood-

brain barrier (BBB). PGZ has been reported to cross the BBB (Grommes et al., 2013), but 

unpublished observations by GlaxoSmithKline have been used to claim that RGZ cannot 

cross the BBB (Pedersen et al., 2006), although this awaits verification.

2.3 PPARγ functioning patterns

As with all other nuclear receptors, PPARγ functioning patterns involve ligand-independent 

repression, ligand-dependent transactivation, and ligand-dependent transrepression (Glass 
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and Ogawa, 2006) (Figure 2). As there are no known endogeous PPARγ-inhibiting ligands, 

all “ligands” in this review refer to PPARγ-activating ligands.

The classic view of PPARγ function is that it forms a heterodimer with the retinoid X 

receptor (RXR) (Berger and Moller, 2002). Under basal conditions, in the absence of ligands 

of RXR or PPARγ, the heterodimer is associated with corepressors, such as nuclear receptor 

corepressor (NCoR), transducin β-like protein, and histone deacetylases (HDACs). This 

complex binds to PPREs in the promoter region of target genes and retains the genes in a 

suppressed state defined as ligand-independent repression. Following ligand binding, 

however, the PPARγ/RXR heterodimer undergoes conformational changes, dissociates from 

co-repressors, and recruits co-activators such as thyroid hormone-associated protein 220, 

thereby upregulating PPRE target gene transcription (Dekkers et al., 2012). This effect is 

known as ligand-dependent transactivation (Figure 2A). Ligands of either PPARγ or RXR 

can both initiate ligand-dependent transactivation, whereas binding of both receptors 

simultaneously can lead to additive effects on gene expression (Fajas et al., 1997). Both 

ligand-independent repression and ligand-dependent transactivation involve the regulation of 

promoters located at PPREs, and PPARγ is known to maintain lipid metabolic homeostasis 

by these mechanisms.

Ligand-dependent transrepression is more complex and denotes PPARγ-dependent 

repression of genes other than PPREs, typically NF-κB and activator protein-1, in the 

absence of direct binding of PPARγ to DNA. The HDAC3/NCoR complex binds to NF-κB 

to maintain a repressed state, which is terminated upon NCoR degradation. Ligand-

dependent transrepression of PPARγ occurs when ligands induce PPARγ SUMOylation, 

which guides PPARγ to the HDAC3/NCoR complex, inhibits NCoR degradation, and causes 

NF-κB target gene repression (Pascual et al., 2005; Dekkers et al., 2012) (Figure 2B). As 

NF-κB is part of a prototypical pro-inflammatory signaling cascade, SUMOylation-

dependent transrepression is the predominant means by which PPARγ promotes anti-

inflammatory effects. Other mechanisms involved in PPARγ-induced NF-κB inhibition 

include ubiquitin-dependent degradation of NF-κB, exportation of NF-κB out of the 

nucleus, cofactor competition with NF-κB, and steric inhibition of NF-κB binding to DNA 

(Sauer, 2015) (Figure 2C). The sophisticated, multidimensional nature of PPARγ PTMs and 

functioning patterns confers this protein with the flexibility demanded of a master 

gatekeeper.

2.4 PPARγ target genes

The observation that PPARγ knockout is embryonically lethal indicates a vital and 

indispensible role for this protein (Semple et al., 2006). PPARγ response networks are 

complex and different genes are regulated in cell-specific manners. PPARγ regulates a 

variety of target genes relevant to adipogenesis (e.g. adipoq, lpl, nr1h3, ucp1), fatty acid 

metabolism (e.g. acadl, acadm, acox1), lipid transport (e.g. angptl4, apoe, olr1), cell 

proliferation (e.g. clu, eln, hspd1), insulin signaling (e.g. cpt1a, dgat1, pck1), and 

inflammation (e.g. nfkb, mmp9). The activation of PPARγ increases metabolic activities 

such as lipid metabolism and storage, adipogenesis, insulin sensitization, glucose 

homeostasis, and sodium and fluid retension (Ahmadian et al., 2013). Nevertheless, not all 
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of these functions involve direct transcriptional regulation. The regulated genes can be 

grouped into three major categories (Chen et al., 2012): 1) fatty acid/glucose metabolism, 2) 

inflammation/oxidative stress/apoptosis, and 3) cancer. A large variety of genes are found in 

the area of overlap of these three categories and positive regulation is more common than 

negative regulation. Most of PPARγ signal transduction cascades in CNS pathologies are 

directly or indirectly associated with NF-κB, and this serves as a major mechanism whereby 

PPARγ regulates the stress response to injuries in the brain.

In addition to NF-κB, PPARγ also regulates the prototypical redox-sensing nuclear factor 

erythroid 2- related factor 2 (Nrf2) pathway, acting in synergy with this pathway to mute the 

destructive effects of oxidative stress (Figure 3) (Ikeda et al., 2000; Shih et al., 2005; Cho et 
al., 2010; Polvani et al., 2012; Zhao and Aronowski, 2014). Nrf2 is a master transcription 

factor that binds the antioxidant response element (ARE) and activates numerous genes 

critical for the maintenance of redox homeostasis, such as those related to the glutathione 

and superoxide dismutase antioxidant systems (Zhang et al., 2013). The interactions 

between PPARγ-Nrf2 signaling pathways can be classified into four categories. First, in 

addition to PPARγ-mediation modulation of the Nrf2/ARE axis, Nrf2 also regulates 

PPARγ, suggestive of a bidirectional loop (Cho et al., 2010). For example, Nrf2-mediated 

PPARγ induction protects mice against acute oxidant damage to the lung in vivo (Cho et al., 
2010). Second, some antioxidant genes, such as catalase (Guan et al., 2000; Girnun et al., 
2002), glutathione S-transferase (Rushmore and Pickett, 1990; Rushmore et al., 1991; Park 

et al., 2004a) and superoxide dismutase (SOD) (Yoo et al., 1999; Zelko et al., 2002; 

Jurkunas et al., 2010) contain both a PPRE and an ARE and are regulated by both PPARγ 
and Nrf2 to elicit anti-oxidative effects. Third, microglial/macrophagic CD36 is under the 

regulation of both PPARγ (Tontonoz et al., 1998; Yamanaka et al., 2012) and Nrf2 (Ishii et 
al., 2004; Wang et al., 2014; Zhao et al., 2015a). CD36 is important in microglial/

macrophage phagocytosis and subsequent debris clearance, which facilitates resolution of 

neuroinflammation (Li et al., 2015). Fourth, PPARγ and Nrf2 synergistically elicit anti-

inflammatory effects by inhibition of the NF-κB pathway (Wardyn et al., 2015; Zhao et al., 
2015b).

PPREs have been found in target genes with potential roles in tissue preservation and repair 

and functional recovery after acute brain injury. Examples include tight junction protein 

zona occludens-3 (BBB integrity), synaptogyrin 4 (synaptic function), ubiquitin conjugating 
enzyme E2 S (protein quality control), G1/S-specific cyclin, p21-activated kinase 4, 
homeodomain-interacting protein kinase 4 (cell cycle), mitogen activated protein kinase 
organizer 1, transciption factor jun-D (cell survival), TOMM40, TIMM13, TIMM44, and 

electron transfer flavoprotein subunit beta (mitochondrial function) (Heinaniemi et al., 
2007). Furthermore, a genome-wide identification of PPREs revealed functional clusters of 

PPAR-regulated genes related to chromatin remodeling, DNA damage response, cell 

differentiation, and cell growth/maintenance (Lemay and Hwang, 2006). Aside from the 

tissue reparative nature of these target genes, PPREs with well-established roles in lipid 

metabolism and inflammation might be critical for the repair of myelin and clearance of 

debris in the CNS. Indeed, a critical role for PPARγ in peripheral wound repair has been 

well established (Yessoufou and Wahli, 2010); PPARγ is activated by lipid mediators 

produced by necrotic tissue, and upregulates genes involved in anti-fibrotic, anti-oxidative, 
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and anti-apoptotic effects (Michalik and Wahli, 2006). As discussed further below, the 

genomic studies identifying potential PPREs are consistent with the view that PPARγ lies at 

the nexus between perturbations of the internal milieu and a concerted effort to transcribe an 

abundance of genes that preserve homeostasis and repair tissue.

3. Evidence favoring a beneficial role of PPARγ in the injured CNS

CNS injuries encompass a variety of pathogenic mechanisms, including neurovasculopathy, 

trauma, neurodegeneration, tumor formation, and CNS autoimmunity, and may arise due to 

systemic diseases. In the present review, we will restrict our focus to those conditions with 

CNS abnormalities as the primary underlying pathology. This group of CNS injuries—

ischemic stroke, hemorrhagic stroke, TBI, and SCI—share a number of pathophysiologic/

repair processes in common. In the next section, we briefly describe alterations in PPARγ 
expression in CNS injuries and present evidence favoring its beneficial effects. We will then 

introduce the mechanisms underlying PPARγ-mediated protection against CNS injury, 

promotion of CNS repair, and regulation of comorbidities (Figure 4).

3.1 PPARγ expression and activity following CNS injuries

Ischemic stroke is caused by transient or permanent local reduction of cerebral blood flow, 

and is characterized by a number of cellular disturbances, including BBB dysfunction, 

vasogenic brain edema, and neuronal death (Yin et al., 2014; Krueger et al., 2015). In 

response to middle cerebral artery occlusion (MCAO), PPARγ mRNA levels are upregulated 

by 3.3-fold and 7.5-fold in the ipsilateral cerebral cortex of the rat at 6h and 24h post-

MCAO, respectively (Ou et al., 2006). In situ hybridization studies further reveal that 

PPARγ mRNA expression is restricted to neurons within the ischemic territory (Ou et al., 
2006). Similarly, Victor et al. observed PPARγ upregulation at both the mRNA and protein 

levels in ischemic neurons following MCAO in rats (Victor et al., 2006). Elevated expression 

of PPARγ protein was detected by immunohistochemistry as early as 4h after stroke, with a 

peak at 24h, and lasted for at least 14d after stroke (Victor et al., 2006). Despite increased 

PPARγ expression in neurons after ischemic insults, there is decreased PPARγ DNA 

binding activity in the ischemic hemisphere. In the ischemic brain, PPARγ-PPRE binding 

activity 8 h after the insult is only ~44% of the values in the contralesional brain, as 

evaluated by electrophoretic mobility shift assays and densitometry (Victor et al., 2006). The 

reason for the reduction in the PPRE binding activity of PPARγ after ischemic injury is still 

unknown. It is possible, however, that PPARγ protein levels may be elevated in the ischemic 

brain to compensate for the decrease in PPARγ DNA binding activity.

Hemorrhagic stroke is elicited by the rupture of a weakened blood vessel or a brain 

aneurysm followed by bleeding into surrounding brain regions. There are two subtypes of 

hemorrhagic stroke—intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) 

(Qureshi et al., 2001; Tholance et al., 2015). Xu et al. injected autologous whole blood into 

the right striatum of male Sprague-Dawley rats to induce an ICH model (Xu et al., 2016). 

Significantly elevated expression of PPARγ and 15(S)-hydroxyeicosatetraenoic acid (15(S)-

HETE) was found in the ipsilateral brain in ICH rats compaired to sham-treated controls (Xu 

et al., 2016). Furthermore, PPAR-γ protein levels and PPARγ-targeted gene expression were 
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significantly increased in rats treated with the PPARγ agonist, exogenous 15(S)-HETE, in 

comparison to vehicle-treated ICH rats (Xu et al., 2016). Intrastriatal injections of 15d-PGJ2 

significantly increased PPARγ-DNA binding activity and the expression of catalase in the 

perihemorrhagic area 3h after ICH (Zhao et al., 2006). However, in an experimental SAH 

model, PPARγ mRNA and protein levels were significantly reduced in the cortex compared 

to sham controls (Chang et al., 2015a).

Following TBI, cerebral inflammation is one of the major triggers of progressive neuronal 

cell death (Morganti-Kossmann et al., 2001). In a TBI model induced by controlled cortical 

impact (CCI), PPARγ mRNA expression was not altered either following TBI or treatment 

with the PPARγ agonists PGZ and RGZ (Thal et al., 2008; Thal et al., 2011). However, 

inflammatory genes such as inducible nitric oxide synthase (iNOS), TNF-α, interleukin 

(IL)-1β and IL-6 were upregulated following TBI, and this response was inhibited by PGZ 

treatment (Thal et al., 2011). In contrast, Yi et al. reported a two-fold increase in PPARγ 
mRNA expression 24h after experimental TBI and this was increased four-fold by RGZ 

treatment (Yi et al., 2008). The methodological differences in experimental trauma models 

might explain these discrepancies.

It is well accepted that apoptosis, inflammation, and excitotoxicity contribute to secondary 

neuronal damage after SCI. One day following experimental SCI, the expression of PPARγ 
is significantly increased in the spinal cortex surrounding the lesion area (Zhang et al., 
2010). In contrast, another study demonstrated that PPARγ protein levels were significantly 

reduced in spinal cord homogenates one day after SCI (Paterniti et al., 2013).

3.2 Protective effects of PPARγ in CNS injuries

A large body of seminal work in healthy control, diabetic, or obese animals revealed that 

PPARγ agonists decrease myocardial infarct size and increase glucose uptake and insulin 

sensitivity (Yue Tl et al., 2001; Khandoudi et al., 2002; Shiomi et al., 2002; Sidell et al., 
2002; Wayman et al., 2002; Lee and Chou, 2003; Liu et al., 2004). Consistent with these 

studies, mounting evidence also demonstrates that PPARγ activation is beneficial to the 

injured brain (Zhao and Aronowski, 2014). For example, Zhao and colleagues demonstrated 

that neuron-specific PPARγ knockout mice experience greater brain damage and oxidative 

stress after MCAO (Zhao et al., 2009b). Furthermore, systemic or intracerebroventricular 

administration of PPARγ agonists, either prior to and/or after stroke, elicit potent 

neuroprotective effects in various animal models of ischemic stroke, as shown by reductions 

in infarct size and superior neurological function (Sundararajan and Landreth, 2004; Luo et 
al., 2006; Wang et al., 2009; Kaundal and Sharma, 2010). Even delayed intraperitoneal 

administration of the PPARγ agonist RGZ—beginning 24 h after cerebral ischemia—is able 

to confer protection in a middle cerebral artery embolization stroke model in rats 

(Allahtavakoli et al., 2009). These findings may be important because they suggest a wide 

therapeutic window for PPARγ agonists. However, the dose must be chosen with care, as 

PPARγ agonists may promote cell survival at low concentrations but increase cell loss at 

high concentrations (Wang et al., 2002b; Lin et al., 2006; Wu et al., 2009).

Aside from ischemic stroke, PPARγ agonists also exhibit neuroprotective effects in 

hemorrhagic stroke models (Zhao et al., 2006; Zhao et al., 2007; Zhao et al., 2009a; Wu et 
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al., 2015). For example, in a rat model of striatal ICH, intrastriatal 15d-PGJ2 treatment 

increased PPARγ DNA binding activity and subsequent catalase expression, resulting in 

significant decreases in neurologic deficits compared to rats receiving saline (Zhao et al., 
2006). Similarly, intraperitoneal administration of RGZ at 5 min, 6 h, and 24 h after TBI 

increased PPARγ mRNA levels in cortical tissue surrounding the contusion area within 24 h 

after brain injury and significantly reduced the cortical lesion volume compared to vehicle-

treated mice (Yi et al., 2008). Similarly, the survival of hippocampal CA3 neurons was 

increased after intraperitoneal injection of 6 mg/kg RGZ in a controlled cortical impact 

model of TBI (Liu et al., 2016). Nevertheless, a number of studies have shown contradictory 

results, particularly in TBI models. It has therefore been argued that the neuroprotective 

effects of PGZ in TBI—as shown by reduced contusion volume, decreased cerebral 

inflammation, and reduced microglial activation—are the result of PPARγ-independent 

mechanisms (Thal et al., 2011; Liu et al., 2016). Other possible reasons for these 

discrepancies include: 1) differing rodent species and strains; 2) varying degrees of injury 

severity, reflecting differences in the diameter of the impactor tip, impact velocity, impact 

duration, and displacement; 3) differences in lesion location within the brain; 4) different 

administration methods and timing of PPARγ agonists; and 5) different times of evaluation. 

In short, the interpretation of this body of work awaits further confirmation and greater 

reproducibility across studies.

Application of PPARγ agonists is protective in various animal models of SCI. In a study by 

McTigue and colleagues, rats received a moderate mid-thoracic contusion and were 

intraperitoneally injected with either low or high doses of PGZ or vehicle at 15 min after 

SCI and then every 12h for 7 days (McTigue et al., 2007). In this study, PGZ significantly 

protected white matter, gray matter, and motor neurons from SCI. In a compression model of 

SCI, vascular clips were applied to the mouse dura with a force of 24g via four-level T5-T8 

laminectomy (Genovese et al., 2008). In this model, intraperitoneal injections of the PPARγ 
agonist 15d-PGJ2 ameliorated spinal cord inflammation, tissue injury, neutrophil infiltration, 

NF-κB activation, and cell apoptosis after SCI. In addition, the PPARγ agonist PGZ was 

found to ameliorate sensory dysfunction after SCI (Iwai et al., 2008) and reduce neuropathic 

pain after SCI and peripheral nerve injury (Jia et al., 2013; Griggs et al., 2015). Although 

there remain some debates, the abovementioned findings suggest that PPARγ agonists elicit 

structural and functional protection of the brain in diverse injury models.

4. PPARγ protects against CNS injury

A series of pathological processes are initiated during the acute phase following CNS 

injuries. Following the acute period, a wave of secondary injury expansion also emerges. 

Necrosis of neural tissue triggers a powerful inflammatory cascade, resulting in further 

neuronal apoptosis and excitotoxicity, oxidative stress, and other feed-forward mechanisms. 

Neuroinflammation contributes to the amplification and spread of local injury, predisposing 

surrounding cells to secondary injuries (Kawabori and Yenari, 2015). Vulnerable brain 

vessels and the BBB release pro-inflammatory factors and facilitate immune cell infiltration 

into the injured brain (de Wit et al., 2017). In this section, we will summarize 

pathophysiological processes after CNS injury and the beneficial effects of PPARγ in these 

processes.
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4.1 PPARγ protects against neuroinflammation following CNS injuries

The immune system serves as the sentinel and guardian of the organism. For many decades, 

the CNS was falsely believed to be immunoprivileged. The CNS is now viewed as immune 

competent, actively engaging in interactions with the peripheral immune system (Carson et 
al., 2006). Furthermore, a lymphatic vascular system has been discovered in the brain 

(Molina-Holgado and Molina-Holgado, 2010; Aspelund et al., 2015) and neural 

inflammation is thought to drive disease processes into a secondary phase of injury 

expansion.

4.1.1 An introduction on neuroinflammation following CNS injuries—
Inflammatory responses following CNS injury are initiated by damage-associated molecular 

patterns (DAMPs) that are released from injured tissue (Sharma and Naidu, 2016). High 

mobility group box 1 is rapidly released by cells undergoing necrotic or pyroptotic cell death 

(Sharma and Naidu, 2016). High mobility group box 1 is detected in the serum half an hour 

after 90 min stroke in rodents, and is observed within the first hour after symptom onset in 

ischemic stroke patients (Liesz et al., 2015). In addition, heat shock protein (HSP) 72 can be 

detected in the serum of CNS trauma patients (Pittet et al., 2002). Release of S-100 protein 

from the injured CNS occurs within the first 24h in patients with TBI, ischemic stroke, and 

transient ischemic attacks (Elting et al., 2000). Furthermore, the early release of nuclear 

DNA, the IL-1 family, histones, and other intrinsic cell components from the injured CNS 

serves to ignite the inflammatory response after acute CNS injuries (Sharma and Naidu, 

2016).

Both local and systemic inflammatory cells participate in acute CNS injury. Microglia are 

the resident immune cells of the brain and are among the first cells to respond to CNS injury. 

Injury signals are transported through the CNS lymphatic vessels and the blood vessels, 

possibly delivered by the drainage of damage-associated molecular patterns directly to 

peripheral immune organs (Louveau et al., 2015). Injury signals might also be carried by 

dendritic cells (DCs) (Clarkson et al., 2012). Macrophages take up residence in the CNS 

vessel bed and are also poised to sense and transmit information about disruptions in 

homeostasis (Goverman, 2009; Kivisakk et al., 2009). Activation of the peripheral immune 

response results in a surge of infiltrating immune cells that home in on the CNS lesion zone 

(Pennypacker and Offner, 2015).

In ischemic stroke, the pro-inflammatory profiles of microglia may be inactivated at early 

stages after ischemic stroke. However, as the immune reactions progress, pro-inflammatory 

microglia participate in the promotion of neural inflammation (Hu et al., 2012; Patel et al., 
2013; Wang et al., 2013; Jin et al., 2017). In a transient MCAO model, brain infiltration of 

macrophages appeared as early as 12h after ischemia and peaked after 24h, followed by a 

gradual decrease by day 7 (Gelderblom et al., 2009). Similarly, infiltrating neutrophils were 

detected at 12 h, peaking on day 2-3 and gradually disappearing by day 7 (Gelderblom et al., 
2009). Although a deleterious role has been reported for natural killer cells in ischemic 

stroke (Gan et al., 2014), the infiltration of this cell population is not always evident. 

However, T and B lymphocytes from the adaptive immune systems appear in the ischemic 

lesion site at 3-7 days after stroke (Gelderblom et al., 2009), even though they represent only 
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a small portion of infiltrated immune cells. In animal models of hemorrhagic stroke, 

microglial activation is observed 1-4 h after hemorrhage, peaking at 3-7 days, and returning 

to baseline by 21-28 days (Hickenbottom et al., 1999; Gong et al., 2000; Xue and Del Bigio, 

2000; Wang et al., 2003a; Wang and Tsirka, 2005). Neutrophil infiltration occurs as early as 

4h after the formation of the hematoma, peaking at 2-3 days, and subsiding by 7 days.

In traumatic CNS injuries such as TBI and SCI, the BBB is directly disrupted by the primary 

damage, followed by the entry of blood components into the CNS (McKee and Lukens, 

2016). As in peripheral injured tissue, neutrophils are the first to be mobilized to the brain 

after TBI. In a rat model of CCI, neutrophil infiltration was detected within hours post-

trauma, and this further exacerbated the loss of BBB integrity. Microglia and macrophages 

are increased between 12 and 72 h in damaged cortical regions after TBI (Clark et al., 1994; 

Soares et al., 1995). A large number of chemokines are released into the injured CNS, 

inducing the migration of activated neutrophils, lymphocytes, monocytes, and macrophages 

(Ghirnikar et al., 1998).

Together with the resident microglia in the CNS, infiltrated peripheral immune cells promote 

ongoing neural inflammation with direct cytotoxicity or secretion of inflammatory factors. 

Microglia produce proinflammatory cytokines such as IL-1, IL-6, IL-12, IL-23, nitric oxide 

(NO), and TNFα, and contribute to local oxidative stress by inducing iNOS and generating 

reactive oxygen species (ROS) (Hu et al., 2012; Wang et al., 2013). CD8+ cell cytotoxic T 

lymphocytes (CTLs) and natural killer cells produce cytolytic granzyme-b (Chaitanya et al., 
2011) and perforin (Mracsko et al., 2014) to induce direct neuronal death after ischemic 

stroke. Immune cell-derived cytokines, including IFN-γ, TNF-α, various interleukins, 

macrophage inflammatory protein 1α and 1β, and monocyte chemotactic protein (MCP)-1β 
not only convey immune signals but also induce apoptosis of cells in the stroke penumbra 

(Jin et al., 2010b; Gan et al., 2014). In addition, chemokines are produced in the inflamed 

zone of injury, both by infiltrating leukocytes and the injured brain tissue itself, in order to 

attract even more peripheral immune cells in a self-amplifying cascade (Losy et al., 2005; 

Jin et al., 2010b; Wang et al., 2012b; Wolinski and Glabinski, 2013). Matrix 

metalloproteinases (MMPs) are released mainly from neutrophils and cause damage to the 

BBB, facilitating the entry of additional peripheral leukocytes. In addition, activated 

endothelial cells in microvessels express adhesion molecules that promote the rolling and 

firm adhesion of leukocytes and platelets (Yilmaz and Granger, 2008). It is worth noting that 

the deleterious effects of the aforementioned inflammatory factors are relatively non-

specific, resulting in broad injury to cells in the lesion zone and surrounding tissues, 

including neurons, white matter-forming oligodendrocytes, and all components of the BBB.

4.1.2 PPARγ protects against post-injury neuroinflammation—Widespread 

expression of PPARγ has been detected in various immune cells, including CNS glial cells 

(Bernardo et al., 2000) and peripheral leukocytes (Ricote et al., 1998; Clark et al., 2000; 

Faveeuw et al., 2000; Padilla et al., 2000; Zhang et al., 2004a). A strong suppressor of the 

pro-inflammatory transcriptional factor NF-κB, PPARγ fine-tunes neural inflammation by 

limiting the activation of immune cells, reducing the generation of pro-inflammatory 

cytokines, chemokines, and adhesion molecules, and mitigating oxidative stress (Kapadia et 
al., 2008).
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Treatment with PGZ reduces microglial proliferation in stroke-prone renovascular 

hypertensive rats (Lan et al., 2015). In addition, RGZ decreases parenchymal accumulation 

of neutrophils in a mouse MCAO model (Luo et al., 2006) and 15d-PGJ2 inhibits neutrophil 

infiltration following ICH injury (Zhao et al., 2006). In rodent TBI models, RGZ reduces 

activated microglia/macrophages, and this can be reversed by GW9662 (Yi et al., 2008). In 
vitro experiments reveal that RGZ impedes the maturation of human monocyte-derived DCs 

(Gosset et al., 2001). Although it is not known if lymphocyte activation is affected by 

PPARγ, the tempering of DC activation suggests this to be the case.

A large body of evidence indicates that activation of PPARγ attenuates neural inflammation 

by reducing inflammatory mediators in ischemic stroke (Culman et al., 2007), ICH (Zhao et 
al., 2007; Aronowski and Zhao, 2011), TBI (Qi et al., 2010), and SCI (Zhang et al., 2010; Li 

et al., 2013). PPARγ stimulation inhibits the expression of a wide array of pro-inflammatory 

mediators in microglia and macrophages, including TNF-α, IL-1β, IL-6, iNOS, inducible 

cyclooxygenase (COX) 2, and the IL-12 family (Bernardo et al., 2000; Luna-Medina et al., 
2005; Storer et al., 2005). Appel et al. reported that 15d-PGJ2 or TGZ treatment of magnet-

sorted human DCs (stimulated with toll-like receptor ligands) significantly down-regulated 

the production of cytokines (IL-12, IL-6, TNF-α, etc.) and chemokines (CCL2, CCL3, 

CCL5) that are involved in T cell recruitment and activation (Appel et al., 2005). 

Furthermore, PPARγ agonists have been shown to reduce the expression of IFNγ (da Rocha 

Junior et al., 2013), IL-17, and IL-23 in T cells (Klotz et al., 2009). In human endothelial 

cells, adenovirus-mediated expression of a constitutively active, mutant version of PPARγ 
suppressed the expression of vascular adhesion molecules intracellular adhesion molecule-1, 

vascular cell adhesion molecule-1 and E-selectin (Wang et al., 2002a).

Severe neural inflammation following acute CNS injury causes apoptosis of neurons (Aktas 

et al., 2007), degeneration of white matter (Rosenberg, 2009), and breakdown of the BBB 

(Hawkins et al., 1991). PPARγ activation ameliorates these consequences of neural 

inflammation and oxidative stress in various acute CNS diseases (Culman et al., 2007; Qi et 
al., 2010; Zhang et al., 2010; Aronowski and Zhao, 2011). However, PPARγ may also be 

essential for microglial survival (Liu et al., 2010; Kane et al., 2011; Pan et al., 2013). 

Furthermore, a PPARγ agonist has been shown to restore compromised pro-inflammatory 

responses in diabetic mice soon after stroke, whereas inflammatory responses were 

suppressed at later time points in both control and diabetic mice (Kumari et al., 2010). These 

data demonstrate a sophisticated, bidirectional regulation of microglia by PPARγ.

4.2 Neuronal death

4.2.1 Mechanisms of neuronal death following CNS injury—CNS injury-

associated neuronal death can be classified as primary or secondary. Primary neuronal death 

arises from energy failure in ischemic stroke, mechanical damage associated with mass 

effects in intracerebral hemorrhage (Qureshi et al., 2009), and mechanical damage from 

blunt force traumas in TBI and SCI (McTigue, 2008). The loss of neurons typically occurs 

immediately following injury and continues for hours to days. An important feature of 

primary neuronal death is that it is generally believed to be non-regulatable and non-
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intervenable. On the contrary, secondary neuronal death may be regulated with interventions 

and is therefore the focus of the following discussion.

Glutamate receptors belong to two major classes—G-protein coupled metabotropic receptors 

and ligand-gated ionotropic receptors, such as the N-methyl-D-aspartic acid (NMDA) 

receptor, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor, and 

kainate receptor. Excitotoxicity is induced by excessive activation of glutamate receptors by 

extracellular glutamate and is a major contributor to neuronal death following CNS injury 

(Puyal et al., 2013). Energy failure after ischemia leads to decreased ATP production, 

thereby disrupting Na+/K+-ATPase, Ca2+/H+-ATPase and Na+/Ca2+-transporters and leading 

to depolarization of the cellular membrane. Diffusely depolarized presynaptic neurons 

release excessive glutamate into the synaptic cleft (Terasaki et al., 2014; Hamming et al., 
2016). Another mechanism of excessive glutamate release is via connexin hemichannels in 

activated astrocytes and microglia (Takeuchi et al., 2006; Ouyang et al., 2014). Ultimately, 

over-activation of the NMDA receptor leads to the sustained excitement of neurons and an 

excessive influx of calcium, which causes loss of neuronal viability (Randall and Thayer, 

1992; Tymianski et al., 1993; Owens et al., 1997; Lai et al., 2014).

Aside from excitotoxicity-induced neuronal cell death, oxidative stress may also elicit cell 

loss in CNS injury conditions. The predominant ROS are the superoxide anion (O2
▪), 

hydrogen peroxide (H2O2), hydroxyl radical (▪OH), peroxyl (RO2
▪), peroxynitrite anion 

(ONOO▪), and nitrogen dioxide (▪NO2) (Dhawan, 2014; Yang et al., 2016). Excessive 

intracellular Ca2+ accumulation results in overactivation of calcium-dependent enzymes 

such as nicotinamide adenine dinucleotide phosphate oxidase (NOX) and xanthine oxidase, 

both of which are capable of producing ROS. Disruptions in the electron transport chain also 

elicit the leakage of ROS from mitochondria (Piantadosi and Zhang, 1996; Galeffi et al., 
2016). Other mechanisms of ROS production include lipid peroxidation and increased 

mitochondrial ROS production stimulated by the release of Ca2+, Na+, and adenosine 

diphosphate (ADP) from damaged cells (Schulz et al., 2000; Viola and Hool, 2013). 

Furthermore, blood components, particularly hemoglobin, can undergo auto-oxidation upon 

erythrocyte lysis, which may serve as a major source of ROS in ICH, SAH, TBI, and SCI 

(Simoni et al., 1990; Asano, 1999). ROS are typically released within 1h post-injury in 

diverse models (Gaetani et al., 1990; Marklund et al., 2001). The cellular source of this 

oxidative stress might be neurons, other parenchymal cells, and vascular cells (Chen et al., 
2014). ROS can directly damage neuronal components by promoting lipid peroxidation, 

protein breakdown, and DNA damage, and also act as executioners of cell death by 

activating pro-apoptotic pathways (Zhang et al., 2004b). Finally, ROS can promote 

neuroinflammation, BBB disruption, and the release of vasospastic mediators that indirectly 

harm neurons by induction of leukocyte infiltration and enhancement of inflammation, 

thereby exacerbating ischemic injury (Clark et al., 1993).

4.2.2 PPARγ protects against neuronal death following CNS injury—PPARγ has 

been shown to decrease excitotoxicity in various pathologic settings. For example, 15d-PGJ2 

protects neurons against NMDA-induced toxicity both in vivo and in vitro (Zhao et al., 
2006). Similarly, the PPARγ agonist RGZ promotes neuronal survival and neurite outgrowh 

in vitro following exposure to glutamate (Zuhayra et al., 2011). In a rodent ischemic stroke 
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model, the PPARγ antagonist T0070907 abolished neuroprotection mediated by ischemic 

preconditioning, and increased glutamate release and reduced glutamate uptake in neuron-

astrocyte co-cultures (Romera et al., 2007). Similar effects have also been reported in other 

disease models. TGZ diminishes glutamate-induced excitotoxicity to the same degree as 

NMDA receptor antagonists in retinal ganglion cells (Aoun et al., 2003). Furthermore, RGZ 

decreases glutamate release in glioblastoma multiforme, and this can be reversed by the 

PPARγ antagonist GW9662 (Ching et al., 2015). The underlying mechanism by which 

PPARγ reduces excitotoxicity may involve upregulation of the glutamate transporter 

(GLT)-1 (Romera et al., 2007; Ching et al., 2015). GLT-1 is found in astrocytes and is 

responsible for up to ~90% of glutamate uptake (Robinson, 1998; Schousboe and 

Waagepetersen, 2005; Arbo et al., 2016). On the other hand, Yao et al observed no changes 

in GLT-1 expression in response to RGZ injection in a model of TBI (Yao et al., 2015). In 

addition, no evidence supporting the effects of PPARγ on excitotoxicity has been reported in 

SCI and hemorrhagic stroke models. Nevertheless, increased astrocytic glutamate uptake 

following PPARγ activation would be expected to reduce overall tissue damage (Romera et 
al., 2007; Ching et al., 2015), as excitotoxicity is a major cause of death not only for 

neurons, but also for oligodendrocytes and other types of CNS cells (Huria et al., 2015).

The anti-oxidative effects of PPARγ are better established than its effects on excitotoxicity. 

First, PPARγ can directly inhibit ROS generation, partly by inhibiting ROS-generating 

enzymes. RGZ has been shown to promote neuronal survival and neurite outgrowh in vitro 
following exposure to the Parkinson’s oxidative toxicant 6-hydroxydopamine (Zuhayra et 
al., 2011). Systemic administration of RGZ or PGZ after ischemia/reperfusion reduces ROS 

and the expression of COX-2, an important enzyme involved in ROS generation, and 

attenuates neuronal loss (Collino et al., 2006). Similarly, 15d-PGJ2 inhibits iNOS expression 

and subsequent apoptosis in cerebellar granule cells (Heneka et al., 1999). NOX activation is 

another major driving force in ROS generation, and its relationship with PPARγ has been 

examined in primary cortical neurons subjected to oxygen-glucose deprivation (OGD) (Wu 

et al., 2016). NOX expression was enhanced by both GW9662 treatment and PPARγ-siRNA 

transfection, and was inhibited by PPARγ transfection or exposure to 15d-PGJ2. Second, 

PPARγ prevents oxidative stress by induction of anti-oxidant molecules. For example, both 

RGZ and PGZ can restore glutathione, the most ubiquitous biological antioxidant, in a 

mouse MCAO model (Collino et al., 2006). Furthermore, in a rodent TBI model, RGZ 

induces the expression of the antioxidant enzymes catalase and SOD-1 (also known as 

Cu/Zn SOD), as well as heme oxygenase-1 and the chaperones heat shock protein (HSP) 27 

and HSP70, and these responses are abolished by GW9662 administration (Yi et al., 2008). 

As mentioned above, PPARγ also interacts with the Nrf2/ARE axis to mute the toxic 

sequelae of oxidative stress (Ikeda et al., 2000; Shih et al., 2005; Cho et al., 2010; Polvani et 
al., 2012; Zhao and Aronowski, 2014). Collectively, these findings reveal the molecular 

mechanisms underlying powerful anti-oxidative actions of PPARγ. As oxidative stress 

contributes to almost all CNS pathologies and impairs tissue repair, the upregulation of 

multiple antioxidant pathways by PPARγ is expected to accelerate the recovery process.

Another mechanism underlying PPARγ-afforded neuroprotection may be through the 

energetic and neurotrophic support provided by glial cells. Production of nerve growth factor 

(NGF) and brain-derived neurotrophic factor (BDNF) in CNS trauma models is enhanced 

Cai et al. Page 14

Prog Neurobiol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



after administration of PPARγ agonists, although the cellular source of the neurotrophins 

has not been identified (Meng et al., 2011; Mandrekar-Colucci et al., 2013). Astrocytes have 

long been known to provide nutritional and metabolic support to neurons (Wang et al., 
2016), and activated astrocytes produce BDNF following injury (Zhao et al., 2004). 

Consistent with its established role in bioenergetics, PPARγ modulates glucose metabolism 

in astrocytes. For example, PPARγ agonists increase glucose uptake and glycolysis in 

primary astrocytes (Dello Russo et al., 2003; Izawa et al., 2009). The subsequent increase in 

cerebral glucose utilization and metabolism might attenuate neurodegeneration (Garcia-

Bueno et al., 2007). These effects might be especially important in diseases related to energy 

deprivation—such as ischemic stroke—and may broaden the temporal window during which 

drugs might be administered, in addition to increasing cell survival. Microglia also secrete 

trophic factors (e.g. insulin-like growth factor (IGF)-1 and BDNF) to support neuronal 

survival (Choi et al., 2008; Trang et al., 2011; Wang et al., 2017). However, it is not known 

if PPARγ activation increases trophic factor expression in microglia.

4.3 Demyelination

4.3.1 Mechanisms of demyelination following CNS injury—White matter injury is 

characterized by demyelination and axonal degeneration. Demyelination is defined as loss of 

the axonal myelin sheath that is formed by the processes of oligodendrocytes. Myelination is 

essential for efficient signal transduction across different brain regions, and serves to protect 

the ensheathed axon by providing metabolic support and acting as a physical barrier against 

biochemical insults (Irvine and Blakemore, 2008; Funfschilling et al., 2012; Lee et al., 
2012). Axonal degeneration can ensue as a consequence of demyelination, and these 

secondary effects are largely responsible for the debilitating effects of white matter injury. 

Thus, the consequences of demyelination include sensorimotor dysfunction and profound 

neurobehavioral and cognitive impairments (Desmond, 2002).

Oligodendrocytes in white matter are highly vulnerable to ischemic injury for a number of 

reasons. First, white matter has much lower blood flow and lack of collateral circulation in 

comparison with gray matter (Rosenberg, 2016). Second, cells of the oligodendrocyte 

lineage, such as oligodendrocyte precursor cells (OPCs), are particularly vulnerable to 

ischemia-induced oxidative stress and inflammation (Husain and Juurlink, 1995). In the rat 

MCAO model, 30 min of vascular occlusion leads to conspicuous swelling of 

oligodendrocytes and 3 h of occlusion results in lethal injury in large numbers of 

oligodendrocytes (Pantoni et al., 1996). Demyelination persists for at least 4 weeks after 60 

min of transient MCAO in mice, as evidenced by decreased expression of myelin basic 

protein (MBP) in white matter (Jiang et al., 2016). Consistent with these in vivo 
observations, in vitro studies show that 30 min of OGD results in the death of 90% of 

oligodendrocytes within 9h after reperfusion (Tekkok and Goldberg, 2001). The pattern of 

demyelination in other CNS injuries, such as intracerebral hemorrhage, SCI, and TBI is 

similar to that observed in ischemic stroke. In other words, demyelination commences 

within hours to days after injuries and is sustained for a prolonged period, often up to 

months or even years (Wasserman and Schlichter, 2008).
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The molecular mechanisms underlying CNS injury-induced demyelination and 

oligodendrocyte death can be summarized as follows. First, oligodendrocytes express all 

three types of glutamate receptors—AMPA, kainate, and NMDA (Salter and Fern, 2005; 

Butt, 2006), and are therefore subject to excitotoxicity. As in neurons, excess extracellular 

glutamate leads to over-activation of glutamate receptors on oligodendrocytes and elicits the 

accumulation of cytosolic calcium, which triggers oligodendrocyte toxicity (Benarroch, 

2009). Second, oxidative stress is another major contributor to demyelination. 

Oligodendrocytes have high energy demands, abundant iron stores, and low levels of 

molecular antioxidants, rendering them particularly sensitive to increased ROS (Juurlink, 

1997; Oyinbo, 2011; Shereen et al., 2011; Yang et al., 2017). Third, inflammatory reactions 

also contribute to demyelination after ischemia. Activation of resident microglia and 

astrocytes, as well as the infiltration of peripheral immunocytes lead to excess production of 

proinflammatory cytokines, key mediators of pathology in demyelination disorders. For 

example, high levels of IFN-γ lead to oligodendrocyte apoptosis and demyelination (Lin et 
al., 2005). Furthermore, TNF-α inhibits the proliferation and differentiation of OPCs, and 

induces oligodendrocyte apoptosis (Hovelmeyer et al., 2005; Pang et al., 2005; Shi et al., 
2015).

Interactions between oligodendrocyte lineage cells and other white matter components such 

as microglia, astrocytes, and axonal fibers also play a critical role in injury-induced 

demyelination. Activated microglia can exhibit pro-inflammatory and anti-inflammatory 

properties, respectively (Hu et al., 2015) and may influence oligodendrocyte survival (Wang 

et al., 2013). Similarly, activated astrocytes also exhibit dual roles. Glutamate is taken up by 

astrocytes and converted into lactate, which then serves as an energy substrate for axons and 

oligodendrocytes following intracellular entry through monocarboxylate transporters and 

connexins. Astrocytes thereby transiently provide energy for oligodendrocytes and axons 

under stressful conditions (Matute et al., 2007). However, activated astrocytes may 

exacerbate oligodendrocyte cell death by increasing intracellular uptake of zinc and 

stimulation of Ca2+-permeable AMPA receptors (Johnstone et al., 2013).

Traumatic axonal injury (TAI) is localized to white matter and is initiated by mechanical 

force, such as impact to the head and rapid acceleration-deceleration of the head or the 

spinal cord (Armstrong et al., 2016b). The proliferation, migration, survival, and 

differentiation of oligodendrocytes depend upon axon-derived signals (Shi et al., 2015), such 

that loss or degeneration of axons can directly cause myelin pathologies. TAI causes axonal 

degeneration, which is accompanied by mitochondrial swelling, disruption of vesicular 

transport, cytoskeleton breakdown, and the formation of end bulbs at the sites of axotomy or 

disconnection. An important feature of TAI is that the injury is dispersed among the intact 

axons within white matter tracts; this expands the lesion and increases disease severity 

(Gennarelli, 1993). Mild TBI with low TAI density does not impair oligodendrocyte 

survival, as a single oligodendrocyte can maintain myelin sheaths around a cohort of axons, 

and damaged axons are a minor proportion of the total number of axons present. 

Nevertheless, damage to axons can dysregulate myelin maintenance signals to the 

oligodendrocyte, resulting in aberrant myelin synthesis and subsequent formation of 

redundant myelin, as evident in double-layered myelin sheaths around damaged axons 

(Rosenbluth, 1966; Armstrong et al., 2016a). Mild TBI may be accompanied by some 
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degree of demyelination, as there also co-exist other pathogenic factors related to 

demyelination, including glutamate excitotoxicity, excessive ROS, neuroinflammation, and 

microglial activation (Clarner et al., 2012; Sullivan et al., 2013; Mierzwa et al., 2015). 

Consistent with these observations, in a closed-skull impact mouse model mimicking mild 

TBI, demyelination of intact axons is observed as early as 3 days, and lasts up to 6 weeks 

post-injury, in the absence of frank oligodendrocyte death (Mierzwa et al., 2015). In that 

model, chronic inflammation contributes to the long-lasting demyelination. Moderate or 

severe TBI with TAI is often accompanied by microhemorrhages or severe 

neuroinflammation (Armstrong et al., 2016a), resulting in focal lesions, and a higher 

proportion of axons in the lesion site are damaged, leaving the myelinating oligodendrocytes 

without any viable axons to wrap (Armstrong et al., 2016b). This lack of nearby axons 

causes myelin degradation and oligodendrocyte death. It is worth noting that TBI and SCI 

also cause mechanical damage in gray matter, leading directly to neuronal death (Bayly et 
al., 2005). Thus, axons can become disconnected from damaged neurons and undergo 

orthograde degeneration, ultimately leading to myelin degradation and oligodendrocyte 

death, as outlined above. For these and other reasons, death of oligodendrocytes in white 

matter is evident within 12 h in a rat model of moderate fluid percussion injury, and this 

increases progressively through the following week and is maintained for 2 months post-

injury (Conti et al., 1998), perhaps mediated by the caspase-3 apoptotic pathway (Flygt et 
al., 2013).

4.3.2 PPARγ protects against demyelination following CNS injury—Most studies 

on PPARγ in CNS injury focus on gray matter. In a recent study, however, Han et al. 
investigated the effect of PGZ on white matter integrity in a 60 min transient MCAO mouse 

model, and reported less loss of white matter integrity at 21d post injury, partly due to 

increased microglial M2 polarization (Han et al., 2015). There are also protective effects of 

PPARγ on autoimmunity-induced demyelination, consistent with its beneficial role in 

stroke, TBI, and SCI. In rodent experimental autoimmune encephalomyelitis (EAE) models, 

TGZ decreases pathology by attenuating pro-inflammatory cytokine production (Niino et al., 
2001). Similarly, PGZ reduces injury symptoms in EAE models, and this is accompanied 

with decreased lymphocyte infiltration, demyelination, and chemokine and cytokine 

expression, and increased expression of the NF-κB inhibitor, IκB, in the brain (Feinstein et 
al., 2002).

In vitro studies have demonstrated potential mechanisms underlying the protective effects of 

PPARγ against demyelination. For example, endogenous prostaglandin derivatives are 

natural PPARγ activators and inhibit production of nitrite and pro-inflammatory cytokines, 

including IL-6, IL-1β, TNF-α, and MCP-1 from LPS-stimulated microglia and astrocytes 

(Storer et al., 2005). In a study exploring T-cell mediated demyelination in three-

dimensional aggregating rat brain cell cultures, Duvanel et al. demonstrated that PGZ 

rescued anti-myelin oligodendrocyte glycoprotein autoantibody-induced demyelination by 

reducing heat shock responses and downregulating TNF-α (Duvanel et al., 2003). Apart 

from its anti-inflammatory properties, PPARγ also mitigates oxidative stress in 

oligodendrocytes. Treatment of rat oligodendrocytes with PGZ or 15d-PGJ2 enhances their 

antioxidant defenses by increasing levels of catalase and Cu/Zn SOD, while maintaining the 
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equilibrium of the glutathione redox system (Bernardo et al., 2009). Although there is little 

direct evidence regarding the influence of PPARγ on excitotoxicity-induced demyelination, 

PPARγ is known to decrease excitotoxicity in general, as discussed in section 4.2.2. 

However, whether PPARγ can help relieve demyelination caused by TAI-induced 

oligodendrocyte death is not yet known.

Collectively, the available evidence supports the therapeutic potential of PPARγ in CNS 

injury- induced demyelination, although evidence regarding direct effects of PPARγ on 

demyelination is still limited, especially in the context of acute CNS injuries. Furthermore, 

the underlying mechanisms are poorly understood and warrant further studies.

4.4 BBB disruption

4.4.1 Mechanisms of blood-brain barrier disruption in CNS injury—As a 

physical, transport, and metabolic barrier, the blood-brain barrier (BBB) controls the 

exchange of various molecules and nutrients between the blood and brain compartments, 

while keeping bacteria, viruses, and other xenobiotics outside the brain (Weiss et al., 2009). 

The major structural bases of the BBB consist of brain capillary endothelial cells, the tight 

junctions that connect them, astrocyte end feet, and pericytes (Weiss et al., 2009; Thal and 

Neuhaus, 2014; Attwell et al., 2016). Rapid alterations of endothelial permeability occur in 

many neurological conditions, including ischemic stroke and TBI (Salehi et al., 2017). The 

effects of CNS injuries may occur either directly on the endothelium or indirectly through 

other cells types in the neurovascular unit that affect the endothelium (Thal and Neuhaus, 

2014). Reactive oxidants, inflammatory cytokines, and MMPs contribute to BBB 

permeability and cause the degradation of endothelial junctions, loss of vascular integrity, 

and BBB dysfunction after CNS injuries. Within 30-60 min following ischemic stroke, 

aberrant actin polymerization, stress fiber formation, and destruction of junctional proteins 

in brain endothelial cells result in an early breach of the BBB in response to activation of 

Rho-associated protein kinase/myosin light chain signaling and loss of inhibition by actin 

depolymerizing factor. This is followed by the infiltration of MMP-secreting neutrophils and 

macrophages into the brain, setting in motion a cascade of events that culminates in tissue 

damage and loss of neurological function (Shi et al., 2016a; Shi et al., 2016b). Increased 

BBB permeability may also facilitate edema formation and hemorrhagic transformation, 

thereby aggravating neurological outcomes (Dirnagl et al., 1999). All of these changes lead 

to primary brain damage and post-ischemic secondary injury (Hacke et al., 1996; Yin et al., 
2010).

4.4.2 PPARγ protects against blood-brain barrier disruption following CNS 
injury—The BBB is partly composed of cerebral vascular endothelial cells and the tight 

junctions holding them together. A growing number of studies reveal that PPARγ is 

expressed in the cerebral vascular endothelium and plays important roles in the regulation of 

cerebrovascular structure and function (Culman et al., 2007; Beyer et al., 2008; Halabi et al., 
2008; Hamblin et al., 2009). For example, PPARγ activation by TZDs can regulate 

endothelial migration and angiogenesis (Duan et al., 2008), consistent with a role for 

PPARγ in BBB repair. PPARγ promotes human umbilical vein cell migration by inducing 

the expression of a member of the class-3 semaphorins, Sema3g (Ming et al., 2015). 
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Activated endothelial cells trigger immune responses through the secretion of pro-

inflammatory cytokines/chemokines, such as IL-1 and TNF-α (Ross, 1993, 1999; 

Tesfamariam and DeFelice, 2007). Many studies have demonstrated that PPARγ agonists 

reduce the activation and inflammation of endothelial cells by inhibiting proinflammatory 

cytokines/chemokines (Jackson et al., 1999; Marx et al., 2000; Pasceri et al., 2000; Imamoto 

et al., 2004; Verrier et al., 2004; Sasaki et al., 2005; Chen et al., 2015). PPARγ in 

endothelial cells protects against IL-1β-induced endothelial dysfunction (Mukohda et al., 
2016). Furthermore, Yin and colleagues found that the PPARγ agonist PGZ significantly 

reduces OGD-induced endothelial cell death (Yin et al., 2013). In the same study, the effects 

of adenovirus-mediated gain or loss of PPARγ function strongly support a cytoprotective 

role for PPARγ in endothelial cultures. Consistent with these in vitro findings, PPARγ 
agonists also significantly reduce ischemia-triggered increases in cerebrovascular/BBB 

permeability in mice (Yin et al., 2013). Hind and colleagues established an in vitro BBB 

model using human brain microvascular endothelial cells and human astrocyte co-cultures 

(Hind et al., 2015). They discovered that the PPARγ agonist cannabidiol decreased BBB 

permeability when administered either before or after OGD. Furthermore, vascular cell 

adhesion molecule-1 expression was decreased. Min et al. reported that activation of PPARγ 
by telmisartan attenuates BBB impairment in a type 2 diabetic mouse model (Min et al., 
2012). In that study, significant decreases in the expression of tight junction proteins (ZO-1, 

occludin, claudin3, and claudin5) and increases in MMP-2 and MMP-9, oxidative stress, and 

pro-inflammatory cytokines (MCP-1, IL-6, TNF-α) were observed in the mouse brain after 

treatment with the PPARα antagonist (Min et al., 2012). Collectively, these studies indicate 

that PPARγ activation regulates BBB permeability and this may partly underlie its 

protective role against CNS injuries.

5. PPARγ promotes CNS repair

The chronic phase of CNS injury can progress for weeks to years, even after the CNS 

commences repair to restore homeostasis. Thus, the injury and reparatory phases are not 

completely separable and exhibit considerable overlap. During the chronic phase, neural 

inflammation is eventually controlled and resolved. Debris in and around the lesion zone is 

isolated and removed by local microglia and/or by infiltrating peripheral immune cells. 

Neurons may be replenished in limited numbers through neurogenesis. White matter is 

repaired by neurite outgrowth and remyelination. Angiogenesis and revascularization reseal 

the compromised BBB. In the next section, we will discuss repair processes, mainly in the 

chronic phase, and describe the involvement of PPARγ. As discussed in Section 2.4, the 

existence of PPREs on gene clusters that control cell survival, differentiation, chromatin 

remodeling, and the DNA damage response support an important role of PPARγ in tissue 

repair (Lemay and Hwang, 2006; Heinaniemi et al., 2007).

5.1 Resolution of inflammation

5.1.1 An introduction on the resolution of inflammation following CNS injury—
Resolution of inflammation is initiated immediately after the onset of CNS challenges, at the 

same time as the inflammation commences. Clearance of debris is the first step toward the 

resolution of inflammation, and will be discussed in Section 5.2. Contraction of the immune 
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cell population in the CNS is also essential to restore homeostasis. Neurotrophic factors 

from the immune system help regenerate injured tissue and prevent cell loss. Anti-

inflammatory cells and factors work in concert to complete the process of inflammation 

resolution.

Both innate and adaptive immune systems have components that regulate inflammation. 

Immediately after CNS injury, the pro-resolution M2 phenotype predominates in the 

microglial and macrophage populations for the first 3-5 days, and this is followed by M1 

polarization (Hu et al., 2012; Wang et al., 2013). However, within weeks following CNS 

injury, the pro-inflammatory M1 microglial phenotype gradually subsides and is replaced by 

the pro-resolution M2 phenotype. The M2 phenotype promotes 1) phagocytosis to clear 

debris, 2) secretion of anti-inflammatory cytokines, such as IL-10 and transforming growth 

factor (TGF) β, and 3) release of a plethora of trophic factors, including IGF-1. 

Concomitantly, infiltrating neutrophils and macrophages undergo apoptosis to help resolve 

inflammation. The N2 neutrophil population expresses pro-resolution markers, such as 

CD206 and Ym1, and this is associated with increased neutrophil clearance in the MCAO 

mouse model (Cuartero et al., 2013). In the adaptive immune system, the best-studied 

regulatory lymphocytes are known as CD4+CD25+FoxP3+ regulatory T cells (Tregs), which 

facilitate the resolution of inflammation after CNS injury (Shevach et al., 2006; Zhou et al., 
2017). Treg cells can directly suppress effector T cells and myeloid cells by secreting 

suppressor cytokines such as IL-10, IL-35, and TGF-β, and compete for IL-2, which induces 

T cell apoptosis due to deprivation of activating cytokines and granzyme-dependent 

cytotoxicity. Furthermore, by suppressing the functions of antigen presenting cells, Treg 

cells indirectly modulate the responder T cells. Tregs prevent activation, maturation, and 

access to effector cells, impeding the immune stimulatory function of antigen presenting 

cells (Shevach, 2009). In addition, Tregs can express neurotrophic factors such as BDNF and 

the levels of circulating BDNF+ Tregs are correlated with positive disease outcomes in 

ischemic stroke patients (Feddersen and Van Ness, 1989).

5.1.2 PPARγ promotes resolution of inflammation—Although beneficial effects of 

PPARγ agonists have been widely reported in ischemic stroke, ICH, TBI, and SCI, the 

mechanisms whereby PPARγ promotes resolution of inflammation in acute CNS diseases 

are poorly understood. Our previous study reported that application of RGZ in a transient 

MCAO mouse model increased the expression of CD206 on microglia, a marker of the 

inflammation-resolving M2 phenotype (Han et al., 2015). Furthermore, treatment with RGZ 

enhances the phagocytic activity of microglia in the mouse distal permanent MCAO model 

(Ballesteros et al., 2014). Zhao and colleagues reported that RGZ administration promotes 

hematoma resolution by enhancing microglial phagocytosis after intrastriatal blood injection 

in both mice and rats (Zhao et al., 2007). Administration of RGZ also promotes infiltration 

of neutrophils into the ischemic lesion zone, followed by direct neutrophil polarization to the 

N2 phenotype and microglia/macrophage clearance of neutrophils in the MCAO mouse 

model (Cuartero et al., 2013). RGZ treatment in mice subjected to permanent MCAO 

accelerates neutrophil recruitment into the ischemic core, as shown by increased numbers of 

neutrophils in the ipsilesional hemisphere at 24h after ischemia. RGZ also increased the 

expression of Ym1 and CD206 by two-fold in these infiltrated neutrophils. Furthermore, 
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RGZ treatment facilitated neutrophil clearance in the infarct core by microglia/macrophages. 

Taken together, these findings indicate that PPARγ activation might enhance the beneficial 

functions of microglia and neutrophils. Furthermore, PPARγ agonists prevent excessive 

activation of neutrophils by promoting their clearance (Cuartero et al., 2013). These 

collective actions of PPARγ are expected to accelerate tissue repair and functional recovery.

In contrast to the effects of PPARγ activation on microglia and neutrophils, the effects of 

PPARγ on Tregs in acute CNS diseases are poorly understood. PPARγ is known to be 

essential for the development of Tregs in highly enriched mouse adipose tissue (Cipolletta et 
al., 2012; Park and Pan, 2015). Administration of CGZ enhances Treg development and its 

suppression of Th17 cells in a graft-versus-host disease mouse model (Wohlfert et al., 2007; 

Park and Pan, 2015). Although the cellular source has not been established, intraperitoneal 

administration of RGZ after SCI increases the levels of NGF and BDNF (Meng et al., 2011; 

Mandrekar-Colucci et al., 2013). Furthermore, Tregs can be a source of BDNF and other 

trophic factors, as discussed in Section 5.1.1.

In conclusion, resolution of inflammation is not an isolated process; it is fully integrated into 

the chronic recovery phase. Timely clearance of necrotic debris or injured cells prevents 

oxidative stress and the release of pro-inflammatory factors, impeding the feed-forward 

cycles that characterize inflammation. Contraction of the immune cell populations after 

fulfillment of their beneficial functions decreases the risk of excessive immune reactions and 

the resulting deleterious auto-immune responses. Neurotrophic factors are also essential for 

the reconstruction of tissue in acute CNS diseases. Direct and indirect evidence outlined 

above suggests that activation of PPARγ fosters the resolution of inflammation and the 

recovery of function through some of these mechanisms.

5.2 Clearance of debris and infiltrating cells

5.2.1 An introduction on the clearance of debris and infiltrating cells—Severe 

CNS injuries cause cell death and the subsequent production of cellular debris. Necrotic or 

apoptotic neuron somata and axonal debris or detached myelin pieces are detrimental for 

several reasons. First, they activate immune responses and lead to subsequent chronic 

inflammation, which causes further cell death and tissue damage. Second, the debris-

induced chronic inflammation impairs axonal regeneration and maturation of OPCs, which 

are vital for post-injury remyelination. Furthermore, infiltrating polymorphonuclear 

neutrophils (PMNs) and erythrocytes may also be detrimental after hemorrhage and trauma. 

Application of PMNs onto post-OGD organotypic hippocampal slice cultures causes a 

remarkable exacerbation of neuronal damage (Neumann et al., 2008), perhaps due to the 

release of ROS, proteases, and proinflammatory cytokines such as TNF-α (Jordan et al., 
1999). In ICH, extravasated erythrocytes in the hematoma undergo lysis within hours to days 

after ICH, releasing cytotoxic hemoglobin, heme, and iron, thereby negatively influencing 

the viability of surrounding neurons and oligodendrocytes (Zhao et al., 2009a). Thus, 

efficient clearance of damaged cellular components by phagocytosis relieves secondary 

tissue damage and favors tissue repair after CNS injury.

Phagocytosis after CNS injuries is mainly carried out by resident microglia and infiltrated 

hematogenous macrophages. Using green fluorescent protein (GFP) transgenic bone marrow 
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chimeric mice to distinguish microglia from peripheral macrophages, Schilling and 

colleagues reported that activated microglia exhibited phagocytic responses beginning on the 

first day after 30 min of transient MCAO (Schilling et al., 2005). Furthermore, the number 

of activated microglia increased gradually and peaked on day 10. Peripheral macrophage 

infiltration was not evident until day 4 after MCAO, peaking in the following 3 days, and 

then decreasing until 2 weeks after the ischemic insult. Phagocytic microglia accounted for 

one quarter of total activated microglia and reached maximal levels as early as 24 h post-

ischemia and were maintained at this level until the infiltration of hematogenous 

macrophages. These findings lead to the hypothesis that microglia play a predominant role 

in debris clearance in the early stages, while assistance from infiltrated macrophages occurs 

subsequently. Similarly, in a moderate contusion injury model of SCI, Greenhalgh et al. used 

lysozyme M enhanced GFP-knockin mice to tag hematogenous macrophages and discovered 

that 1) phagocytic microglia appeared as early as 24 h post-SCI, 2) microglia were the 

predominant phagocytic cell type until day 3, and 3) infiltrating macrophages become the 

predominant phagocytic cell on day 3 and persisted for up to 42 days (Greenhalgh and 

David, 2014). It is noteworthy that only a small percentage of microglia contained 

phagocytic material at 7d (~3%), while phagocytic material was still evident in a high 

percentage of infiltrating macrophages at 42 d (~30%) after SCI. Phagocytosis of red blood 

cells by microglia has also been observed in ICH and promotes hematoma resolution (Zhao 

et al., 2007). In a closed skull injury-induced mouse TBI model, activated microglia were 

immunoreactive for galactose-specific lectin (Galectin)-3 (formerly called Mac-2), a 

receptor involved in the activation of myelin phagocytosis (Rotshenker, 2009). The 

microglia were most abundant one day following injury, followed by a decrease up to 28 

days after TBI, but still were significantly elevated in TBI brains compared to sham control 

brains (Venkatesan et al., 2010).

The benefits of phagocytosis after acute CNS injuries have been well documented. As 

mentioned above, external application of invading PMNs to OGD-treated organotypic brain 

slices dramatically enhances ischemic neurotoxicity (Neumann et al., 2008). However, 

additional application of microglia counteracted this effect by rapid engulfment of PMNs, 

followed by neuroprotection that could be abrogated by interfering with microglial PMN 

engulfment (Neumann et al., 2008). Phagocytosis of blood components by resident 

microglia and macrophages in ICH mitigates further damage (Zhao et al., 2009a). 

Accordingly, phagocytosis and subsequent hematoma resolution are associated with 

improvements in neurological recovery (Chen et al., 2017), whereas loss of phagocytosis 

exacerbates brain swelling and impedes clot resolution (Ni et al., 2016). Enhanced 

microglial phagocytosis of myelin and cell debris is also beneficial for the survival of injured 

neurons and myelin regeneration in acute SCI and TBI, thereby facilitating functional 

recovery (Rotshenker, 2003; Boekhoff et al., 2012; Redondo-Castro et al., 2013). Molecular 

mechanisms involved in microglia/macrophage-afforded phagocytosis have been widely 

studied. In this context, priming is defined as any condition or event that facilitates the 

interaction between phagocytic receptors and their targets. Priming allows the phagocyte to 

engulf its targets by exposing ligand binding sites. This exposure endows phagocytic 

receptors with increased mobility in the plane of the membrane, thereby enhancing the 

probability of encountering target particles (Freeman and Grinstein, 2014). A large number 
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of inflammatory stimuli promote the transition of the integrins from a bent (closed) 

conformation to an extended (open) conformation, resulting in enhanced exposure of 

binding sites (Shattil et al., 2010). Other priming factors include G protein-coupled receptor 

ligands (Freeman and Grinstein, 2014), Toll-like receptor (TLR) ligands (Patel and Harrison, 

2008), and growth factors such as macrophage colony-stimulating factor (Kheir et al., 2005). 

After priming, specific membrane receptors on phagocytes and downstream signaling 

pathways contribute to the recognition and engulfment of target microparticles. In general, 

there are two functionally distinct types of receptors—one with a high binding affinity to 

foreign microbial pathogens, such as TLRs, and one that recognizes apoptotic cellular 

substances, such as triggering receptor expressed on myeloid cells 2. During post-injury 

debris clearance, the latter receptor is more instrumental. Other receptors involved in 

phagocytosis include Fc receptors (Anderson et al., 1990), complement receptors (Ross et 
al., 1992), scavenger receptors (Patel et al., 2004), pyrimidinergic receptor P2Y (Koizumi et 
al., 2007), G-protein coupled receptors (Riyahi et al., 2011; Dustin, 2016) macrophage 

antigen complex 2 (Rotshenker, 2009), and mannose receptors (Ezekowitz et al., 1990). 

Furthermore, different surface receptors on phagocytes may be involved in tethering 

(recognition and binding of cell corpses) and tickling (internalization and activation of 

downstream signaling) processes. Phosphatidylserine is a dominant “eat me” signal when 

cells undergo apoptosis (Fadok et al., 1998). The recognition of phosphatidylserine is 

mediated by at least one tethering and one internalization receptor (Henson and Hume, 

2006). For example, integrins and CD36 are involved in tethering, while Gas and protein S 

are involved in tickling (Majai et al., 2007). Tethering and tickling lead to activation of Rac 

pathway, which mediates the uptake of dead cells (Majai et al., 2007).

In the context of acute CNS injuries, CD36 and Galectin-3 are the most important and 

widely studied phagocytosis receptors. CD36, a member of the scavenger receptors, is 

involved in the recognition and removal of modified lipoproteins, apoptotic cells, and 

pathogens (Canton et al., 2013). Upregulation of CD36 during the acute (3d) and recovery 

(7d) periods has been documented in mouse models of ischemia and is correlated with 

higher phagocytic indices in brain immune cells (Woo et al., 2016). Furthermore, CD36 

deficiency compromises microglial phagocytosis of RBCs and slows hematoma absorption 

(Fang et al., 2014). The importance of CD36 is confirmed by the observation that addition of 

anti-CD36 antibodies to human macrophages reduces phagocytosis of apoptotic neutrophils 

by 50% (Fadok et al., 1998). In addition, CD36 is involved both in tethering and ligand 

internalization processes. Specifically, CD36 functions as an integrin-associated protein and 

cooperates with integrins to accomplish tethering (Majai et al., 2007). During ligand 

internalization, CD36 forms a heteromeric complex with β1 and/or β2 integrins and the 

tetraspanins CD9 and/or CD81, thereby linking to the adaptor Fc receptor γ, which bears an 

immunoreceptor tyrosine activation motif. By coupling to Fc receptor γ, CD36 is able to 

engage the Src-family kinases and Syk, which in turn drives the internalization of CD36 and 

its bound ligands (Majai et al., 2007). Finally, Galectin-3 may activate phagocytosis by 

upregulating and prolonging KRas-GTP-dependent phosphatidylinositol 3-kinase activity 

(Rotshenker, 2009).

During phagocytosis, high levels of pro-oxidative molecules and pro-inflammatory 

mediators are produced and may adversely affect the survival of phagocytes (Zhao et al., 
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2007; Yi et al., 2008). Thus, resolution of inflammation and oxidative burden facilitate 

phagocytosis by preventing injury to microglia/macrophages. For example, upregulation of 

the antioxidant enzyme catalase is known to promote phagocytosis (Donnan et al., 2008).

5.2.2 PPARγ promotes clearance of debris and infiltrating cells—The functional 

role of PPARγ in microglia/macrophage-afforded phagocytosis has been widely studied. 

PPARγ is dramatically upregulated during the maturation of human macrophages from 

monocytes, a process that endows macrophages with more efficient phagocytic capacities 

(Majai et al., 2007). PPARγ agonists can upregulate microglial phagocytosis of 

Staphylococcus aureus in bacterial brain abscesses (Kielian et al., 2008). In the brains of 

Alzheimer’s patients, PPARγ activation is associated with elimination of Aβ by microglia 

and a reduction in the oxidative burden in damaged tissue (Yamanaka et al., 2012). 

Consistent with these findings, PPARγ deficiency in macrophages delays skin wound 

healing in mice by impairing apoptotic cell clearance (Chen et al., 2015). Furthermore, the 

application of PPARγ antagonists during the differentiation process impairs macrophage-

mediated phagocytosis of apoptotic cells, which may be partly attributed to downregulation 

of CD36 (Majai et al., 2007).

PPARγ-afforded promotion of phagocytosis may be attributed to three factors. First, PPARγ 
may promote inflammation-resolving M2 polarization in microglia/macrophages. Although 

somewhat controversial, phagocytosis is more often considered an M2 characteristic (Tang 

and Le, 2016). Second, PPARγ favors the resolution of inflammation and may therefore 

reduce proinflammatory cytokines such as IFN-γ, IL-1β, and TNF-α, which could impair 

the phagocytic activity of microglia (Koenigsknecht-Talboo and Landreth, 2005). Third, 

PPARγ reduces oxidative stress, which also serves to promote phagocytosis (Donnan et al., 
2008).

A number of studies support the view that PPAR-γ activation in microglia and macrophages 

promotes phagocytosis after CNS injuries. In models of ICH, the activation of PPARγ 
increases the clearance of blood deposited in primary microglia cultures and in animals, 

thereby improving hematoma resolution (Heppner et al., 2015). PPARγ activation is 

followed by upregulation of catalase and CD36 by phagocytes (Donnan et al., 2008) and by 

inhibition of NF-κB in ICH, all of which serve to boost phagocytosis. Similarly, PPARγ 
activation with RGZ induces CD36 expression in resident microglia in a mouse model of 

permanent focal cerebral ischemia, increasing the ability of microglia to engulf dead 

neutrophils (Ballesteros et al., 2014). The effects of PPARγ activation on phagocytosis in 

SCI or TBI are not known.

5.3 Neurogenesis

5.3.1 An introduction on neurogenesis in the adult brain after CNS injury—For 

many years, it was believed that the brain is extremely limited in its capacity for self-renewal 

(Streilein, 1995). However, we now know that the adult CNS undergoes active self-repair 

and neurogenesis after CNS injuries, a finding that holds immense translational potential. 

Two neurogenic niches containing neural stem/progenitor cells (NSCs/NPCs) have been 

identified in the adult brain—the subventricular zone (SVZ) of the lateral ventricles and the 
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subgranular zone (SGZ) of the hippocampal dentate gyrus (Lindvall and Kokaia, 2015). 

Neurogenesis in these two niches follows different patterns. Putative NSCs within the SVZ 

are known as type B cells and are intermixed with ependymal cells. They are characterized 

by the astrocytic marker glial fibrillary acidic protein (GFAP) and astrocyte-like processes. 

Once quiescent type B cells are activated, they proliferate and begin to express NPC markers 

such as nestin. At this stage, they are called transit amplifying precursors or type C cells. 

After three proliferative cycles, type C cells transform into neuroblasts (type A cells) that 

migrate towards the olfactory bulb along the rostral migratory stream and differentiate into 

mature neurons while integrating into olfactory circuits (Doetsch et al., 1997; Quinones-

Hinojosa et al., 2006). Neurogenesis in the SGZ originates in another type of NSCs (type I 

cells) that share properties with radial glial cells and express GFAP and nestin. When 

activated, type I cells transform into NPCs (type IIa cells) that further develop into type IIb 

cells and express markers of neuroblasts such as doublecortin. Type IIb cells then generate 

type III neuroblasts and develop dendrites. Notably, approximately 80% of type III cells die 

of apoptosis within 2 weeks (Arvidsson et al., 2002), and those that survive mature into 

NeuN-expressing neurons (Eriksson et al., 1998; Seri et al., 2001). These newly generated 

neurons form synaptic connections with pyramidal cells of the hippocampus, which play a 

critical role in cognitive recovery after CNS injury (Seri et al., 2001; Ramirez-Amaya et al., 
2006; Clelland et al., 2009; Sahay et al., 2011).

During the past two decades, novel neurogenic niches other than in the SVZ and SGZ have 

been reported, including in the hypothalamus (Kokoeva et al., 2005; Xu et al., 2005; Migaud 

et al., 2010; Pierce and Xu, 2010), striatum, neocortical areas, amygdala (Bernier et al., 
2002; Dayer et al., 2005; Luzzati et al., 2006), and brainstem (Bauer et al., 2005). 

Neurogenesis in the spinal cord after SCI is more elusive. Spinal cord ependymal cells may 

act as NSCs (Duan et al., 2016), but develop into oligodendrocytes and astrocytes and not 

into neurons, although their NSC potential is preserved in vitro (Johansson et al., 1999; 

Meletis et al., 2008; Barnabe-Heider et al., 2010). One explanation is that the spinal cord 

provides a non-permissive microenvironment that specifically blocks neuronal lineage 

differentiation, unlike the brain (Lee-Liu et al., 2013). However, these ideas await 

confirmation.

Stroke and TBI both trigger the proliferation, differentiation, and migration of neurons in the 

SVZ and SGZ (Arvidsson et al., 2002; Masuda et al., 2007; Shen et al., 2008), suggesting a 

link between CNS injury and neurogenesis. However, whether neurogenesis is vital for CNS 

recovery after injury is not clear. When neurogenesis is abolished by ablation of 

doublecortin-expressing neuroblasts in mice subjected to MCAO, infarct sizes and 

behavioral deficits are increased at 24 h post-injury (Jin et al., 2010a). Furthermore, these 

effects last up to 12 weeks after MCAO, suggesting a crucial role for neurogenesis in long-

term recovery (Wang et al., 2012a). A similar phenomenon is also evident in models of TBI 

with selective ablation of nestin-expressing NPCs (Blaiss et al., 2011).

5.3.2 PPARγ in neurogenesis—Only a few studies have focused on the role of PPARγ 
in neurogenesis, and none of them involve CNS injuries. Nevertheless, PPARγ enables 

normal brain development and global knockout is embryonically lethal (Wada et al., 2006). 

This has led to the speculation that PPARγ is indispensable in adult neurogenesis. In this 
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section, we will discuss PPARγ-dependent neurogenesis in physiological and disease 

conditions, and make some inferences about its neurogenic role in CNS injuries. A role for 

PPARγ in neurogenesis is consistent with genomic studies confirming the presence of 

PPREs in gene clusters that control cell survival and differentiation (Lemay and Hwang, 

2006; Heinaniemi et al., 2007).

PPARγ is essential in normal stem cell proliferation and neural differentiation in vitro. Wada 

et al. reported a decrease in cell growth rate in cultured PPARγ+/− and PPARγ−/− NSCs 

(Wada et al., 2006). In PPARγ+/+ NSCs, cell proliferation was enhanced by RGZ and 

reduced by GW9662. PPARγ agonists can also promote neural differentiation. For example, 

15d-PGJ2 promotes the differentiation of embryonic midbrain cells into dopaminergic 

neurons (Park et al., 2004b). Similarly, PGZ promotes neural differentiation and neurite 

outgrowth in SH-SY5Y neuroblastoma cells (Park et al., 2004b). Taheri et al. reported an 

increase in PPARγ mRNA in both the NPC stage and neural cell stage during the 

differentiation of cultured human embryonic stem cells (hESCs) (Taheri et al., 2015). 

Notably, NPC markers are decreased by GW9662, but not increased by 15d-PGJ2.

The effects of PPARγ on neurogenesis have been examined in some disease models. During 

an exploration of hyperglycemia-induced decreases in neurogenesis, advanced glycan end 

products (AGEs) were found to inhibit NSC proliferation and differentiation, and this was 

associated with decreased PPARγ expression (Wang et al., 2009). Exogenous RGZ 

administration rescued AGE-induced repression of NSC proliferation by inhibition of 

caspase-dependent NSC apoptosis. However, RGZ failed to prevent AGE-mediated 

inhibition of NSC differentiation (Wang et al., 2009). Intraperitoneal delivery of LPS (5 

mg/kg) decreases hippocampal neurogenesis by 50% and this is associated with memory 

impairments that are reversed by oral intake of RGZ, indicating a protective role of PPARγ 
against inflammation-induced suppression of neurogenesis (Ormerod et al., 2013). However, 

conflicting results were reported during congenital cytomegalovirus (CMV) infection of the 

CNS (Rolland et al., 2016). In that study, CMV infection was associated with increased 

PPARγ expression and activity, as well as increases in 9-hydroxyoctadecadienoic acid, a 

known PPARγ agonist. PPARγ activation with 15d-PGJ2 led to impaired neurogenesis in 

uninfected NSCs, and treatment of NSCs with 9-hydroxyoctadecadienoic acid decreased 

NSC neural differentiation. Consistent with these findings, treatment of CMV-infected NSCs 

with the PPARγ inhibitor T0070907 restored normal differentiation rather dramatically. 

These results suggest complex effects of PPARγ on neurogenesis, and possibly distinct roles 

in various diseases and experimental models. Although PPARγ is significantly increased by 

CNS injuries such as cerebrovascular events and trauma, its effects on neurogenic processes 

remain unknown and need further exploration.

5.4 Remyelination

5.4.1 An introduction on remyelination during CNS repair—Remyelination refers 

to the progressive restoration of the entire myelin sheath around demyelinated axons, a 

process that reinstates saltatory conduction (Smith et al., 1979) and resolves functional 

deficits (Jeffery and Blakemore, 1997; Liebetanz and Merkler, 2006). Remyelination is 

characterized by the formation of thinner myelin with shorter internodes compared to 
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sheaths that are not injured (Blakemore, 1974). The g ratio refers to the circumference of the 

axon divided by the circumference of the myelin sheath, and is used to assess the degree of 

remyelination (Franklin and Ffrench-Constant, 2008). Generally, remyelination consists of 

three phases: OPC proliferation, OPC recruitment, and OPC maturation. There is consensus 

that OPCs serve as the major origin of newly generated oligodendrocytes post-demyelination 

(Dawson et al., 2003). First, retroviral and autoradiographic tracing studies indicate that 

remyelinating oligodendrocytes originate from dividing cells in normal adult white matter, 

which are likely to be adult OPCs, although this awaits confirmation (Gensert and Goldman, 

1997; Carroll et al., 1998). Second, transplanted OPCs remyelinate demyelinated axons 

quite effectively (Groves et al., 1993). OPCs repopulate focal demyelination sites, where 

both oligodendrocytes and OPCs have died, prior to the appearance of new 

oligodendrocytes; these temporal and spatial patterns strongly suggest that OPCs are indeed 

the source of remyelinating cells (Sim et al., 2002). Fourth, cells transiently express OPC as 

well as oligodendrocyte markers at the onset of remyelination (Fancy et al., 2004). In 

response to injury, microglia, astrocytes, and other inflammatory cells become activated and 

produce mitogenic factors and pro-migratory factors, including platelet-derived growth 

factor and basic fibroblast growth factor, which switch OPCs from a quiescent state to a 

regenerative phenotype and recruit OPCs to the demyelination zones (Franklin and Ffrench-

Constant, 2008). In the final phase of remyelination, the recruited OPCs differentiate into 

myelinating oligodendrocytes and ensheath the demyelinated axons.

The adult brain undergoes remyelination and white matter repair after CNS injuries, but only 

to a very limited extent. In the closed-skull impact mouse model of TBI, newly generated 

oligodendrocytes appear as early as 3 days post-injury (Mierzwa et al., 2015). 

Remyelination is evident within 1 week post-TBI and prolonged for at least 6 weeks. Similar 

patterns of post-injury remyelination have been reported in animal models of ischemic 

stroke (Mandai et al., 1997), SCI (Harrison et al., 1975; Tripathi and McTigue, 2007; Hesp 

et al., 2015), and ICH (Joseph et al., 2016). Remyelination failure can result from failure of 

OPC recruitment or failure of differentiation. Experimental and clinical data suggest that 

differentiation is the most vulnerable phase of remyelination (Franklin and Ffrench-

Constant, 2008).

5.4.2 PPARγ in remyelination (703)—As mature oligodendrocytic processes form the 

myelin sheath, promoting NSC differentiation toward the mature oligodendrocytic lineage 

might directly increase myelination. PPARγ agonists can augment NSC differentiation into 

mature oligodendrocytes (Kanakasabai et al., 2012; Wan Ibrahim et al., 2013), although the 

underlying mechanisms remain unknown (Figure 5A).

The effects of PPARγ in OPC maturation are better studied than its effects on NSCs (Figure 

5B). Recent findings demonstrate that PPARγ activation positively contributes to 

differentiation of multiple lines of OPCs. Studies on B12 glioma-derived cells and primary 

rat spinal cord OPCs show that PPARγ activation promotes the commitment of OPCs 

toward differentiation into myelin basic protein-expressing (MBP+) mature oligodendrocytes 

(Roth et al., 2003). B12 cells express all three PPAR isoforms but only respond to PPARγ 
agonists. Activation of PPARγ in B12 cells arrests cell proliferation and increases process 

extension (Roth et al., 2003). Furthermore, treatment with PGZ drives primary rat OPCs to 
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differentiate and mature into oligodendrocytes (Bernardo et al., 2009; De Nuccio et al., 
2011). Our recent work demonstrates that RGZ enhances OPC proliferation and increases 

the number of newly-generated mature oligodendrocytes after MCAO (Han et al., 2015). 

Nonspecific PPARγ activators such as statins have also been studied for their effects on 

OPCs. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and activate 

PPARγ through depletion of geranylgeranyl-pyrophosphate and subsequent RhoA-Rho 

kinase inactivation (Sim et al., 2008; Paintlia et al., 2010). Statins contribute to activation of 

PPARγ and directly promote survival and differentiation of rodent and human OPCs in vitro 
and increase myelin repair in the EAE model of multiple sclerosis in vivo (Paintlia et al., 
2005; Miron et al., 2007; Paintlia et al., 2008).

As the ability of PPARγ to promote OPC maturation has been established, the mechanisms 

underlying this process are also being examined. First, PPARγ is heavily involved in cellular 

lipid metabolism, and lipid metabolism is of vital importance to oligodendrocyte process 

formation. PPARγ agonists can promote rat B12 cell maturation by enhancing the formation 

of myelin-rich lipid plasmalogen, as shown by an increase in alkyl-dihydroxyacetone 

phosphate synthase (Roth et al., 2003). Second, PPARγ activation blunts the oxidative stress 

arising from rapid lipid metabolism during OPC differentiation. As mentioned above, recent 

studies suggest that PPARγ activation upregulates expression of the antioxidant enzymes 

Cu/Zn SOD and catalase and maintains the equilibrium of the glutathione redox systems, 

which would mitigate the oxidative stress generated from OPC maturation-related 

metabolism (Bernardo et al., 2009). Third, PPARγ activation enhances the function of 

mitochondria during OPC maturation. Repeated administration of PPARγ agonists 

accelerates primary rat OPC maturation and expression of myelin basic protein by increasing 

activity of the mitochondrial respiratory chain complex IV and upregulating ADP-induced 

Ca2+ waves (De Nuccio et al., 2011). In sum, PPARγ appears to facilitate the survival and 

differentiation of OPC cells and enhance their antioxidant defenses and mitochondrial 

function (Bernardo et al., 2009).

Despite the abovementioned evidence that PPARγ favors remyelination after injury, negative 

effects of PPARγ agonists on OPCs have also been observed. For example, 15d-PGJ2 

treatment can induce apoptosis in early-stage mouse OPCs (Xiang et al., 2007). Statins can 

also impede oligodendrocyte maturation and myelin formation in vitro (Miron et al., 2007; 

Klopfleisch et al., 2008). Statins may also hamper intrinsic myelin repair and maintenance in 

the cuprizone-induced animal model of demyelination (Klopfleisch et al., 2008; Miron et al., 
2009). Furthermore, PPARβ, but not PPARγ, was shown to promote OPC differentiation in 

primary mixed glial cell cultures enriched in oligodendrocytes (Saluja et al., 2001; Jana et 
al., 2012). Activation of PPARβ also protects primary human oligodendrocytes against 

serum deprivation-induced cell death (Jana et al., 2012). However, crosstalk between PPARβ 
and PPARγ may enhance OPC differentiation in undifferentiated C6 glioma cells (Leisewitz 

et al., 2008). Therefore, further studies are needed to resolve these controversies and 

decipher the precise role of PPARγ in regulating developmental processes in cells of the 

oligodendrocyte lineage. Furthermore, as gene transcriptional activation is a subtle but 

dynamic process, there needs to be greater resolution of the temporal kinetics of gene 

expression after PPARγ activation. Other unresolved issues include identification of the 
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stage of OPC differentiation during which agonist-mediated PPARγ activation might be 

most effective, as well as the pharmacokinetics and optimal dosages of PPARγ agonists.

5.5 BBB repair and angiogenesis/revascularization

Angiogenesis plays important roles in tissue repair and functional recovery after various 

CNS injuries. Extensive studies have shown that newly formed microvessels improve tissue 

microperfusion around the ischemia boundary zone and promote functional recovery after 

stroke (Zhang et al., 2000; Zhang and Chopp, 2002). PPARγ is highly expressed in vascular 

walls, including the endothelial lining, and is one of major transcription factors involved in 

the regulation of cerebrovascular structure and function (Culman et al., 2007; Beyer et al., 
2008; Halabi et al., 2008; Hamblin et al., 2009). Beyer et al. examined vascular tone and 

function using heterozygous knock-in mice expressing dominant negative-PPARγ (Beyer et 
al., 2008). They reported that endothelium-dependent agonist-induced dilation in cerebral 

blood vessels was significantly impaired in dominant negetive-PPARγ mice. The authors 

also concluded that interruptions in PPARγ signaling result in endothelial dysfunction 

through oxidative stress and cause vascular hypertrophy and inward remodeling.

Chu et al. investigated the effects of the PPARγ agonist RGZ on angiogenesis and 

neurological recovery after cerebral ischemia in the rat MCAO model (Chu et al., 2006). The 

authors reported that RGZ-pretreated rats present not only with smaller infarct volumes but 

also with fewer initial neurologic deficits and superior recovery from day 1 through 5 weeks 

after cerebral ischemia. Notably, RGZ pretreatment also causes significant increases in BrdU
+ proliferating endothelial cells in the lesioned hemispheres. Furthermore, RGZ increased 

cerebral microvessels density, vascular branch points, and vascular surface areas in the 

ipsilateral hemisphere. The authors conclude that eNOS upregulation may be the main 

mechanism of RGZ-promoted angiogenesis after focal cerebral ischemia. Another recent 

study evaluated the role of PPARγ in regulating human pulmonary microvascular 

endothelial cell migration and angiogenesis (Vattulainen-Collanus et al., 2016). In that study, 

loss of PPARγ attenuated angiogenesis and migration capacity of the cells through E2F 

transcription factor 1-mediated Wnt signaling. Using in vivo angiogenesis assays with 

subcutaneously placed matrigel plugs, Vattulainen-Collanus and colleagues also reported 

reductions in angiogenesis and mobilization of endothelial progenitor-like cells from the 

bone marrow in Tie2Cre-PPARγflox/flox mice with ablation of PPARγ in endothelial cells 

and osteoclasts (Vattulainen-Collanus et al., 2016).

Taken together, these findings suggest that PPARγ activation enhances angiogenesis and 

functional recovery in rodent ischemic stroke models. The genomic studies discussed in 

Section 2.4 are consistent with the findings presented here, as they reveal PPREs in genes 

involved in Wnt signaling, cell growth and maintenance, and BBB integrity (Lemay and 

Hwang, 2006; Heinaniemi et al., 2007).

6. PPARγ protects against comorbidities

Comorbidities are well known to exacerbate CNS injuries, either by precipitating their onset, 

or by directly accelerating the underlying pathologic process. Fortunately, many 

comorbidities, such as hyperglycemia, hypertension, atherosclerosis, and infection are 
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clinically modifiable. Modification of these comorbidities confers protective effects against 

CNS injury and alleviates disease severity, and is therefore practiced as standard clinical 

management. Notably, PPARγ serves as a target of many of these comorbid diseases. In this 

section, we will discuss the effects of modifiable comorbidities commonly associated with 

CNS injuries, as well as clinical and preclinical evidence favoring their PPARγ-dependent 

modulation.

6.1 Hyperglycemia

Metabolic syndrome and diabetes mellitus (DM) are known risk factors for stroke. The 

prevalence of hyperglycemia is 20%–50% in acute stroke, even in the absence of DM (Yu et 
al., 2015). The second European Cooperative Acute Stroke Study (ECASS-II) followed 748 

stroke patients and reported that blood glucose levels were associated with almost all 

outcomes, including 7-day neurological improvements, 30-day favorable functional 

outcomes, 90-day negligible dependence, all-cause mortality within 90 days, and 

hemorrhagic transformation within the first 7 days (Sugawara et al., 2001). Concurrent 

hyperglycemia is an independent predictor for stroke outcome (Ghajar, 2000; Sarafidis and 

Lasaridis, 2006). According to the American Stroke Association guidelines, a target of <300 

mg/dL blood glucose should be met (Writing Group et al., 2016). Even non-cardiovascular, 

traumatic CNS injuries such as TBI and SCI are associated with hyperglycemia and severe 

TBI patients exhibit higher blood glucose levels compared with mild TBI patients (Elder et 
al., 2004; Jeremitsky et al., 2005). Hyperglycemia is positively correlated with mortality 

rate, and blood glucose levels are predictive of worse neurological outcomes (Jeremitsky et 
al., 2005; Uruno et al., 2011; Bevers et al., 2017). Similar detrimental effects of 

hyperglycemia in SCI have been reported in mouse models as well as in humans (Writing 

Group et al., 2016). Although impaired neurovascular coupling and reduced cerebral 

perfusion have been reported in DM patients (Duarte et al., 2015), it is not known with 

certitude if hyperglycemia is the cause of detrimental effects in the clinic, or if it is a stress 

response and/or biomarker of injury (Tsai et al., 2009).

TZD treatment is part of the standard of care for DM patients, as it significantly lowers 

blood glucose levels without elevating the risk of hypoglycemia (Nathan et al., 2009). Not 

surprisingly, stroke preventive effects of TZD have also been reported. For example, the 

“Insulin resistance intervention after stroke trial of PGZ” (IRIS trial) (Inzucchi and Furie, 

2016) revealed significant secondary stroke prevention, and this effect was more pronounced 

for the lacunar subtype. It is worth noting that delivery of insulin (and not oral 

hypoglycemics) is the drug of choice in the acute phase of stroke (Nakayama et al., 1994). A 

metaanalysis suggests that administration of PPARγ agonists reduces the incidence of 

primary stroke and recurrent stroke (Liu and Wang, 2015). However, RGZ was reported to 

increase the risk of heart failure, according to the “Rosiglitazone evaluated for 

cardiovascular outcomes in oral agent combination therapy for type 2 diabetes” (RECORD) 

trial (Home et al., 2009), which led to dispensing restrictions by the U.S. Food and Drug 

Administration (FDA) in 2010. However, after further discussion at the joint meeting of the 

Endocrinologic and Metabolic Drugs Advisory Committee and the Drug Safety and Risk 

Management Advisory Committee in 2013 (FDA, 2013), the RECORD trial was deemed to 

suffer from bias in identification of cardiovascular events and the restrictions were lifted in 
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2015 (FDA, 2015). There have been no clinical trials on use of PPARγ agonists in TBI or 

SCI patients thus far.

6.2 Hypertension

Hypertension is the most frequent comorbidity associated with CNS injuries (Abraham et 
al., 2016; Qureshi and Qureshi, 2017). Hypertension is evident in up to 70% of stroke 

patients (Staessen et al., 2003). Hypertensive patients experience a two-fold increase in the 

lifetime risk of stroke compared to subjects with normal blood pressure (BP <120/80 

mmHg) (Writing Group et al., 2016). PPARγ has been shown to downregulate BP. Aside 

from metabolic abnormalities, loss-of-function mutations of PPARγ in humans can lead to 

severe hypertension (Barroso et al., 1999; Agostini et al., 2006; Auclair et al., 2013). 

Consistent with these clinical findings, a two-fold increase in PPARγ expression levels can 

decrease BP by ~2.8 mmHg in rodents (Tsai et al., 2009). The angiotensin II pathway is 

known to result in hypertension and might be the target of PPARγ. TZDs have been shown 

to decrease the transcription of angiotensin II receptor type 1 in vascular smooth muscles in 
vivo (Sugawara et al., 2001), in agreement with in vitro findings that PGZ suppresses 

angiotensin II-induced aldosterone expression (Uruno et al., 2011). Accordingly, activation 

of PPARγ with PGZ can attenuate angiotensin II-induced hypertension (Yu et al., 2015). 

Other mechanisms underlying PPARγ-mediated modulation of BP may include maintaining 

calcium levels, inhibiting smooth muscle cell proliferation, stabilizing renal function, and 

attenuating sympathetic over-activation (Sarafidis and Lasaridis, 2006). These findings 

indicate that PPARγ activation might be a therapeutic approach to lowering BP to prevent 

the development of stroke. However, BP control during acute stroke is challenging, as both 

high BP and low BP are independent prognostic factors for poor stroke outcomes (Willmot 

et al., 2004). Furthermore, in TBI and SCI, intracranial pressure, rather than systemic BP, is 

one of the most important prognostic factors (Ghajar, 2000), and does not appear to be under 

direct regulation of systemic BP.

6.3 Dyslipidemia and atherosclerosis

Abnormality in lipid metabolism is an independent risk factor for stroke. Increases in 

triglycerides are associated with both ischemic stroke and ICH (Nakayama et al., 1994; Ott 

et al., 1999). In contrast, levels of high-density lipoprotein-cholesterol (HDL-C), a reverse 

cholesterol transporter, are negatively correlated with stroke risk, and this effect is even more 

pronounced in thromboembolic stroke (Curb et al., 2004; Huxley et al., 2011). In contrast, 

low-density lipoprotein (LDL) and peripheral macrophages may directly mediate 

atherosclerosis (AS) formation. Excessive oxidized LDL deposition induces accumulation of 

macrophages in the vascular wall. Macrophages engulf detrimental lipoproteins and convert 

into foam cells (Chistiakov et al., 2016). Activated foam cells within the sclerotic plaques 

secrete various cytokines, such as IL-6 and TNF-α, which lead to endothelial malfunction 

(Ait-Oufella et al., 2011), smooth muscle cell migration and proliferation, as well as 

extracellular matrix production, which may constrict the diameter of the vascular lumen 

(Wahl et al., 1997). In late stages of AS, excessively narrow arteries limit cerebral blood 

flow. In addition, macrophages produce extracellular proteases, such as MMPs, which can 

rupture plaques (Gough et al., 2006), thereby leading to thrombotic stroke (Mughal et al., 
2011).
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PPARγ expression is high in macrophages within AS plaques (Wilson, 2010). PPARγ may 

regulate dyslipidemia and AS by modulating macrophage behavior in a number of ways. 

First, PPARγ promotes clearance of lipid deposition. In apolipoprotein E-knockout mice fed 

a high-fat diet, TGZ attenuated fatty streak lesion formation and increased HDL-C levels, 

and this was associated with increased CD36, the scavenger receptor that mediates LDL 

phagocytosis (Chen et al., 2001). Second, PPARγ prevents excessive engulfment of LDL, 

thereby reducing macrophage activation. This view is supported by an elegant study showing 

that, although RGZ cannot inhibit foam-cell transformation induced by LDL in vitro, it can 

promote cholesterol efflux from macrophages via over-expression of the gene encoding 

ABCA1 (Chinetti et al., 2001). Third, PPARγ inhibits macrophage-mediated release of 

inflammatory cytokines in both rodents and humans (Li et al., 2000). PPARγ agonists RGZ 

and GW7845 strongly inhibit AS development in LDL receptor-deficient mice, and this is 

associated with decreased TNF-α (Li et al., 2000). Consistent with these findings, RGZ 

administration in non-diabetic patients was associated with decreased inflammatory markers 

and adipokines, although no changes in HDL-C and total cholesterol levels were observed 

(Samaha et al., 2006). Finally, PPARγ mediates growth arrest in vascular smooth muscle 

cells (Bruemmer et al., 2003a; Bruemmer et al., 2003b), which may serve as another 

mechanism whereby PPARγ inhibits AS, although this awaits confirmation.

6.4 Renal dysfunction

Renal dysfunction is a common comorbid disease associated with CNS injury and is a risk 

factor for both ischemic stroke and ICH. Renal dysfunction is apparent in up to one-third of 

stroke patients and significantly increases mortality (Rowat et al., 2014). In patients with 

ICH, renal dysfunction is associated with larger lobar hematomas and poorer outcomes 

(Molshatzki et al., 2011). In TBI, acute renal failure is one of the most common and serious 

complications, with incidence varying from 1.5% to 18.1% (Schirmer-Mikalsen et al., 2007; 

Bagshaw et al., 2008). In SCI, renal deterioration was the main cause of death until the 

introduction of methods that improve bladder emptying in the 1980s (Frankel et al., 1998). 

SCI-induced renal failure occurs mainly due to increased risk of vesicoureteral reflux and 

upper urinary tract dilation (McGuire et al., 1981). In a case-control long-term study 

conducted by Elmelund and colleagues, 26% of SCI patients eventually developed renal 

deterioration (Elmelund et al., 2017).

A number of studies demonstrate favorable kidney-protective effects of TZDs. Constitutive 

expression of PPARγ has been detected in human and rodent kidneys, predominantly in the 

medullary collecting duct (Guan et al., 1997; Yang et al., 1999). In various rodent models of 

type 2 diabetes, TZD treatment ameliorates diabetic nephropathy and improves renal 

function, aside from exerting glycemic control (Baylis et al., 2003; Okada et al., 2006). In 

accordance with preclinical studies, TZD treatment in diabetics significantly decreases 

urinary albumin excretion in patients with normoalbuminuria, microalbuminuria, or 

proteinuria (Sarafidis et al., 2010). Other than mitigating diabetic nephropathy, TZDs can 

also protect against renal dysfunction induced by cyclosporine (Chung et al., 2005), 

puromycin aminonucleoside (Zuo et al., 2012), aging (Yang et al., 2009a), and polycystic 

kidney disease (Yoshihara et al., 2011). Mechanisms underlying PPARγ-mediated renal 

protection include improved insulin resistance and glycemic control, cell-cycle-dependent 
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actions, upregulation of adiponectin expression, anti-inflammatory effects, anti-oxidative 

effects, prevention of renal lipid accumulation, lowering of BP, etc. (Yang et al., 2009b). 

However, there are no reports showing that PPARγ protects against renal dysfunction in the 

setting of CNS injury.

6.5 Infection

Infection is an established risk factor for stroke. Exposure to minor infections in the previous 

month is an independent risk factor for childhood ischemic stroke, and is evident in one third 

of cases (Hills et al., 2012). Of these cases, 80% are respiratory infections (Hills et al., 
2014). Chronic infections such as periodontitis, chronic bronchitis, and infection with 

Helicobacter pylori, Chlamydia pneumoniae, and CMV are associated with stroke, although 

the causal relationship remains unclear (Grau et al., 2010). Infection is also a common 

complication associated with ischemia, especially in the elderly, and is recognized as an 

independent predictor of poor outcomes (Wartenberg et al., 2011). Notably, stroke itself may 

induce immune depression, thereby increasing the incidence of systemic infection (Urra et 
al., 2009). In addition, infection is associated with excessive ROS generation, which may 

exacerbate neuronal loss and initiate a self-amplifying cascade of tissue destruction (Berg et 
al., 2011). Perhaps for this reason, the sepsis death cluster coincides with the so-called 

“Stroke Belt,” which refers to a region of increased stroke mortality across Mississippi, 

Alabama, Georgia, Tennessee, Kentucky, North Carolina, and South Carolina (Borhani, 

1965; Howard et al., 1995; Wang et al., 2010). This overlap may also suggest shared, 

unidentified etiology of stroke and sepsis, but this remains to be confirmed.

The effects of PPARγ in sepsis have been examined. PPARγ expression is reduced in the 

lung in a mouse sepsis model induced by LPS intraperitoneal injection, and 15dPGJ2 

improves survival 6-fold (9% to 55%) (Kaplan et al., 2005). These effects are associated 

with reduced NF-κB and increased HSP70. In another sepsis model induced by cecal 

ligation and puncture, curcumin treatment increased PPARγ expression in the liver, and 

reduced mortality and serum TNF-α levels, and these effects were reversed by the PPARγ 
inhibitor GW9662 (Siddiqui et al., 2006). As far as the underlying mechanism, the PPARγ 
agonists 15d-PGJ2, BRL 49659, and ciglitazone have been shown to desensitize 

macrophages in cultures, thereby suppressing the oxidative burst (Von Knethen and Brune, 

2001). In addition, 15d-PGJ2 and TGZ can inhibit increased NO production and IκB 

degradation induced by LPS or heat-killed Escherichia coli and Staphylococcus aureus in rat 

peritoneal macrophages (Von Knethen and Brune, 2001). Aside from macrophages, T cells 

are also targeted by PPARγ, as GW9662 inhibits T cell expression of IFN-γ by interfering 

with c-Jun activation (Cunard et al., 2004).

Whether or not the findings outlined in this section can be translated into CNS injury 

remains unknown. Furthermore, there exists some controversy, in that PPARγ ligands can 

induce some proinflammatory responses. For example, macrophagic uptake of oxidized 

LDL is strongly associated with a proinflammatory phenotype polarization, and this may be 

enhanced by PPARγ ligands (Tontonoz et al., 1998) (Section 6.3). Second, sepsis refers to a 

severe infection that disturbs systemic homeostasis. How PPARγ affects mild to moderate 
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infections remains unknown. Third, no reports have focused on the role of PPARγ against 

infections under conditions of CNS injury. Thus, there remain many gaps in the field.

7. Translational perspectives

A large body of preclinical and clinical work outlined above supports the view that PPARγ 
activation promotes functional recovery of the CNS by 1) reducing inflammation, 2) 

minimizing cell death in gray and white matter, and 3) engaging cell repair programs. A 

wide range of synthetic compounds functioning as PPAR ligands have recently been 

developed, with TZDs being the most prominent (Lalloyer and Staels, 2010). In addition, it 

seems likely that endogenous PPARγ activity is naturally increased after acute injuries to 

help restore homeostasis. Consistent with these views, a clinical study demonstrated that 

higher plasma concentrations of 15d-PGJ2, a natural PPARγ agonist, were negatively 

correlated with infarct size and positively correlated with better outcomes in patients with 

acute athero-thrombotic ischemic stroke (Blanco et al., 2005).

Although there are no clinical reports on the therapeutic effects of PPARγ agonists in the 

acute stages of cerebral ischemia, the potential effects of PPARγ agonists in stroke 

prevention and recurrent stroke risk reduction in high-risk populations have been analyzed. 

We have summarized clinical studies on the therapeutic efficacy and safety of two FDA-

approved PPARγ agonists—PGZ and RGZ—in ischemic stroke, and found that most report 

beneficial outcomes (Table 1). The results of several large-scale clinical trials favor the 

administration of PPARγ agonists: 1) the prospective PGZ clinical trial in macro-vascular 

events (PROactive), 2) insulin resistance intervention after stroke trial (IRIS), 3) RGZ 

evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes 

(RECORD), and 4) bypass angioplasty revascularization investigation in type 2 diabetes 

(BARI2D) (Table 1). Consistent with these observations, a meta-analysis also suggests that 

administration of PPARγ agonists reduces the incidence of primary and recurrent stroke 

(Liu and Wang, 2015). Compared with RGZ, PGZ seems to be more favorable, with fewer 

safety issues and superior therapeutic effects (Liu and Wang, 2015). On the other hand, some 

of the studies we reviewed failed to show significant effects of PPARγ agonists in stroke 

prevention (Table 1). Furthermore, RGZ was shown to increase the risk of cardiovascular 

events and ischemic stroke in some studies, leading to post-marketing monitoring of its 

safety (FDA, 2015). The adverse effects were mostly found among patients who were 

elderly or displayed a higher risk of developing macro-vascular diseases (Table 1). In 

addition, TZDs have been suggested to increase the risk of heart failure, particularly in type 

2 diabetics (Michalik and Wahli, 2006). An exacerbation of heart failure following PPARγ 
activation has also been reported in animal studies (Lygate et al., 2003; Xu et al., 2003). 

Nevertheless, considering all the clinical studies collectively, it appears that PGZ or RGZ 

might reduce the incidence of stroke and recurrent stroke, although the target population 

may need to be carefully selected, as the elderly and those with higher risk of macrovascular 

diseases might not benefit from such treatment. This type of selective testing of therapies 

only on the appropriate patient population is gaining acceptance, and future clinical 

treatments will likely be individualized more carefully based on pharmacogenomic 

approaches and personalized medicine (Di Sanzo et al., 2017). In addition, BBB 

permeability and pharmacokinetic-pharmacodynamic properties will need to be carefully 
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considered in order to improve the therapeutic efficacy of PPARγ agonists in CNS diseases. 

For example, women, diabetic patients, and subjects with lower body weight and higher 

serum creatinine were found to exhibit lower clearance of the TZD drug rivoglitazone 

(Rohatagi et al., 2008). For some PPARγ agonists, such as tesaglitazar, rapid absorption, 

high bioavailability and an elimination half-life of approximately 45 h were observed 

(Ericsson et al., 2004), suggesting negligible first-pass metabolism. Furthermore, brain 

penetration of PPARγ agonists such as RGZ may be impaired if they are substrates of P-

glycoprotein, a major drug efflux transporter in the BBB (Gold et al., 2010). Given the 

structural similarities of RGZ and PGZ, the passage of PGZ through the BBB may also be 

limited (Chang et al., 2015b). Thus, modifications of drug formulation, structure, or dose 

might be needed to further increase the passage of PPARγ agonists through the BBB. For 

example, the stereoselectivity of PGZ has been shown to increase its distribution in the CNS 

and improve its therapeutic efficacy in Alzheimer’s disease (Chang et al., 2015b). Another 

alternative is to boost the activation of endogenous PPARγ. For example, endogenous 

prostaglandin J2 activates PPARγ and elicits anti-inflammatory effects (Finch et al., 2017).

8. Summary

PPARγ is a widely-expressed nuclear receptor that regulates the transcription of genes 

involved in fatty acid storage, glucose homeostasis, insulin sensitivity, anti-inflammatory 

effects, redox balance, and stem cell differentiation, among other roles. PPARγ regulates 

PPREs as well as other signaling pathways to elicit neuroprotection and tissue repair. The 

products of the genes that are modified by PPARγ are found in almost every subcellular 

compartment as well as the extracellular space. The remarkable breadth of its effects makes 

PPARγ an attractive therapeutic target for many disorders, including acute brain injury. The 

activation of Nrf2 and the inhibition of NF-κB are central to the anti-oxidative and anti-

inflammatory effects of PPARγ. PPARγ can reduce expression of pro-inflammatory 

mediators such as IL-6, COX-2, iNOS, and TNF and increase expression of anti-

inflammatory mediators such as IL-10 (Chen et al., 2012), which collectively mitigate 

inflammation in a synergistic fashion. In the acute injury phase, PPARγ may protect against 

tissue damage by inhibiting neuronal death, demyelination, and BBB disruption. During the 

chronic recovery phase, PPARγ may facilitate CNS repair by promoting resolution of 

inflammation, debris clearance, neurogenesis, remyelination, and resealing the BBB. Figure 

6 lists the hypothetical mechanisms underlying the protective and reparative effects of 

PPARγ. Furthermore, PPARγ appears to protect against systemic comorbidities, such as 

hyperglycemia, hypertension, AS, dyslipidemia, renal dysfunction, and infection, all of 

which may influence the progression of brain injuries. Many unresolved questions remain, 

however, including 1) how PPARγ balances the beneficial and destructive faces of 

neuroinflammation, 2) whether PPARγ directly inhibits demyelination, 3) how PPARγ 
affects OPC recruitment and differentiation, and 4) whether PPARγ promotes neurogenesis 

and neuroplasticity. Furthermore, there are serious challenges associated with the application 

of PPARγ agonists in CNS injury conditions, and some of the effects of PPARγ agonists 

(such as TZDs) may even be PPARγ-independent, which may cloud the interpretations of 

preclinical studies. Although preclinical and clinical work supports the therapeutic potential 

of PPARγ in ischemic stroke, whether PPARγ agonists will be effective in human TBI and 
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SCI is not clear, and this gap in our knowledge is deepened by the poor predictive validity of 

some of the rodent injury models. Furthermore, PPARγ agonists such as rosiglitazone are 

associated with weight gain, edema, heart failure, and anemia (Chen et al., 2012). In this 

respect, however, PPARγ agonists are not unique—there are challenges and limitations of 

every drug available on the market today, in part due to a failure to account for the genotypic 

and phenotypic heterogeneity of human populations relative to inbred laboratory animals. At 

the least, our analysis of the clinical literature in Table 1 and the meta-analyses conducted by 

Liu and Wang specifically support the use of PPARγ agonists against primary and recurrent 

stroke in judiciously selected patient populations (Liu and Wang, 2015). Thus, we remain 

hopeful that identifying the mechanisms underlying the beneficial effects of PPARγ will 

reveal novel targets for future therapies, and that rational drug design based on PPARγ 
synthetic or endogenous ligands will lead to superior pharmacological agonists to treat 

diabetes, cardiovascular diseases, and acute brain disorders.
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Abbreviations

15d-PGJ2 15-deoxy-D12, 15 prostaglandin J2

15(S)-HETE 15(S)-hydroxyeicosatetraenoic acid

ADP adenosine diphosphate

AGE advanced glycan end product

AMPA α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

ARE antioxidant response element

AS atherosclerosis

BBB blood-brain barrier

BDNF brain-derived neurotrophic factor

CCI controlled cortical impact

CDK cyclin-dependent kinase

CGZ ciglitazone

CTL cytotoxic T lymphocyte

CMV cytomegalovirus

CNS central nervous system
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COX cyclooxygenase

DC dendritic cell

DM diabetes mellitus

EAE encephalomyelitis

FDA Food and Drug Administration

Galectin galactose-specific lectin

GFAP glial fibrillary acidic protein

GFP green fluorescent protein

GLT glutamate transporter

HDAC histone deacetylase

HDL-C high-density lipoprotein-cholesterol

HSP heat shock protein

ICH intracerebral hemorrhage

IFN interferon

IGF insulin-like growth factor

IL interleukin

iNOS inducible nitric oxide synthase

LDL low-density lipoprotein

LPS lipopolysaccharide

MBP myelin basic protein

MCAO middle cerebral artery occlusion

MCP monocyte chemotactic protein

NCoR nuclear receptor corepressor

NF nuclear factor

NGF nerve growth factor

NMDA N-methyl-D-aspartic acid

NOX nicotinamide adenine dinucleotide phosphate oxidase

NPC neural progenitor cell

NR1C nuclear receptor 1C
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Nrf2 nuclear factor erythroid 2-related factor 2

NSC neural stem cell

OGD oxygen-glucose deprivation

OPC oligodendrocyte precursor cell

PGZ pioglitazone

PMN polymorphonuclear neutrophil

PPAR peroxisome proliferator-activated receptor

PPRE peroxisome proliferator response element

RGZ rosiglitazone

ROS reactive oxygen species

RXR retinoid X receptor

SAH subarachnoid hemorrhage

SCI spinal cord injury

SGZ subgranular zone

SOD superoxide dismutase

SVZ subventricular zone

TAI traumatic axonal injury

TBI traumatic brain injury

TGF transforming growth factor

TGZ triglitazone

TLR Toll-like receptor

TNF tumor necrosis factor

Treg regulatory T cell

TZD thiazolidinedione
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Highlights

• PPARγ is a master gatekeeper of cell fate decisions

• PPARγ controls inflammation and oxidative stress and limits acute brain 

injury

• PPARγ fosters tissue repair and facilitates long-term functional recovery

• PPARγ may reduce the risk for stroke in humans

• PPARγ should be further investigated for its therapeutic potential in acute 

brain injuries
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Figure 1. 
PPARγ structure and post-translational modifications (PTMs). (A) Human PPARγ consists 

of two isoforms, PPARγ1 (477 aa) and PPARγ2 (505 aa). Like all other nuclear receptors, 

PPARγ has four functional domains: a ligand-independent activation domain, a DNA 

binding domain, a hinge domain, and a ligand-binding domain. (B) PPARγ activity is 

regulated by PTMs. Ser112 phosphorylation results in different transcriptional outcomes 

depending on the kinases involved. CDK7/9 mediated Ser112 phosphorylation leads to 

increased PPARγ activity whereas MAPK elicits the opposite effect. Lys107 SUMOylation 

is associated with increases in PPARγ activity. Ser273 phosphorylation results in decreased 

insulin sensitivity. SUMOylation of Lys395 mediates transrepression. Abbreviations: 

Mitogen-activated protein kinases (MAPKs), cyclin-dependent kinase (CDK).
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Figure 2. 
Functional patterns of PPARγ. (A) Ligand-independent repression and ligand-dependent 

transactivation. Under resting conditions, the PPARγ/RXR heterodimer is connected to co-

repressor (HDAC and NCoR), which blocks PPRE target gene transcription. After binding to 

the PPARy ligand, conformational changes lead to dissociation of the co-repressor and 

recruitment of a co-activator (e.g. TRAP220), which triggers transcription of PPRE target 

genes. (B) Ligand-dependent transrepression. Binding to its ligand leads to SUMOylation of 

PPARγ, which stabilizes the co-repressor of NF-κB, leading to blockade of NF-κB target 
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gene expression. (C) PPARγ can also inhibit NF-κB target genes by 1) mediating NF-κB 

degradation, 2) facilitating NF-κB export out of the nucleus, 3) cofactor competition with 

NF-κB, and 4) steric inhibition of NF-κB binding. Abbreviations: retinoid X receptor 

(RXR), histone deacetylase (HCAC), nuclear receptor corepressor (NCoR), thyroid 

hormone-associated protein 220 (TRAP220), peroxisome proliferator response elements 

(PPREs), ubiquitin (Ub), nuclear factor-κB (NF-κB).
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Figure 3. 
Interactions between PPARγ and Nrf2 pathways. (1) A bidirectional loop exists between 

PPARγ and Nrf2. PPARγ can upregulate Nrf2 expression and vice versa. (2) PPARγ and 

Nrf2 synergistically increase the expression of some antioxidants, including catalase, SOD, 

and GST, which have both PPRE and ARE elements in their genes. These proteins inhibit 

the generation of ROS, thereby mitigating neuroinflammation and improving debris 

clearance. (3) Microglial CD36 is regulated by both PPARγ and Nrf2. CD36 is critical for 

microglial phagocytosis and subsequent debris clearance, both of which facilitate the 

resolution of neuroinflammation. (4) PPARγ and Nrf2 synergistically inhibit NF-κB, the 

major proinflammatory pathway. Abbreviations: nuclear factor erythroid 2-related factor 2 

(Nrf2), glutathione S-transferase (GST), reactive oxygen species (ROS), superoxide 

dismutase (SOD).
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Figure 4. 
Pathophysiology of CNS injuries and summary of PPARγ effects. The acute phase of CNS 

injuries (e.g. stroke, TBI, SCI, etc.) is characterized by neuroinflammation, neuronal death, 

demyelination, and BBB disruption. In the chronic recovery phase, repair processes are 

initiated, such as resolution of inflammation, clearance of debris and infiltrating cells, 

neurogenesis, remyelination, angiogenesis, and BBB repair. Comorbidities affect the risk of 

CNS injuries, and influence the course of the injury and self-reparatory activities. PPARγ 
inhibits the detrimental effects of injuries, promotes repair, and mitigates comorbidities. 

Abbreviations: blood brain barrier (BBB).
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Figure 5. 
PPARγ promotes regeneration and maturation of cells of the oligodendrocyte lineage. (A) 

PPARγ promotes differentiation of neural stem cells (NSCs) into oligodendrocyte precursor 

cells (OPCs), and enhances further maturation of OPCs into mature, myelinating 

oligodendrocytes. (B) Signaling pathways involved in OPC maturation: (1) PPARγ enhances 

the formation of myelin components (e.g., lipid plasmalogen) by increasing ADAPS 

expression, which in turn promotes OPC process extension. (2) Rapid lipid metabolism 

results in oxidative stress and lipid peroxidation, but this is counteracted by PPARγ-

mediated upregulation of antioxidants such as catalase and Cu/Zn SOD. (3) PPARγ 
enhances mitochondrial activation by increasing activity of mitochondrial respiratory chain 

complex IV and upregulating ATP-induced Ca2+ oscillations. Abbreviations: neural stem 

cell (NSC), oligodendrocyte precursor cell (OPC), alkyl-dihydroxyacetone phosphate 

synthase (ADAPS), superoxide dismutase (SOD), reactive oxygen species (ROS), 

respiratory chain complex I, II, III, and IV, adenosine 5′-triphosphate (ATP), inositol 1,4,5-

trisphosphate (IP3), inositol 1,4,5-trisphosphate receptor (IP3R).
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Figure 6. 
Potential mechanisms underlying the CNS protective effects of PPARγ. Abbreviations: 

antioxidant response element (ARE), blood-brain barrier (BBB), bone marrow (BM), brain-

derived neurotrophic factor (BDNF), Cu/Zn superoxide dismutase (Cu/Zn SOD), 

cyclooxygenase 2 (COX-2), endothelial precursor cells (EPCs), inducible nitric oxide 

synthase (iNOS), inhibitor of kappa B (IκB), insulin-like growth factor (IGF), matrix 

metalloproteinases (MMPs), neural stem cell (NSC), nicotinamide adenine dinucleotide 

phosphate (NADPH), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), oligodendrocyte 

precursor cell (OPC), reactive oxygen species (ROS), tight junction (TJ), zona occludens 

(ZO).
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