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Abstract

This research assesses the evolution of lexical diversity in scholarly titles using a new indi-

cator based on zipfian frequency-rank distribution tail fits. At the operational level, while both

head and tail fits of zipfian word distributions are more independent of corpus size than

other lexical diversity indicators, the latter however neatly outperforms the former in that

regard. This benchmark-setting performance of zipfian distribution tails proves extremely

handy in distinguishing actual patterns in lexical diversity from the statistical noise generated

by other indicators due to corpus size fluctuations. From an empirical perspective, analysis

of Web of Science (WoS) article titles from 1975 to 2014 shows that the lexical concentration

of scholarly titles in Natural Sciences & Engineering (NSE) and Social Sciences & Humani-

ties (SSH) articles increases by a little less than 8% over the whole period. With the excep-

tion of the lexically concentrated Mathematics, Earth & Space, and Physics, NSE article

titles all increased in lexical concentration, suggesting a probable convergence of concen-

tration levels in the near future. As regards to SSH disciplines, aggregation effects observed

at the disciplinary group level suggests that, behind the stable concentration levels of SSH

disciplines, a cross-disciplinary homogenization of the highest word frequency ranks may

be at work. Overall, these trends suggest a progressive standardization of title wording in

scientific article titles, as article titles get written using an increasingly restricted and cross-

disciplinary set of words.

Introduction

From a historical and etymological point of view, article titles are closely linked to roman tituli,
meaning ‘inscriptions’ or ‘marks’ and referring to the labels hanging from the extremity of

scrolls [1]. By allowing for author or content identification without any prior unscrolling of

documents, such tituli are functionally evocative of modern scholarly article titles, as the latter
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Citation: Bérubé N, Sainte-Marie M, Mongeon P,

Larivière V (2018) Words by the tail: Assessing

lexical diversity in scholarly titles using frequency-

rank distribution tail fits. PLoS ONE 13(7):

e0197775. https://doi.org/10.1371/journal.

pone.0197775

Editor: Wolfgang Glanzel, KU Leuven, BELGIUM

Received: January 27, 2018

Accepted: May 8, 2018

Published: July 9, 2018

Copyright: © 2018 Bérubé et al. This is an open
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represent the first and increasingly only point of contact between scholars, their work, and the

scholarly community [2–15]. Indeed, due notably to the exponential growth in scholarly pro-

duction [16–21], an increasing number of scholars “are content with reading the title only of

the papers they deem interesting for their research purposes.” [13] Evidence even shows that

medical doctors sometimes make clinical decisions on the sole basis of title content [22, 23].

These research practices are closely related to the evolution of title writing in the 20th cen-

tury, characterized by an increased focus on both informativeness and attractiveness [24, 25].

On the one hand, scholarly titles have progressively been endowed with the task of clearly, con-

cisely, and accurately reflecting article content [26–31], especially “by describing its methods,

design, results or conclusion, or by revealing important contextual attributes.” [32] On the

other hand, titles play an increasing role as “attention triggers,” [33, 34] attracting readership

and increasing both article visibility and scholarly impact [35].

Both tendencies have not only increased the importance and significance of scholarly titles,

but also contributed in making them objects of scientific investigation. As testimony to this,

the number of recent studies thereon has not only grown, but also fueled the use of the term

“titleology.” [13–15, 36–47] In particluar, linguistic analysis of titles in intra-disciplinary [9, 48,

49], interdisciplinary [5, 10, 24, 29, 50–54], and intercultural [55, 56] context as well as between

academic genres [30] have shown that, regarding syntax and surface characteristics, scholarly

titles “vary and, at the time, display similarities across a number of factors and in several

dimensions, such as structure, syntactic encoding, length, wording, use of punctuation marks,

informativeness, functions, and information sequencing.” [13]

In parallel, various studies have looked onto title wording as a means to gain insights

regarding the “processes of discourse formation” [57] within disciplines and in the scholarly

community in general [34, 57–64]. Indeed, though their research activities, scholars contribute

to the formation of various disciplinary languages, processes that collectively shape the schol-

arly discourse [65] and whereof titles can give a short, condensed but adequate portait [63]. In

particular, the frequency analysis of title words has proven to be “a powerful approach to ana-

lyze the. . . development of scientific fields.” [57] It has indeed been shown that terms that rise

and decline in frequency tend to be associated with topical issues or terminologies [64, 66]. A

good example is the use of the word “tax” in economy, which became the second-most popular

substantial title term in the 50s but quickly declined afterwards [67]. A similar rise-and-fall

tendency has also been observed for research-related clichés in medical article titles (e.g. “para-

digm shift”, “out of the box”) [68]. In the case of social sciences, a comparison of word fre-

quencies within article titles in history, sociology, economics, and education found history to

use rarer terms, which often referred to people or place names [69].

Little research has however been devoted to the lexical diversity of scholarly titles. This

research gap is rather surprising, since the question as to whether scholarly discourse evolves

towards a more disparate or concentrated vocabulary is of paramount relevance and impor-

tance. At first glance, both hypotheses seem reasonable. On the one hand, the growth of schol-

arly literature, reflected notably in the increasing number of publication venues [70–73],

institutions, and researchers [74–76], suggests “that the extent of the cognitive territory of sci-

ence must be expanding,” [63] expansion which should cause a diversification of scholarly

vocabulary. On the other hand, given the fact that one of the functions of disciplinary lan-

guages is “to ensure effective transmission of knowledge by stabilizing the vocabulary,” [65],

one might suppose that such stabilization should lead to an increase in concentration of the

scholarly lexicon:
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“If different researchers work on the same set of subject-related research problems and con-

cepts, one would expect that they use, to a relatively large extent, the same words for impor-

tant concepts and problems in their specialty” [77].

To our knowledge, only one previous study addresses that specific question [63]. Using the

number of distinct noun phrases in scientific titles as a proxy for the conceptual breadth of the

articles they entitle, the author tracks the evolution of vocabulary diversity in physics, astron-

omy, and biomedicine. Following the extraction of noun phrases from the article titles of each

discipline and annual randomization of article order, this study proceeds by calculating the

number of different noun phrases within consecutive segments of 1,500 noun phrases. Results

for all three disciplines show that while the publication volume increases from a hundred- to a

thousand-fold, the number of distinct noun phrases grows “within a factor of few”, and the

fact that this rise is related but not identical to the increase in publication volume leads the

author to conclude in the “cumulative nature of science.” [63]

While this research constitutes a worthwhile contribution to the advancement of knowl-

edge, some methodological choices made in order to avoid corpus size dependency effects are

however debatable. Research in statistical linguistics has indeed shown that the use of fixed

size sampling techniques raises some issues as regards to the representativity or reliability of

the results obtained. These concerns are all the more relevant given the concomitant-but-not-

identical growth of the noun phrase lexicon and the publication volume, which hints at the

possibility of sample size effects still being at work. In light of these caveats, the purpose of the

present research is to assess the evolution of lexical diversity in scholarly article titles using a

new indicator of lexical diversity based on zipfian frequency-rank distribution tail fits. The

outline of the article is as follows: following a general presentation of lexical diversity measure-

ment, the methodological steps leading to the design, test, and comparative evaluation of our

indicator as regards to corpus size dependency are then presented. Finally, this lexical indica-

tor is used to assess the evolution of lexical concentration in scholarly article title wording on a

disciplinary basis, followed by concluding remarks and general thoughts on the prevalence

and origin of zipfian frequency-rank distributions in language.

Background: The measurement of lexical diversity

Used more or less interchangeably with the terms lexical variation, lexical variety, lexical vari-
ability, and lexical flexibility [78–80], the term lexical diversity is here defined as the extent of

vocabulary disparity within a given language sample. Conceived in this way, lexical diversity is

the exact opposite of lexical concentration: the higher the proportion of frequent words within

a language sample is, the more unbalanced the vocabulary use is, and thus the higher and the

lower lexical concentration and diversity respectively are.

Within the linguistic community, the term lexical diversity is usually preferred, as it is

deemed indicative of vocabulary quality and linguistic proficiency: “there is a general underly-

ing assumption. . . that a high lexical diversity is ‘a good thing’, an indication of a combination

of vocabulary size and the ability to use it effectively.” [81] In fact, research show that when lis-

teners can fully understand a speaker’s message, their perception of the latter’s credibility,

competence, likability, socio-economic status, and communicative effectiveness is positively

correlated to the diversity of his vocabulary [82].

Operationally, assessing lexical diversity revolves around measuring “the proportion of

words in a language sample that are not repetitions of words already encountered.” [83] To

that end, the Peirce-inspired distinction between type and token counts is often invoked [84]:

the token count of a language sample represents “the total number of words it contains,” while

Words by the tail

PLOS ONE | https://doi.org/10.1371/journal.pone.0197775 July 9, 2018 3 / 31

https://doi.org/10.1371/journal.pone.0197775


the type count consists in “the number of different words in it.” [81] Take for example the fol-

lowing sentence:

A horse is a horse; of course; of course:

In this sentence, which consists of 9 word tokens, 5 different word types are to be found: ‘a’,

‘horse’, ‘is’, of’, ‘course’. With the exception for ‘is’, which occurs only once in that sentence,

each word type is thus instantiated by two word tokens. It is precisely this imbalance between

token and type counts that allows for the quantification of lexical diversity: the higher the level

of word repetition in a language sample, the greater the imbalance, and thus the lower the

former’s lexical diversity.

The Type-Token Ratio (henceforth TTR) represents the most used and intuitive way to

measure lexical diversity on the basis of word repetition patterns. Allegedly proposed for the

first time by Johnson [79, 85], the TTR consists in expressing the number of different words

“as a proportion of the total number of words.” [81]

TTR ¼ Type Count=Token Count ð1Þ

Thus, the higher the probability that a new word token is also a new word type, the closer

the TTR is to 1, and the greater the lexical diversity of that text. Returning to the above exam-

ple, the sentence contains 9 word tokens and 5 different word types (’a’, ‘horse’, ‘is’, ‘of’,

‘course’), which means that its TTR score is 5/9 = 0.56.

At first glance, ratios such as the TTR allow for better comparability and measurement than

single quantities like token counts. However, it must be stressed that this is only true insofar as

the relationship between the quantities being compared is proportional or linear [81]. Unfor-

tunately, the relationship between type and token counts within the context of language pro-

duction does not meet this requirement: since each new word within a language sample

automatically increments the token count by 1 but only increases the type count by 1 if that

word wasn’t already present in the sample, the type count thus increases “at a slower rate than

the token count” [81], and that rate keeps getting slower as the probability of word repetition

grows with each new word.

As regards to the TTR, this property implies that the values returned by the indicator inevi-

tably falls towards zero with increasing language sample size [86]. What is called the “sample

size problem” in lexical diversity research can thus be stated as follows: given that the probabil-

ity of a new word being used in the text decreases as the latter grows longer, lexical diversity

ultimately depends on text length, which means that any attempt to measure lexical diversity

based on “the proportion of repeated words in a language sample” [87] has to properly control

for sample size on word repetition rates.

Lexical diversity and sample size

Sample size dependency issues are not unique to the TTR nor the measurement of lexical

diversity at large. On the contrary, all linguistic investigations dealing with repetition patterns

in language must properly control for sample size.

This property sets lexical statistics apart from most other areas in statistics, where an

increase in the sample size leads to enhanced accuracy and not to systematic changes in

basic measures and parameters [88].

In the case of lexical diversity measurement, a common strategy used to cope with sample

size dependency consists in finding an adequate mathematical expression of the type count
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slowdown in order to counterbalance its effect on the TTR. Various attempts were made in

this regard: some studies [89, 90] assumed that the ratio fall is proportional to the square root

of the token count and attempted to cushion the former accordingly, while others have tried to

‘linearize’ the same ratio fall through various logarithmic transformations [91–95]. However,

far from solving the sample size problem, these different attempts “merely change the shape of

the curve or alter the scale.” [81]

In fact, the only strategy that has so far successfully dealt with the sample size dependency

of the TTR or any TTR-based measure consists in controlling for sample upsizing through

fixed size sampling procedures. In this regard, two lexical diversity indicators have shown to

be relatively constant across wide ranges of sample sizes, namely the Mean Segmental Type-

Token Ratio (MSTTR) [79, 85] and the Measure of Textual Lexical Diversity (MTLD)

[81, 96, 97].

These two measures are essentially mirror images of each other, MSTTR holds the sample

size constant while calculating the mean TTR across different segments of a text, whereas

MTLD holds TTR constant (usually at.72) while calculating the average number of words

in any segment of text that remains above the TTR cutoff value [83].

Similar in kind to the method advocated in the above-mentioned study of noun phrase

diversity in scientific titles [63], such fixed size sampling procedures are not without flaws,

however. First and foremost, none of these measures “evaluates the text as a unified whole,”

[83] which raises the possibility of results obtained being an artefact of sampling.

Consider for example a text consisting of four paragraphs of equal length, with each para-

graph having an equivalently high TTR. Depending on how MSTTR and MTLD segment

the text, both indices are likely to show that the text has a high overall TTR value even if the

last three paragraphs in the text are exact copies of the first paragraph [83].

Moreover, different sampling standardization methods have been shown to lead to widely

diverging results, which “makes it difficult to compare the results from studies which use dif-

ferent standardisation procedures.” [81] Given that there is still no universally agreed way of

standardizing samples [81], this suggests that fixed size sampling techniques do not solve the

sample size dependency problem at all, but merely transform it into a sampling scheme depen-

dency problem.

While these shortcomings seems to put into question the relevance of word repetition rates

in language samples “as a reliable measure of diversity,” [81] lexical diversity measures based

on type and token counts have nevertheless led to interesting experimental and clinical results.

Indeed, in cases where language samples are of relatively small size, “empirical studies have

found lexical diversity variables to be valid as developmental indices and as theoretically moti-

vated measures in profiling a range of language disabilities.” [81]

Research and diagnostic applications of lexical diversity can be found in a wide range of lin-

guistic fields, including first and second language acquisition, linguistic input and interac-

tion, demographic influences on language performance, language impairment and delay,

aphasia, schizophrenia, stylistics, forensic linguistics, and many more [98].

However, from a mathematical standpoint, the sample size problem remains a challenge,

and the need to control for token counts becomes more problematic as language samples

grow. In order to overcome this stalemate, mathematically more sophisticated attempts were
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proposed over the years. Amongst this group of models, those based on frequency-rank distri-

butions certainly stand out in both quantity and impact. The following section gives a brief his-

torical review of these models, followed by a critical assessment of their use for lexical diversity

measurement.

Lexical diversity and frequency-rank distributions

Broadly defined, frequency distributions are organized tabulation/graphical representations of

the number of times a given value occurs in a data set. In the case of linguistic corpora, each

entry in the distribution refers to a unique word type and its value is defined by its token

count, that is, the number of times it occurs in the corpus. Frequency-rank distributions of

words represent a special kind of lexical distribution, in which all word types are ordered and

ranked “as a series of decreasing frequencies.” [99] In this way, corpora are thus strictly mod-

elled in terms of cardinal and ordinal information: each word type is reduced to an ordered

pair of numbers representing to its token count and its rank in the decreasing frequency

distribution.

The origin of word frequency-rank distributions can be traced back to the work of Jean-

Baptiste Estoup. Estoup was a specialist, eulogist, and teacher of the Duployan system, a short-

hand method based on a simple geometric phonetic alphabet, initially designed for the educa-

tion of illiterate people. Since “the prime motivation for shorthand has always been the ability

to transcribe speech verbatim at high speed,” [100] myriads of subsets of abbreviating symbols

referring to common expressions used in different professional settings [101] were grafted into

the phonetic alphabet system. Some stenographers from Estoup’s time even proposed to sup-

plement the Duployan system with subsystems of simpler and easier-to-plot symbols for the

most frequent words [102]. Radically opposed to the latter and actively committed to the

development of a single and unified shorthand system, Estoup advocated a scientific and evi-

dence-based stenographic approach, based on rational rules and empirical evidence. The theo-

retical outline of his book Gammes sténographiques [103], included if not originally, then from

the third edition onward, is exemplary in this regard: in order for learners to become speech-

quick stenographers as early as possible, Estoup extracted a word frequency distribution from

speeches of various oratory and epistolary styles in order to measure, for each successive seg-

ment of 1,000 words, the number of different words (type count), their frequency (token

count) in descending order, and their average rate of repetitiveness (equivalent to the TTR).

From a stenographical and pedagogical perspective, the rationale behind this procedure

was sound: since an improvising speaker whose speech a stenographer has to transcribe only

has a limited range of words at his disposal, repetition is bound to occur, and the fastest way to

become an efficient stenographer is to find which words are the most likely to occur, then

learn and practice their stenographic transcription [103]. From a statistical linguistic perspec-

tive, Estoup’s contributions are foundational: by generating the first known word frequency-

rank distributions, tables, and charts, the author was able to share unprecedented observations

regarding “the hyperbolic nature of the frequency of word usage,” [104] according to which a

few high-frequency word types account for the vast majority of tokens in a language sample.

Estoup’s methodological and empirical insights on hyperbolic frequency-rank word distri-

butions were furthered independently by the nuclear physicist Edward Uhler Condon and the

American linguist George Herbert Zipf. Through empirical and visual analysis of various lan-

guage samples, both researchers found out that the relationship between the frequency rank of

word types and their token count is constant over whole distributions and follows an exponen-

tially decreasing function [105, 106]. The role played by mathematical visualization in this dis-

covery, notably through the use of what seems to be the first Pareto-like charts of statistical
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linguistics, can hardly be overestimated: by plotting word type rankings and frequencies on

logarithmic scales, both authors are able to show that the inverse relationship between both

variables is surprisingly regular. Based on the slope-intercept form for linear Equations (y =

mx + b), these mathematical visualization experiences undertaken by both authors can be alge-

braically expressed as the linear Equation

logOðRÞ ¼ � s logRþ log c ð2Þ

where R corresponds to the rank of a word type in the frequency-rank lexical distribution of a

corpus, O(R) to the token count of that word type (O here stands for ‘occurrences’), −s to the

negative direction and steepness of the slope, and c the vertical intercept of the latter, which

varies according to the length of the corpus. By converting Eq (2) to non-logarithmic form, the

standard and current formulation of Zipf’s famous law is obtained:

OðRÞ ¼
c
Rs

ð3Þ

Eq (3) is of the utmost importance for the research on lexical diversity. Indeed, the diversity

of the lexical distribution of a given language sample is here given by s, which corresponds to

the steepness of the slope in the logarithmic form of the distribution given in Eq (2): the higher

the value of s, the steeper the slope, and thus the lower the lexical diversity and the higher the

lexical concentration. However, both Condon and Zipf didn’t pay much attention to this expo-

nential variable in their analysis of lexical distributions: Condon simply estimated the value of

s using an logarithmic approximation of the cth harmonic number based on the Euler-

Mascheroni constant, focusing instead on solving the Equation for c, which corresponds to the

y-intercept of the linear function in Eq (2) [105]. In Zipf’s case, the linear curve fitting done in

log-log plots were apparently made “by visual judgment only” [107]: “finding their slopes to be

ordinarily close to -1, he appears to have assumed that the “true” slope of such curves was -1.”

[107] This questionable assumption has led to the simplistic but often used form of Zipf’s law,

which states that for any corpus, “the frequency of a given word multiplied by its rank pro-

duces a number which is roughly the same as the product of rank and frequency of any other

word in the corpus.” [108]

OðRÞ ¼
c
R

ð4Þ

Despite these misinterpretations, the use of frequency-rank distribution slopes as indicators

of lexical diversity was not too long in coming. In an attempt to test the rule on word lists pro-

duced by 1,000 normal subjects in a word association test of 1.00e2 stimulus words, Skinner

found that setting s to 1.29 and c to 300 provided the best fit for the collected data [109]. How-

ever, the author noted that the rule did not apply well to the first few ranks [109]. A year later,

the psychologist John Carroll used an approach similar to that of Condon, setting the value of s
through harmonic number approximation in order to find the value of c, which the author

considers as indicative of lexical diversity. Testing his formula on language samples extracted

from word production tasks and various literary texts, Carroll found out that neither the repe-

tition rate nor the relationship between ranks and frequencies proposed by Zipf remain con-

stant across differing sample sizes [110]. Along the same lines, John W. Chotlos attempted to

find the value of s and c for 18 language samples drawn at random from 108 transcripts of chil-

dren’s writing. In the end, Chotlos found out that s had a mean value of 0.845 for all samples,

but that this mean value rose to 0.974 when the 20 best-ranked word types are removed from

all distributions. In both distributions types however, the range of values for s is rather large,

spanning from 0.796 to 0.938 and 0.808 to 1.255 respectively. Thus, in these cases as in earlier
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studies, high-ranked word types seem to follow a different regime than the other, less frequent,

word types. As for c, the author computed its value through successively longer and longer

sequential sub-samples and concluded that it was subject to sample size. On the basis of these

results, Chotlos concluded that the functional representation of the relationship between word

types and tokens “is of no simple nature.” [111]

Perhaps the most significant contributions in this matter are those made by Bruno Mandel-

brot within the theoretical framework of ‘macrolinguistics’, a term he coined to refer to “the

description and study, by statistical means, of large-scale linguistic phenomena”. [112] In vari-

ous studies of Zipf’s law, Mandelbrot investigated whether the value of s is effectively −1 and

whether the product of R and O(R) is indeed equal to c [107, 113]. Discovering that s does

indeed vary, Mandelbrot proposed and derived as early as 1951 [114, 115] a generalization of

Zipf’s law that more closely fits lexical distributions in language samples, generalization which

consisted in shifting the rank value by an amount β” [116] and resulted in what is often known

as the “Canonical Law”:

OðRÞ ¼
c

ðRþ bÞ
s ð5Þ

Mandelbrot points out that the upper frequency ranks are heavily influenced by β due to

their low rank values, which should improve the goodness-of-fit of the Equation for the initial

segments of frequency-rank distributions [117]. More importantly, Mandelbrot also relates

the value of s to lexical diversity, holding that the former’s variation is inversely proportional

to the latter and can as such “provide a useful measure of vocabulary efficiency with possible

applicability to the measurement of intelligence and the detection of certain pathological men-

tal conditions.” [112]

The mere possibility of such practical applications of was however seriously questioned by

Gustav Herdan, one of the most vivid critics of the frequency-rank distribution research pro-

gram. In his argument against the law-like status and scientific validity of both Zipf and Man-

delbrot’s formalization attempts [118], Herdan asserts that the main practical defect of both

“laws” is that they do not take into account “the possible influence of sample size upon the

parameters into account.” [118].

It is simply an empirical fact that the word frequency distribution changes its shape with

sample size, which must have the consequence of the parameters changing accordingly.

Without taking this into account, comparisons are valid only between samples of the same

size from the different languages, or different texts, and quite useless for more general

cases. Until the influence of text length (sample size) upon the parameters, and thus the

transformation formulae when changing the sample size, are known, these models are of no

practical value. [118]

Along with Mandelbrot’s attempts, many other distribution-based models were proposed

in the wake of Zipf’s work. Most notable attempts involved among others log-normal distribu-

tions [119, 120], generalized inverse Gauss-Poisson models [121], Waring and Generalized

Waring distributions [122, 123], as well as a Z-distribution generalization of earlier distribu-

tion models [91, 124–129]. In attempting to evaluate whether these indicators “remain con-

stant regardless of the length of the text being analyzed,” [87] Baayen applied them to the word

frequency distributions of various texts [88]. The results of these quantitative model compari-

sons is clear: no single model fully captures the relationship between word types and tokens;

instead, “which model is best depends on which corpus is examined.” [116]
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We find that the Yule-Simon model is the best choice for Carroll’s Alice’s Adventures in
Wonderland and Well’s War of the Worlds, that the extended Zipf’s law [(Mandelbrot’s

canonical form)] outperforms the other models for Carroll’s Through the Looking-glass,
than the lognormal model is superior for Conan-Doyle’s Hound of the Baskervilles, and that

the generalized inverse Gauss-Poisson model is preferable for the subcorpus of the British

National Corpus [88].

Moreover, Tweedie compared the performance of 12 different lexical diversity indicators

over segments of increasing length for 16 distinct corpora, from which they concluded that

“the assumption that measures of lexical richness are independent, or roughly independent of

text length is invalid.” [130] Thus, no single model has been so far able to fully capture word

frequency distributions in their complexity nor diversity.

No simple law can be the full story behind word frequencies because of the complexities of

the frequency rank / frequency curve. Therefore, comparisons between simple models will

inevitably be between alternatives that are both “wrong” [116].

These considerations certainly put the lawfulness of Zipf’s law in doubt, the latter seeming

more akin to a rough empirical tendency than a fully-fledged statistical law [131–133]. How-

ever, the fact that “word frequencies. . . show a statistically reliable structure beyond Zipf’s law

that likely will not be captured with any simple model” [116] doesn’t mean that it can’t be

modelled. Of particular relevance here is the often-reported misfit of frequent words by exist-

ing models, misfit which hints at the statistical specificity of lexical distribution heads and tails.

As support for that claim, Ferrer i Cancho [133] found that the frequency-rank distribution of

the British National Corpus follows two different exponents, namely s1� (−)1 and s2� (−)2

for ranks 1< N 2 (103, 104) and 1� N respectively [133]. While this dual regime system has

also been observed elsewhere [134], Tuldava [135] reported that the lemma distribution of A.

H. Tammsaare’s novel “Truth and Justice” follows three different regimes: a s = (−)0.7 regime

for words of frequency rank O(R)< = 30, a s = (−)1.1 regime for lemmas of rank range ]30

− 1,500[, and a s = (−)1.4 regime for words of rank O(R)> = 1,500.

In light of these findings, multiple regime models seem capable of capturing the elusive

complexity of lexical distributions. Regarding the measurement of lexical diversity, these con-

siderations are highly significant: while the search for an indicator “that would remain con-

stant regardless of the length of the text being analyzed” [87] is still pending, taking into

account the possible multiplicity of distributional regimes might allow for more rigorous and

reliable measurements. Given these observations and in a way reminiscent of those Duployan

stenographers who proposed specific shorthand subsystems for more frequent words, the pres-

ent research aims to assess lexical diversity in scientific titles using a new indicator based on

the formal distinction between zipfian frequency-rank distribution head and tail regimes.

Methodology

The python scripts and the aggregated data used for the completion of this research was col-

lected by extracting relevant information of all 31,631,340 articles contained in the Web of Sci-

ence (WoS) database from 1975 until 2014 inclusively and as of August 31th, 2016. Since the

Arts and Humanities Citation Index was created in 1975, we deemed best to start our analysis

that year, allowing our comparative assessment of lexical concentration in scholarly articles to

span a period of 40 years. All data and scripts used in order to generate the different lexical
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distributions necessary to that aim can be accessed via the Open Science Framework at

osf.io/hxrua.

Discipline assignation was done using the NSF field classification of journals used in the

Science and Engineering Indicators (SEI) reports. Since the NSF classification assigns only one

discipline to each journal, this prevents the double counting of papers. Articles published in

journals of 13 different NSF fields were grouped in 3 disciplinary groups (DG), namely Natural

Sciences & Engineering (NSE), Social Sciences & Humanities (SSH) and All Sciences (All). All

publications pertaining to Arts were excluded from the study, as their relatively low number

prevented any significant longitudinal analysis. A descriptive account of the extracted data is

given in Table 1.

Overall, while the annual article count for the whole corpus grows by more than 400% over

the [1975, 2014] period, the growth for NSE articles is 38.86% higher than that of SSH articles.

Clinical Medicine and Health respectively represent the disciplines with the highest and lowest

number of articles extracted from the WoS database, the former having more than 138 times

more articles than the latter. Health articles have however experienced the most significant

growth, their annual frequency rising by more than 1200% over that period; by contrast, the

annual article count for Humanities only increased by 189%. With regard to the different jour-

nals involved in the data collection process, Clinical Medicine and Health stand out once

again, as the database for this research contains articles from 7 times more journals of the for-

mer discipline than of the latter. Finally, article titles in the dataset contain on average a little

more than 65 characters. Article titles in NSE generally have longer character strings than in

SSH, and the average for the different disciplines and disciplinary groups fall within the ]45, 77

[ range, Humanities and Chemistry being on each end of the spectrum. Interestingly, the num-

ber of characters by article title extracted has increased by almost 35% during the period

observed, which means that article titles have gotten longer during the observed period. The

Table 1. Descriptive statistics of extracted article titles.

NSF Disciplines Articles Journals Character-Article Ratio

S Δ% S μ Δ%

NSE Biology 2.32e6 417.91 1798 71.47 38.25

Biomedical Research 3.87e6 373.43 1504 74.56 22.50

Chemistry 3.31e6 305.77 772 76.45 24.84

Clinical Medicine 8.66e6 445.73 4299 69.88 35.26

Earth&Space 1.52e6 655.40 903 64.48 47.62

Engineering&Technology 3.79e6 646.33 2445 57.01 50.03

Mathematics 9.24e5 489.53 656 49.80 24.61

Physics 3.35e6 304.43 623 60.54 23.56

SSH Health 4.57e5 1276.40 610 58.21 54.65

Humanities 9.00e5 189.46 1799 45.71 21.80

Professional Fields 8.26e5 276.25 1328 52.09 45.61

Psychology 6.41e5 289.47 668 60.34 33.98

Social Sciences 1.07e6 293.64 1691 49.70 40.01

DG NSE 2.77e7 424.51 13000 67.76 31.36

SSH 3.89e6 305.71 6096 52.12 49.57

All 3.16e7 401.18 19096 65.58 34.90

S = Sum, μ = Mean, Δ% = Difference in percentage between 1975 and 2014

https://doi.org/10.1371/journal.pone.0197775.t001
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lengthening of SSH titles is rather impressive in that regard, since the Characters-Article Ratio

for that disciplinary group almost doubles between 1975 and 2014. At the disciplinary level,

increases greater than 50% in Characters-Article Ratio scores for Engineering & Technology

as well as Health can be observed; at the other end of the spectrum, Ratio scores for Biomedical

Research, Chemistry, Mathematics, Physics, and Humanities are all below 25%. Such general-

ized lengthening of scholarly article titles does not however imply that the number of word

tokens by article also grows during the observed period; before this claim can be validated, var-

ious linguistic processing operations are required.

In order to convert character string into lists of words, all titles were tokenized using the

Treebank tokenizer [136, 137] of the Natural Language ToolKit nltk [138]. Following conver-

sion to lower case, all words were split at dashes, colons, and slashes, while leading and trailing

spaces, digits as well as punctuation symbols were removed. Finally, French, German, Spanish

and Italian stop words were removed from the lexicon.

In order to allow for preliminary analyses, annual token counts for each discipline and dis-

ciplinary group were compiled in other to assess the evolution of the number of tokens by arti-

cle as well as the number of tokens for each word type over the years. The results of these

various data collection and preprocessing operations are presented in Table 2.

Tokens-Article Ratio scores show that, over the [1975, 2014] period, the number of word

tokens by article title for the different disciplines and disciplinary groups all fall within the ]

6.50, 10[ range. NSE article titles are generally wordier than their SSH counterparts, and Math-

ematics and Chemistry have respectively the lowest and highest tokens-article ratio. In the case

of Characters-Article Ratio, the minimum score was obtained by Humanities, which means

that Mathematics tend to have shorter title words than the former discipline. More impor-

tantly, the average annual word token count for the article titles collected increase by 36% over

the observed period, which means that article entitling has gone wordier over the years. This

Table 2. Descriptive statistics of article titles corpus, disciplinary group sub-corpora and disciplinary sub-corpora.

NSF Disciplines Tokens-Article Ratio Type-Token Ratio

μ Δ% μ Δ%

NSE Biology 9.47 36.28 0.11 -50.42

Biomedical Research 9.73 26.36 0.07 -42.89

Chemistry 9.98 26.07 0.077 -48.67

Clinical Medicine 9.00 40.11 0.04 -58.32

Earth&Space 8.82 46.64 0.10 -58.55

Engineering&Technology 7.75 48.03 0.06 -63.85

Mathematics 6.51 32.86 0.09 -53.20

Physics 8.29 26.36 0.05 -39.26

SSH Health 7.76 68.64 0.16 -78.25

Humanities 6.52 22.78 0.22 -25.02

Professional Fields 6.86 48.60 0.12 -51.85

Psychology 7.74 39.46 0.13 -49.81

Social Sciences 6.67 46.20 0.13 -47.47

DG NSE 8.93 33.44 0.04 -55.53

SSH 7.00 47.41 0.098 -57.85

All 8.66 36.36 0.04 -56.91

S = Sum, μ = Mean, Δ% = Difference in percentage between 1975 and 2014

https://doi.org/10.1371/journal.pone.0197775.t002
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trend is very telling as regards to the annual TTR scores obtained for the different disciplines

and disciplinary groups. At first sight, the mean annual TTR values calculated for each disci-

plinary group and discipline sub-corpus show an interesting variation in concentration. At the

global level, the title vocabulary of SSH articles appears more diversified than NSE articles, as

they include two and a half times more word types for the same amount of word tokens. At the

disciplinary level, an even sharper contrast can be observed for Clinical Medicine and Human-

ities, whose titles respectively have the highest and lowest concentration. However, the univer-

sal decrease in TTR scores over the whole period put into question the reliability of the scores

obtained as well as the significance of any interpretation thereof. Indeed, the fact that this gen-

eralized plummeting of TTR scores coincides with a universal increase in corpus size immedi-

ately calls to mind the above-mentioned and empirically-validated sample size dependency

issues. Worse still and according to R2 analyzes, variation in annual word token counts for the

majority of different disciplinary group and disciplinary sub-corpora can explain more than

90% of the variation in corresponding TTR values. In light of this, no definitive conclusion

regarding lexical diversity in scientific titles can be reached without first controlling for corpus

size dependency. This objective represents the main focus of this methodological section,

which first describes the formal specifications of our new dual-regime lexical diversity indica-

tor, followed by a comparative assessment of the corpus size dependency of head and tail

regimes on random samples of varying sizes based on the 2014 WoS title word sub-corpus,

and then on the full Wos article titles corpus.

Development of a dual-regime zipfian frequency-rank lexical diversity

indicator

The distribution tail-based indicator created and used in this project is the result of a stepwise

process: various zipf-based fits were developed and tested on the 2014 WoS title words corpus,

which contains a total of 15,255,299 word tokens distributed over 352,958 word types. Results

of these tests are shown in Fig 1.

We first start by calculating the value of s from Mandelbrot’s canonical law (Eq (5)). As

shown by the unconstrained single-regime fit in Fig 1, this law does a poor job at fitting the

distribution: while it seems adequate for the first hundreds of the most frequent word types, as

Mandelbrot intended, the same cannot however be said of the distribution tail, which contains

by far the largest number of both word types and tokens.

A way to correct for this is to fit the parameters of the canonical law with two constraints:

the word type count n and the word token count N. Those two constraints are mathematically

and respectively expressed by Eqs (6) and (7).

OðR ¼ nÞ ¼
c

ðnþ bÞ
s ¼ 1 ð6Þ

Z n

0

OðRÞdR ¼
cðRþ bÞ

ð1� sÞ

ð1 � sÞ

�
�
�
�

R¼n

R¼0

¼ N ð7Þ

As shown by the constrained single-regime fit in Fig 1, these constrains ensure an adequate

tail fit, but the model tends to oscillate around the distribution head. In our opinion, this wob-

bling come from the fact that we are trying to apply a single-regime fit to the whole corpus,

whereas the slope on Fig 1 is not constant according to the rank of the word. As suggested ear-

lier, a possible solution to this problem would be to compute and join two distinct regimes,

one for the distribution head and another for the tail. Such dual-regime model would be repre-

sented by a function that explicitly allows different exponents depending on the rank of the
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word. The simplest function that allows this behaviour would be to allow for two different zip-

fian regimes, separated around rank l, as illustrated in Eq (8). Here, Θ is the Heaviside step

function where Θ(x) = 0 if x< 0 and Θ(x) = 1 if x> 0:

OðRÞ ¼
Yðl � RÞc
ðRÞs

þ
YðR � lÞd
ðRÞt

ð8Þ

However, this model’s derivative is discontinuous as point R = l. Therefore, one of those

regimes should obey the canonical law to allow the continuity of the derivative. Therefore, the

regime where R> l, called the Zipf tail regime, will obey Mandelbrot’s canonical law, and the

regime where R< l, referred to as the Zipf head regime, will obey the simpler but exponentially

different Zipf law.

This choice can be justified by the fact that since there normally is a small number of dis-

tinct frequent words, it would therefore be very easy for a single point to affect the fitted

model, thus jeopardizing the indicator’s stability. Also, if both regimes obeyed the Zipf-Man-

delbrot law, we would be at a higher risk of having too many free parameters. The model is

shown in Eq (9) where c, d, r, s, t, and l are parameters to be fitted (for more information on

Fig 1. Various fits for the frequency-rank distribution of 2014 WoS title words.

https://doi.org/10.1371/journal.pone.0197775.g001
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the fitting of Eq (9), see S1 Appendix in the Supporting Information section).

OðRÞ ¼
Yðl � RÞc

Rs
þ

YðR � lÞd
ðRþ rÞt

ð9Þ

While the constraint of Eq (6) still holds, Eq (7) must be rewritten as

Z n

0

OðRÞdR ¼
cR1� s

1 � s

�
�
�
�

R¼l

R¼0

þ
dðRþ rÞ1� t

1 � t

�
�
�
�

R¼n

R¼l

¼ N ð10Þ

On top of those, two other constraints are also added to this model due to continuity.

Indeed, the model should be continuous, and have a continuous derivative at the junction of

the two regimes where R = l. The continuity and derivative continuity are shown in Eqs (11)

and (12), respectively.

c
ls
¼

d
ðl þ rÞt

ð11Þ

cs
lsþ1

¼
dt

ðl þ rÞtþ1

s
l
¼

t
l þ r

ð12Þ

One can note that there are six parameters in Eq (9), but four constraints in Eqs (6), (10),

(11) and (12). Therefore, our fit has only two free parameters, which is appropriate for a model

with two regimes. There however is no analytical solution for this set of Equations, which

means that the constrained fit must be done numerically. As shown by the constrained double

regime Zipf fit in Fig 1, the use of this dual-regime fit offers by far the best results on the test

corpus.

Corpus size dependency evaluation

In order to evaluate the performance of both zipfian distribution head and tail fits as regards to

corpus size dependency, comparisons with existing measures on cumulative distributions are

here carried out. Three different indicators were implemented and tested, along with the new

indicator. The first and most obvious one is the TTR, which is rather easy to understand and is

still used today as an indicator of lexical diversity. The two others are often used in economics

as resource concentration indicators: the Pareto law and the Gini coefficient. Their graphical

representation is shown in Fig 2.

The Pareto law, also known as the 80/20 rule or the principle of factor sparsity, states that “a

small number of causes (20%) is responsible for a large percentage (80%) of the effect.” [139]

This principle is of obvious relevance to lexical distributions, as a few frequent word types

account for a large proportion of word tokens. Based on this principle, a concentration indica-

tor can be developed by taking the value P of a curve where (100% − P) of the word types

account for P% of all word tokens. The higher P is, the more concentrated the distribution is.

This indicator is illustrated on Fig 2.

However, this P concentration value only considers a single point on the distribution curve

and cannot therefore account for effects on others points. As seen on Fig 3, if a Pareto-based

indicator is calculated at point A, it cannot differentiate between the two plotted curves that

are clearly different. The Gini coefficient solves this issue by considering the area below the
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curve, as shown in Fig 2. Normalized between 0 and 1, the Gini coefficient indicates a high

concentration of the distribution if close to 1.

Both the Pareto-based and the Gini indicators are strangers to the field of statistical linguis-

tics. However, the evaluation of their sample size dependency, together with that of the TTR

and the dual-regime indicator, might allow for interesting and unprecedented comparisons

and insights.

As regards to the evaluation procedure, finding two corpora of different size but with the

exact same lexical diversity for testing purposes is next to impossible. A more feasible option

Fig 2. Graphical representation of the Pareto-based indicator and the Gini coefficient on cumulative

distributions.

https://doi.org/10.1371/journal.pone.0197775.g002

Fig 3. Distribution of two different corpora with identical Pareto-based indicator value.

https://doi.org/10.1371/journal.pone.0197775.g003
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consists in extracting a random sample of any size from the analyzed corpus, and check

whether or not the lexical diversity indicator is affected by this procedure. Since the diversity

of a corpus’ lexicon should not change whether calculated on the whole corpus or on any ran-

dom subcorpus, the sample size dependency of indicators can be evaluated on the basis of

their stability in this regard.

Using the same test corpus, 100 random samples of sizeN � X% were extracted for each per-

centage value X between 1% and 100%. TTR, Pareto-based, Gini, and dual-Zipf scores of each

random sample were then calculated and averaged over same-size samples. The results of these

tests are shown on Fig 4 and Table 3. In the case of the Pareto-based, Gini, and TTR indicators,

the concentration clearly drops as sample size gets bigger. The Pareto-based indicator drops by

1.4% and 5,7% for samples respectively half and a tenth of the size of the corpus. For the Gini

coefficient, those drops are even greater, corresponding to 1.8% for a sample half the size, and

to 8.2% for a sample a tenth of the size. Despite its simplicity, the TTR surprisingly has the

smallest drops of the three: 0,9% for a sample half the size, and 4,5% for a sample a tenth of the

size.

The corpus size dependency of these indicators can become highly problematic in longitu-

dinal studies, as annual sub-corpora can drastically vary in size over time. Given the fact that

in the present corpus, the annual number of word tokens grows by 547% over the [1975, 2014]

Fig 4. Pareto-based, Gini, TTR, Zipf head and tail scores of random corpus samples of increasing size. All

parameters were normalized to 1 for the full corpus.

https://doi.org/10.1371/journal.pone.0197775.g004

Table 3. Value drops of various lexical diversity indicators for different sample sizes.

Sample size Gini Pareto Type-Token Zipf-frequent Zipf-rare

50% 1,8% 1,4% 0,9% 0,4% 0,2%

10% 8,2% 5,7% 4,5% 3,2% 1,5%

https://doi.org/10.1371/journal.pone.0197775.t003
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period, one can only presume that the performance of the Gini, Pareto, and TTR indicators

should be greatly affected by annual variations in subcorpus size.

By contrast, the head and tail regimes are a lot more stable than the TTR, Pareto-based and

Gini indicators. Indeed, if we take a sample that is a tenth of the size, the head and tail regime

scores respectively drop by 3,2% and 1,5%, while their value only drops by 0,4% and 0,2% for

samples half the size of the test corpus. While total sample size dependency has not yet been

achieved, this performance of exponents s and t from Eq (9) is still impressive and to our

knowledge benchmark-setting. In our opinion, this unprecedented size independency of head

and tail regime fits warrants their use as lexical diversity measures in general, but also in assess-

ing the evolution of lexical concentration in frequent and rare words regimes in the longitudi-

nal corpus under study.

A comparative assessment of lexical diversity indicators on the full WoS

title words corpus

In order to analyze the evolution of lexical diversity in the different WoS disciplines, the values

of the different indicators presented in the previous section were calculated for each year

between 1975 and 2014 inclusively. In the case of Health and Mathematics, annual word type

and token counts before 1995 and 1981 were respectively excluded because of their relatively

low frequency. Indeed, in cases where the annual token count is below 65,000, the number of

different word types that occur only once or a few times is enormous, resulting in distribution

plateaus which make zipfian fits behave erratically and randomly manner, making it thus

extremely difficult to distinguish between head and tail regimes, if regimes there are (for an

illustration of this phenomena, see S1 Appendix in the Supporting Information section).

Results of these computations on the whole corpus are shown on Fig 5; results for NSE,

SSH, and their affiliated disciplines are respectively shown in S2 Appendix, S3 Appendix, and

S4 Appendix in the Supporting Information section. What is most striking at first glance is

how radically different the behaviour of both zipf head and tail regimes are compared to the

other indicators used in this study: while the Pareto-based indicator, the Gini coefficient, and

the TTR maintains a overall steady rise between 1975 and 2014, both Zipfian indicators fluctu-

ate greatly over the same period, showing spikes and sudden drops when other indicators

remain adamant in their slow rise. Moreover, the score of traditional indicators’ all show slight

twitches in 1996 and 1999, but such flutterings are hard to make out and are drowned in the

general upward slope of these indicators; in contrast, the rare words exponent show the same

perturbations much more clearly, while also showing fluctuations completely hidden with the

previous indicators, such as the spikes observed for 2002 and 2005.

The sharpest difference in behaviour between these indicators is however given by Fig 6,

which shows the lexical concentration scores for Humanities article titles. For the period 2005-

2013, during which the number of humanities papers almost doubles, the score of previous

concentration indicators all increase at different paces, while both head and tail regimes

decline over the same period. Similar tendencies can also be observed for Earth and Space as

well as for Mathematics between 2000 and 2014.

These different contrasts acquire a special significance in light of the the corpus size depen-

dency of traditional indicators shown in Fig 4. Indeed, since the size of the corpus almost tri-

pled during the observed period, one cannot but conclude that what distinguishes the

performance of traditional indicators from that of the zipfian regime exponents developed

here is nothing but artificial statistical noise due to corpus size variation effects, which makes

them inappropriate for lexical concentration evaluation purposes.
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Comparisons with traditional indicators apart, an equally striking difference in behaviour

can also be observed for Zipf head and tail regimes. To take but one example from Fig 5, the

1995-2000 period sees head and tail regimes drifting apart, frequent words becoming more

diversified as the rest of the distribution increases in lexical concentration. While both regimes

offer interesting insights, the tail regime appears better suited for the measurement of lexical

concentration. Indeed, frequent words forming the Zipf head regime represent a very small

portion of the whole distribution, which means that annual variations of a given frequent

word type can easily affect the performance of the zipf head regime. For example, the head

regime of the 2014 corpus used in the previous tests accounts for 26.3% of all word tokens, but

only 292 (0.08%) of all 352,958 word types, which means that any rise or drop in token count

for one of these words in 2015 has the potential of substantially affecting the frequency-rank

distribution head regime for that year. Given this and the fact that distribution tail regimes

perform best in terms of corpus size dependency, focusing solely on this indicator constitutes

the most robust, sensitive, and thus reliable way to measure lexical diversity in scientific titles.

It might here be objected that this strategy leaves a substantial amount of word tokens out

of the Equation. For example, in the above-mentioned case of the 2014 test corpus, advocating

such an approach means that all frequent word types, amounting up to 26.3% of all word

tokens, are not accounted for. However, given that vocabulary range is all about type counts,

that distribution heads account for the near totality of word types (99.92% for 2014), and that

the only other indicators that perform as well as the zipf head regime as regards to sample size

independency are based on incomparably smaller fractions of corpora, “beheading” zipfian

Fig 5. Evolution of lexical diversity indicator scores on the WoS title words corpus. The evolution of the size of the corpus is shown

in blue. All parameters were normalized to 1 for the 1975 corpus.

https://doi.org/10.1371/journal.pone.0197775.g005
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frequency-rank distributions for lexical diversity measurement purposes seems like a rather

small price to pay for the insights and analyses that approach may provide.

Assessing lexical diversity in WoS article titles

As shown by the above tests, the distribution tail fit slope values present the best resiliency to

corpus size variation, resiliency which warrants its use in measuring the evolution of lexical

concentration or diversity in WoS article titles. Results for the whole corpus as well as for the

NSE and SSH sub-corpora are shown in Fig 7.

Overall, the lexical concentration of scientific article title wording increases by 7,97% over

the [1975, 2014] period, while the concentration level for NSE and SSH titles are very similar,

with respective increases of 7.31% and 7.36%. Such similarity however masks the fact that both

disciplinary groups do not have the same leverage over global concentration levels. Indeed,

there is good reason to believe that fluctuations in concentration level for all sciences is mainly

driven by that of natural sciences: first, NSE title words provide more than 89% of the analyzed

corpus, with 285,249,540 out of 319,560,799 words; second and more importantly, concentra-

tion level fluctuations in all sciences correlate at R = 0.98 with those of Natural Sciences, which

is higher than the R = 0.88 observed between all sciences and Social Sciences & Humanities.

Most importantly, however, fluctuations in both NSE and SSH sub-corpora correlate to each

other at R = 0.89, 8, and this proximity in lexical diversity evolution between both disciplinary

groups seems to hint at the unity and universality of the process of scientific entitling as a

Fig 6. Evolution of lexical diversity indicator scores on the WoS title words sub-corpus for Humanities. The evolution of the size

of the corpus is shown in blue. All parameters are normalized to 1 for the 1975 corpus.

https://doi.org/10.1371/journal.pone.0197775.g006
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whole. However, before closing on this matter, a more fine-grained analysis, focusing on disci-

plinary patterns from both Natural Sciences and Social Sciences, seems in order.

NSE disciplines

Concentration values for NSE disciplines are shown in Fig 8, while summary descriptive statis-

tics for each discipline are given by Table 4. At first glance and despite the fact that lexical con-

centration plotting for Mathematics only begins in 1981, distribution tail regimes maintain

relatively steady trends over the [1975, 2014] period. This is also supported by the fact that rela-

tive standard deviation scores represent a very small proportion of disciplinary averages.

Our lexical concentration indicator also shows that a majority of NSE disciplines increase

in lexical concentration over that period. While Chemistry and Clinical Medicine are the most

obvious and extreme cases, lexical concentration increases in Biology, Biomedical Research,

and Engineering and Technology are also noteworthy. Given that these 5 disciplines account

for as much as 80.93% and 72.33% of all title word tokens for the NSE sub-corpus and the

whole corpus respectively, one has to conclude that the former disciplines are those most

responsible for the lexical concentration increases observed for the two disciplinary groups.

In contrast, a diversification in title wording can be observed in Mathematics, Earth &

Space and to a lesser extent Physics. What is most interesting by this trend is that these disci-

plines are not only the most ancient and emblematic ones, but also those most strongly associ-

ated with fundamental research. While the methodological apparatus adopted in the present

research prevents any detailed analysis, it is reasonable to assume that the flattening of the dis-

tribution tail fit slope in the case of Earth & Space is partly the result of that tail getting heavier

due to the discovery and naming of newly discovered heavenly bodies such as constellations,

stars or exoplanets. In the case of Mathematics and Physics, it may be hypothesized that the

Fig 7. Evolution of the lexical concentration of scientific titles in all Sciences.

https://doi.org/10.1371/journal.pone.0197775.g007
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lexical diversification can partially be explained by the prevalence of eponymous nomenclature

in these disciplines, as major breakthroughs therein often tend to be named after their discov-

erer. A closer and comparative look at these disciplinary practices and their impact on research

cultures however lies outside the scope of this study.

Overall, these increases and decreases in lexical concentration in all NSE disciplines over

the [1975, 2014] period form a two-regime system.

1. On the lower end, Biology, Biomedical Research, Chemistry, Clinical Medicine, and Engi-

neering & Technology titles start at a lower lexical concentration level than those of other

disciplines, but increase in concentration over time; Engineering & Technology even

Fig 8. Evolution of the lexical concentration of scientific titles in Natural Sciences and Engineering disciplines.

https://doi.org/10.1371/journal.pone.0197775.g008

Table 4. Various statistics on the lexical concentration score evolution of the different NSE disciplines.

Discipline Diff% μ σ RSD%

Biology +5,38 1.66 0.03 1.64

Biomedical Research +4.05 1.68 0.02 0.90

Chemistry +10.31 1.68 0.05 3.27

Clinical Medicine +7.71 1.85 0.04 1.91

Earth and Space -3.83 1.88 0.04 2.00

Engineering and Technology +4.66 1.94 0.03 1.74

Mathematics -7.42 1.96 0.04 2.17

Physics -0.57 1.95 0.02 1.07

Diff% = Difference in percentage over time, μ = average, σ = standard deviation, RSD% = relative standard deviation

https://doi.org/10.1371/journal.pone.0197775.t004
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becomes the discipline with the highest lexical concentration level in title wording at the

end of the observed period.

2. At the upper end, Physics, Mathematics, and Earth & Space article titles start at a higher

concentration level, but steadily decrease in concentration as years go by.

Given the steadiness of both trends, the near future may possibly witness a global conver-

gence of lexical concentration of article title wording for NSE disciplines; further research

would however be required to validate this conjecture.

SSH disciplines

Fig 9 and Table 5 present results for the different SSH disciplines. A quick glimpse at these

results show that the evolution of lexical concentration in Health article titles is markedly dif-

ferent from that of all other scientific disciplines. First, plotting only begins in 1995, as the

token count for that discipline’s article title corpus was below the fixed threshold before that

year. Additionally, the variance in lexical diversity observed for that discipline is greater that

that of all other disciplines combined, including those from NSE. However, given that such

fluctuations start to dampen from 2005 onward, the strong oscillations observed in the first

decade plotted could simply reflect a data collection artefact created by the haphazard or topic-

based inclusion of journal data in the WoS database. Nonetheless, following this initial haywire

period and up to 2014, the lexical concentration level in health article titles is still markedly

higher than that of other disciplines. This could be explained by the fact that publications clas-

sified as health journals in the WoS database form a topically coherent, health-focused, and

thus concentrated lexicon compared to other disciplinary corpora, which contain specialities

Fig 9. Evolution of the lexical concentration of scientific titles in Social Sciences and Humanities disciplines.

https://doi.org/10.1371/journal.pone.0197775.g009
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with widely diverging terminologies and discourses, for example Management and Education

in Professional Fields or Tropical Medicine and Arthritis in Clinical Medicine.

Turning to other SSH disciplines, despite the fact that Humanities article titles have a

slightly more diversified vocabulary, evolution of lexical concentration in the former’s lexical

concentration is remarkably uniform and stable over the [1975, 2014] period. Indeed, the

mean concentration values for Humanities, Professional Fields, Psychology, and Social Sci-

ences over time is confined within the [1.70, 1.90[ range, while the standard deviation values

never exceed 3.6% of the recorded mean for any one of these disciplines. While such steadiness

differs from the trends observed for the different natural sciences disciplines, it also sharply

contrasts with the 7.36% increase in lexical concentration observed for the whole SSH corpus

and shown in Fig 7. Indeed, while the equivalent increase in lexical concentration for the Natu-

ral Sciences corpus can be explained by the title wording evolution of its biggest constitutive

disciplines, no such explanation can be given for SSH disciplines: only the Professional Fields

and Social Sciences sub-corpora positively correlate with the SSH sub-corpus in terms of lexi-

cal concentration evolution, and their respective scores are only R = 0.56 and 0.49. Addition-

ally, given the impressive performance of zipfian tail slope fits regarding corpus size

dependency issues, variations in corpus size have to be ruled out as explanatory factors. A

more likely hypothesis is that the contrast in lexical concentration between the whole SSH cor-

pus and each SSH discipline sub-corpus results from aggregation effects. For example, if word

types A and B occur respectively 4 and 2 times in a corpus, while word types A and C occur

respectively 5 and 3 times in another, aggregating both corpora increase the relative frequency

of word type A and decrease that of word types B and C, resulting in a more asymmetric and

thus concentrated distribution. Were such aggregation effect to be a factor in the present case,

it would mean that the increase in lexical concentration level observed for the whole SSH cor-

pus over the [1975, 2014] period results in a gradual cross-disciplinary homogenization of the

highest occurring word types in the word distribution tails of all SSH disciplines.

Whatever the reason for such whole-part discrepancy is, the fact remains that the lexical

concentration in both natural sciences and SSH article titles substantially increases over the

last 40 years (except of course for Mathematics, Physics, and Earth & Space). This suggests that

title wording in scientific articles, at least in terms of vocabulary, becomes increasingly stan-

dardized over time. Needless to say, this lexical homogenization contrasts sharply with the

cumulative picture of science given by [63], picture based on the expansion of the noun phrase

lexica of physics, astronomy, and biomedicine article titles. While the present study is based

on different linguistic entities (words instead of noun phrases), its results warrants a different

picture of scientific entitling, according to which article titles get written using an increasingly

restricted and cross-disciplinary set of words.

Table 5. Various statistics on the lexical concentration score evolution of the different SSH disciplines.

Discipline Diff% μ σ RSD%

Health (1995 onward) -29.92 2.4 0.32 13.28

Humanities -3.14 1.70 0.04 2.60

Professional Fields 0.06 1.84 0.04 2.13

Psychology -11.73 1.89 0.07 3.59

Social Sciences +1.40 1.81 0.02 1.31

Diff% = Difference in percentage over time, μ = average, σ = standard deviation, RSD% = relative standard deviation

https://doi.org/10.1371/journal.pone.0197775.t005
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Conclusion

The present research has proven fruitful on both algorithmic and empirical grounds. At the

operational level, while both Zipf head and tail regimes outperform the other indicators used

in the research, Zipfian distribution tail fits are more stable and robust than their head coun-

terparts. In particular, their lower corpus size dependency proves extremely handy in distin-

guishing actual patterns from fluctuations revealed by other indicators and in representing

artificial effects of corpus size fluctuations.

From an empirical perspective, the present research also shows that the lexical concentra-

tion of scholarly titles in Natural Sciences & Engineering and Social Sciences & Humanities

articles increases by a little less than 8% over the [1975, 2014] period. At the disciplinary level,

Mathematics, Earth & Space, and Physics titles have increased in lexical diversity to varying

degrees, due probably and inter alia to the frequent use of eponymous nomenclature in these

fundamental disciplines. Article titles from other natural sciences disciplines, which have a

higher lexical diversity than those mentioned above, have all increased in lexical concentration

over the observed period, which suggest a probable convergence of lexical concentration levels

in the near future. With regard to Social Sciences & Humanities disciplines, lexical concentra-

tion levels remain surprisingly stable over the period, but aggregation effects observed at the

disciplinary group level suggests that a cross-disciplinary homogenization of the highest word

frequency ranks may be at work. Thus, with the exception of the most ancient natural sciences,

title wording in scientific article titles becomes further standardized over time, as article titles

get written using an increasingly restricted and cross-disciplinary set of words.

As a matter for future research, it would be interesting to correlate our new Zipf-based con-

centration indicator on bigger corpora like abstracts or full texts. The relationship between the

concentration of word corpora and the concentration of article citations or citation parameters

and patterns might also offer interesting insights. With regard to linguistic matters, the biggest

issue fueled but left unaddressed by this article relates to explaining the prevalence of zipfian

distributions in language. Indeed, given that “random texts do not exhibit the real Zipf’s law-

like rank distribution,” [140] systematic and recurrent observation of zipfian patterns in natu-

ral languages suggests “that there is a “meaningful” mechanism at play.” [141] However, very

little research has been done on this subject:

Essentially all of the work in language research has focused solely on deriving the law itself

in principle; very little work has attempted to assess the underlying assumptions of the

hypothesized explanation, a problem for much work on power laws in science [116].

Zipf himself interpreted his law as evidence for the ‘principle of least effort’ [104], which

holds that the law-like form of frequency-rank distributions observed in natural languages

results from an “evolutionary optimization process that minimizes some form of language

usage cost.” [141] While Zipf did not provide “a clear logical development from this principle

to action,” [107] a number of models were recently developed with the aim of generating zip-

fian distributions based on the principle of least effort [141, 142].

Mandelbrot explained for its part the law-like behaviour of word frequency-rank distribu-

tions using ideas from information theory [143]:

The essence of Mandelbrot’s contribution was his considering communication costs of

words in terms of the letters that spell the words and the spaces that separate them. This

cost increases [logarithmically] with the number of letters in a word and, by extension, in a

message. Mandelbrot showed that Zipf’s law. . . follows as a first approximation from the
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minimization of communication costs in terms of letters and spaces. Linguistically, this

amounts to minimizing costs in terms of phonemes, which is why the phenomenon holds

for both written and spoken language [107].

Following Mandelbrot’s attempts, more recent models have shown how power laws can

result from both logarithmic cost function minimization and entropy maximization [144]. A

simpler hypothesis, straightforward yet providing a broader explanatory basis for zipfian dis-

tributions in language, can however be built from a structural isomorphism [116]. Following a

series of experiments corroborating the idea that “memory mirrors. . . the structure that exists

in the environment,” [145] Anderson hypothesizes that this goodness-of-fit of memory to

environmental structure is of causal origin, in other words “that memory has the structure it

has because the environment has the structure it has. [145]” Correspondingly, given the empir-

ically validated omnipresence of zipfian structures in both the environment [146–148] and

natural languages [116], it is reasonable to believe that natural languages present zipfian struc-

tures simply because the world they talk about and refer to is itself zipfian. In other words

“Zipfian structures in the real world might ultimately create the observed form of word fre-

quencies distributions.” [116]

While the present research has not provided any additional clue as to “which explanation, if

any, is on the right track,” [116] analysis of frequency-rank distributions of scholarly article

titles over the years has made one thing certain: “grabbing words by the tail” represents the

best way found so far to accurately and reliably assess lexical diversity in language samples.
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demic research articles. In: Marı́n Chamorro R, Romero Navarrete A, editors. Lenguas aplicadas a las
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142. Ferrer-i Cancho R, Solé RV. Least effort and the origins of scaling in human language. Proceedings of

the National Academy of Sciences. 2003; 100:788–791. https://doi.org/10.1073/pnas.0335980100

143. Shannon CE. A mathematical theory of communication. Bell System Technical Journal. 1948;

27:379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

144. Visser M. Zipf’s law, power laws, and maximum entropy. New Journal of Physics. 2013; 15:043021.

https://doi.org/10.1088/1367-2630/15/4/043021

145. Anderson J, Schooler L. Reflections of the environment in memory. Psychological Science. 1991; 2

(6):396. https://doi.org/10.1111/j.1467-9280.1991.tb00174.x

146. Newman ME. Power laws, Pareto distributions and Zipf’s law. Contemporary physics. 2005; 46

(5):323–351. https://doi.org/10.1080/00107510500052444

147. Li W. Zipf’s Law everywhere. Glottometrics. 2002; 5:14–21.

148. Saichev AI, Malevergne Y, Sornette D. Theory of Zipf’s law and beyond. vol. 632. Springer Science &

Business Media; 2009.

Words by the tail

PLOS ONE | https://doi.org/10.1371/journal.pone.0197775 July 9, 2018 31 / 31

https://doi.org/10.1002/(SICI)1099-0526(199909/10)5:1%3C12::AID-CPLX2%3E3.0.CO;2-T
https://doi.org/10.1002/(SICI)1099-0526(199909/10)5:1%3C12::AID-CPLX2%3E3.0.CO;2-T
https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1080/09296179808590110
https://doi.org/10.1080/09296179808590110
https://doi.org/10.1080/09296179608590062
https://doi.org/10.1080/00207390802213609
https://doi.org/10.1080/00207390802213609
https://doi.org/10.1371/journal.pone.0009411
http://www.ncbi.nlm.nih.gov/pubmed/20231884
https://doi.org/10.1371/journal.pone.0139475
http://www.ncbi.nlm.nih.gov/pubmed/26427059
https://doi.org/10.1073/pnas.0335980100
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1088/1367-2630/15/4/043021
https://doi.org/10.1111/j.1467-9280.1991.tb00174.x
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1371/journal.pone.0197775

