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Abstract

Identifying influential nodes is an important topic in many diverse applications, such as

accelerating information propagation, controlling rumors and diseases. Many methods have

been put forward to identify influential nodes in complex networks, ranging from node cen-

trality to diffusion-based processes. However, most of the previous studies do not take into

account overlapping communities in networks. In this paper, we propose an effective

method based on network representation learning. The method considers not only the over-

lapping communities in networks, but also the network structure. Experiments on real-world

networks show that the proposed method outperforms many benchmark algorithms and can

be used in large-scale networks.

1. Introduction

Identifying influential nodes in complex networks has gained great attention in the research

community [1–7]. In recent years, many methods have been put forward to find influential

nodes in complex networks. The knowledge of node’s spreading ability shows new insight for

application such as controlling propagation of messages and rumors in social networks[8],

ranking reputation of scientists[9] and finding social leaders [10],etc.

The early measure of identifying influential nodes proposed by Shimbel is Stress Centrality

[11] in 1950s. He suggested that the centrality of a node should be the total number of shortest

paths that go through it. Degree Centrality[12] is a direct and effective method to measure the

importance of nodes, but it neglects the global structure of the network. Eigenvector Centrality

[13] considers the importance of node’s neighbors. Betweenness Centrality[14] and Closeness

Centrality[15] need to know all topology information of networks in advance and cannot be

applied to large-scale networks. Comin et al.[16] combined degree and betweenness, but it is a

time-consuming measure. Chen et al.[2] proposed a semi-local centrality measure, which is a

tradeoff between the low-relevant degree centrality and other time-consuming measures.

Additionally, Chen et al.[17] proposed ClusterRank, a local ranking method that considers the

clustering coefficient of a node. Kitsak et al.[1] suggested that the influence of a node is mainly

dependent on its position in the network and proposed K-shell to measure the importance of a

node. However, K-shell considers only the links between the residual nodes, whereas the links
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that connect to the exhausted nodes are entirely ignored. Johanhyun Bae et al.[18] extended

the K-shell and proposed Cnc and Cnc+. Zeng et al.[6] proposed a mixture decomposition

method called Mixed Degree Decomposition (MDD), which considers both the residual

degree and the exhausted degree. FD Malliaros et al.[19] proposed K-truss decomposition and

suggested that the topological properties of the nodes play a crucial role. Lü et al.[20] showed

the relationship between degree, H-index and coreness by constructing an operator and

proved that the convergence to coreness can be guaranteed even under an asynchronous

updating process. Numerical analyses in real networks suggested that the H-index is a good

tradeoff that can better quantify node influence than either degree or coreness. In the same

year, Lü et al.[21] reviewed the vital nodes identification methods and experimented on real-

world networks to compare the mainstream algorithms. The methods of identifying influential

nodes based on random walk are mainly used in web page sorting. The typical methods are

Kleinberg’s HITS algorithm[22], Google’s PageRank algorithm[23] and Lv’s LeaderRank algo-

rithm[8].

Most of the previous methods only consider the node’s topology information. In fact, real-

world networks often have a strong community structure[24]. In social as well as other types

of networks, nodes often belong to multiple communities simultaneously[25]. Influential

nodes always act as "bridging" between the communities and exist in community overlaps. In

this paper, we propose a new local central method to identify the influential nodes. The

method assumes that the more communities a node belongs to, the greater influence of the

node. To identify the influential nodes, we use the network representation learning to detect

overlapping communities, and then combine with the topology information of the nodes.

Experiments show state of the art performance in terms of the quality of identified influential

nodes.

2. Method

2.1 Network representation learning model

Network representation learning aims at learning distributed vector representation for each

vertex in a network. It is also increasingly recognized as an important aspect for network anal-

ysis. Network representation learning tasks can be broadly abstracted into the following four

categories: (a) node classification[26], (b) link prediction[27], (c) clustering[28], and (d) visu-

alization[29].

J. Yang et al.[25] proposed the BIGCLAM model for network representation learning,

which also covers the overlapping community detection. The model assumes that the overlaps

of communities tend to be more densely connected than the non-overlapping parts. We briefly

introduce this model with a bipartite graph in Fig 1. In Fig 1, the circles on the top represent

communities, the squares at the bottom represent the nodes of the graph, and the edges indi-

cate node community affiliations. Each affiliation edge in the bipartite affiliation network has a

Fig 1. Bipartite community affiliation graph.

https://doi.org/10.1371/journal.pone.0200091.g001
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nonnegative weight. The higher the node’s weight to the community the more likely is the

node to be connected to other members in the same community. Each community c creates an

edge between nodes u and node v with probability 1 − exp(−Fuc � Fvc). Where Fuc is the nonneg-

ative weight of node u to community c. The higher the value of Fuc, the more likely is the node

u has an edge with the nodes in community c. Furthermore, the model assumes that each com-

munity creates edges independently. For example, in Fig 1(A), node u and node v belong to

community A and community B simultaneously. In Fig 1(B), FuA and FuB indicate the node u’s

weight of the affiliation to the community A and community B respectively. In community A,

the probability of existing an edge between node u and node v is 1 − exp(−FuA � FvA). Similarly,

the probability that there is an edge between node u and node v is 1 − exp(−FuB � FvB). Note

that since node u and node v belong to community A and community B simultaneously, node

u and v receive two chances to create a link. As each community creates edges independently,

the probability of an edge existing between node u and node v is 1 − exp(−∑c2A,BFuc � Fvc).

Given a network G(V,E), where V is the node set and E is the edge set. Let F 2 RN�K be a

nonnegative matrix, where N is the number of nodes and K is the number of communities. Fuc

is the weight between node u 2 V and community c 2 K. Given F, BIGCLAM generates G(V,

E) by creating edge (u,v) 2 E between a pair of nodes u,v 2 V with probability p(u,v):

pðu; vÞ ¼ 1 � expð� Fu � Fv
TÞ; ð1Þ

where Fu is a weight vector for node u. Each element in Fu is the weight of node u to the corre-

sponding community. The model aims to finding the most likely affiliation factor matrix F̂ 2
RN�K of the underlying network G by maximizing the likelihood:

F̂ ¼ argmax PðGjFÞ; ð2Þ

where

PðGjFÞ ¼
Q
ðu;vÞ2Epðu; vÞ

Q
ðu;vÞ=2Eð1 � pðu; vÞÞ: ð3Þ

Many times, we take the logarithm of the likelihood and call it log- likelihood:

F̂ ¼ argmaxlogPðGjFÞ; ð4Þ

where

logPðGjFÞ ¼
P
ðu;vÞ2Elogð1 � expð� FuF

T
v ÞÞ �

P
ðu;vÞ=2EFuF

T
v : ð5Þ

BIGCLAM learns a K-dimensional non-negative vector for each node in the network by opti-

mizing the problem of Eq 4. Each dimension in the vector represents the probability that the

node belongs to the corresponding community. After learning F̂ , the model need to determine

whether node u belongs to community c or not from the value of Fuc. It ignores the member-

ship of node u to community c if Fuc is below some threshold δ. Otherwise (Fuc> δ), it regards

u as belonging to c. One node can belong to more than one community simultaneously. Based

on the BIGCLAM model, we assume that the nodes in the community overlaps play the ‘bridg-

ing’ role between the communities. As these nodes belong to multiple communities, informa-

tion through these nodes can be easily spread to other communities. It is reasonable to assume

that nodes in community overlaps have greater influence.

2.2 Network constraint coefficient

Structural holes is a concept from social network research, which is originally developed by

Burt[30][31]. A structural hole is understood as a gap between two individuals who have
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complementary sources to information. Fig 2(A) is a structural hole of node E. The position of

node E makes it serve as a bridge or a ‘broker’ between three different nodes. Thus, node E is

likely to receive some non-redundant information from its contacts. The term ‘structural

holes’ is used for the separation between non-redundant contacts. Because of the hole between

two contacts, they provide network benefits to the third party (to node E).

Burt used the network constraint coefficient C to measure the constraints imposed by form-

ing a structural hole:

Ci ¼
P

j2GðiÞðpij þ
P

q�ðGðjÞ\GðiÞÞðpiqpqjÞÞ
2
; ð6Þ

where Γ(i) is the neighbor set of node i. As shown in Fig 2(B), pij is proportion of i’s energy

invested in relationship with j and pij ¼
1

NðiÞ, where N(i) represents the degree of node i. piq ¼

1

NðiÞ and pqj ¼
1

NðqÞ represent node i’s and node j’s energy respectively invested in relationship

with the common neighbor q. From Eq 6 we can see that a node with a small constraint coeffi-

cient indicates that the degree of the node is large and the connections among neighbors are

sparse. Thus, the node with a small constraint coefficient would have more chances to spread

the information to a large portion of the network. The smaller the constraint coefficient of a

node is, the faster the node can spread information.

2.3 Ranking method

Nodes in community overlaps play the ‘bridging’ role between the communities. Information

can be spread to multiple communities through these nodes. The number of communities a

node be longs to can be regarded as its propagation capacity. The more communities a node

belongs to, the more communities the node can influence. Network constraint coefficient of a

node can be regarded as the propagation speed in community. The smaller the constraint coef-

ficient of a node is, the faster the node can spread information. We consider both propagation

capacity and propagation speed of a node to evaluate its influence, which denoted by OC. The

OC of node i is defined as follows:

OCi ¼

P
j2GðiÞ

P
k�GðjÞ10� Ck � NbðkÞ
maxOC

; i ¼ 1; 2; 3 . . . N; ð7Þ

where Γ(i) is the neighbor set of node i, Ck is the network constraint coefficient of node k,

maxOC is the normalization factor, Nb(k) represents the total number of communities that

node k’s neighbors belong to. For example, assuming that node i has 3 neighbors a, b, c, node a
has 2 communities named 1, 4, node b has 3 communities named 1, 2, 3, and node c has 4

communities named 2, 4, 5, 6, then the communities that the neighbors of node i have are 1, 2,

3, 4, 5, 6. Thus, Nb(i) = 6.

Fig 2. The concept of structural holes.

https://doi.org/10.1371/journal.pone.0200091.g002
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To identify influential nodes in the network, we need to know the total number of communi-

ties that each node belongs to and their constraint coefficients. First, we use the BIGCLAM model

to detect overlapping communities, and calculate the total number of communities that each

node belongs to. Second, we calculate the network constraint coefficient for each node based on

Eq 6. Third, according to Eq 7, we calculate the OC value of each node. Note that if there are no

overlapping communities in the network, OC degrades to the network constraint coefficient.

3. Experiments

3.1 Evaluation method

To evaluate the performance of the proposed method, we use the SIR model[32] to examine

the influence of nodes. The model is used to simulate the spread of the virus or information

process. The SIR model divides the network nodes into three types: (1) Susceptible nodes,

healthy but not immune and can be infected; (2) Infected nodes, already infected and can

infect susceptible nodes; (3) Recovered nodes, which have been cured and cannot be infected

again. In the beginning, the node to be tested is in the Infected state whereas the rest of the

nodes of the network are in the Susceptible state. This node triggers a spreading process where

every infected node can infect its neighbors at each timestep t with probability β. Each infected

node is cured with probability γ. In this paper, we set γ = 1, which means that each node has

only one chance to infect its neighbors in every round. The sum (F(t)) of recovered nodes at

time t when there is no infected node exiting in the network are defined as the influence of the

node. In order to ensure the spreading process, we set β to be slightly larger than the epidemic

threshold (bth ¼
hki

½hk2i� hki�) in the network[33], where hki and hk2i denote the average degree and

the second order average degree, respectively. In this paper, we set bth ¼
hki
hk2i

.

To quantify the correctness of the ranking methods, we adopt Kendall’s tau[34] as a rank

correlation coefficient, which is defined as follows:

t R1;R2ð Þ ¼
nc � ndffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnt � nt1Þðnt � nt2Þ
p ; ð8Þ

where R1 and R2 are two different rank lists, nt = n(n − 1)/2, nt1 = ∑iti(ti − 1)/2, nt2 = ∑jtj(tj − 1)/

2, ti and tj are the number of tied values in the ith and jth groups of ties, respectively. nc and

nd are the numbers of concordant and discordant pairs, respectively. For example, let X and Y
be two ranking lists. (x1, y1), (x2, y2),. . .,(xi, yj) are a set of joint ranks from X and Y, respec-

tively. Any pair of ranks (xi, yi) and (xj, yj) is said to be concordant if xi> xj and yi> yj or xi<

xj and yi< yj. If xi> xj and yi< yj or xi< xj and yi> yj, the pair is said to be discordant. If xi =

xj or yi = yj, the pair is neither concordant nor discordant. This metric quantifies the similarity

between the orderings of the measures and the real ranking.

3.2 Experimental data

Nine real-world networks are used to evaluate the performance of the proposed method: (1)

all meeting articles that appeared in 1994-2000(GDciting). The data can be obtained on

“https://www.aminer.cn/citation”; (2) US airport flights(USAir97). The data can be down-

loaded on “http://vlado.fmf.uni-lj.si/pub/networks/data/”; (3) collaboration network of scien-

tists(Netscience)[35]; (4) communication network of Blogs(Blogs)[36]; (5) an e-mail

communication network(Email)[37]; (6) C.elegans networks(C.elegans)[38]; (7) Lusseau’s

Bottlenose Dolphins(Dolphins)[39]; (8) Arxiv COND-MAT collaboration network(CA-Con-

dMat)[40]; (9) Amazon network data(Amazon). The data can be downloaded on “https://snap.
stanford.edu/”. Table 1 shows the information of each network, where n is the number of
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nodes, m is the number of edges, C is the number of communities divided by the BIGCLAM

model, MLC is the maximum number of communities owned by the node in the network.

3.3 Experimental results

In this section, we compare the proposed method OC with Degree Centrality(DC), Between-

ness Centrality(BC), Closeness Centrality(CC), Eigenvector Centrality(EC), Cnc, Cnc+, Net-

work Constraint Coefficient(NC) and K-shell(KS). In each implementation, one node is

selected to be infected, and then infects its neighbors according to the SIR model. The influ-

ence of the node (F(t)) is the sum of recovered nodes when the spreading process fade out.

This value represents the average over multiple executions of the model (we performed 1000

simulations for large and 100 simulations for small datasets). Without special explanation, in

this paper, the value of β is shown in Table 2, γ = 1, and the threshold for the dataset is 1000

nodes.

In Table 2, we compare the Kendall correlation coefficient τ of different ranking methods.

The results in Table 2 manifest that our method outperforms the other methods in most cases.

Based on the above results, we plot the correlation of the influence measures in GDciting,

Dolphins and CA-CondMat. The results are shown in Fig 3, Fig 4 and Fig 5 respectively. Due

to the large number of nodes in CA-CondMat, we only show the result of the top 500 nodes.

We can witness that there is a clear correlation between F(t) and OC, while the traditional

measures, i.e., the BC and the CC, have little relationship with the influence capability of the

spreaders in an epidemic process.

Table 1. The statistical properties of the networks, where n is the number of nodes, m is the number of edges, C is the number of communities divided by BIGCLAM

model, MLC is the maximum number of communities the nodes have in the network.

Network n m C MLC
GDciting 311 647 13 4

USAir97 332 2126 17 10

Netscience 1461 2742 96 5

Blogs 112 425 8 3

Email 1133 5451 39 10

C.elegans 248 468 13 4

Dolphins 62 159 7 2

CA-CondMat 23133 93497 100 34

Amazon 334863 925872 73854 139

https://doi.org/10.1371/journal.pone.0200091.t001

Table 2. The ranking results of each network. Here βth is the epidemic threshold for networks; β is the infection probability in SIR simulation; τ(�) represents the

Kendall correlation coefficient of corresponding methods for given β. “-” means the method is still no result when running time exceeds 48 hours.

Network βth β τDC τBC τCC τNC τKS τCnc
τCncþ τEC τOC

GDciting 0.102 0.176 0.71 0.52 0.82 0.71 0.70 0.84 0.85 0.89 0.95

USAir97 0.021 0.033 0.85 0.60 0.84 0.88 0.84 0.94 0.94 0.93 0.96

Netscience 0.115 0.264 0.63 0.20 0.81 0.75 0.57 0.72 0.73 0.88 0.89

Blogs 0.067 0.106 0.86 0.69 0.88 0.82 0.78 0.91 0.92 0.94 0.92

Email 0.05 0.079 0.74 0.61 0.77 0.75 0.75 0.80 0.81 0.84 0.87

C.elegans 0.143 0.204 0.72 0.57 0.84 0.70 0.70 0.83 0.83 0.85 0.93

Dolphins 0.147 0.231 0.72 0.52 0.70 0.76 0.56 0.79 0.80 0.75 0.97

CA-CondMat 0.045 0.054 0.32 0.25 0.35 0.32 0.12 0.48 0.26 0.64 0.66

Amazon 0.095 0.114 0.43 - - 0.46 0.23 0.52 0.53 0.56 0.61

https://doi.org/10.1371/journal.pone.0200091.t002
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Fig 3. The relation between node’s influence and the ranking methods in GDciting.

https://doi.org/10.1371/journal.pone.0200091.g003

Fig 4. The relation between node’s influence and the ranking methods in Dolphins.

https://doi.org/10.1371/journal.pone.0200091.g004
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As the proposed method OC contains the network constraint coefficient and the node

degree information, we compare OC with DC and NC. The results are shown in Fig 6. The

color of each point represents the influence of the node. We can observe that OC has strong

correlation with DC and NC, but there are still many influential nodes with small values of DC

and many little influential nodes with small values of NC. It indicates that NC or DC alone is

Fig 5. The relation between node’s influence and the ranking methods in CA-CondMat.

https://doi.org/10.1371/journal.pone.0200091.g005

Fig 6. The relations between OC and NC, OC and DC in Netscience and C.elegans.

https://doi.org/10.1371/journal.pone.0200091.g006
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not sufficient to identify influential nodes. The proposed method OC contains both constraint

coefficient and node degree information. It can identify influential nodes better.

To further estimate how the infection probability β affects the effectiveness of different

methods, the Kendall correlation coefficient τ as a function of β for different methods is shown

in Fig 7. The infection probability β varies from βth to 2βth. As described in Fig 7, on a wide

range of probabilities β, OC is better than other measures in the four networks. In Fig 8, we

conduct the same experiments for different values of γ, which varies from 0.5 to 1. As shown

in Fig 8, the proposed OC presents better results than the other measures in the four networks.

Fig 7. The rank correlation coefficient, Kendall’s tau τ, is plotted by varying the infection probability β in four

networks: Dolphins, C.elegans, Email and GDciting.

https://doi.org/10.1371/journal.pone.0200091.g007

Fig 8. The rank correlation coefficient, Kendall’s tau τ, is plotted by varying the recovery probability γ in four

networks: GDciting, Dolphins, C. elegans, Email.

https://doi.org/10.1371/journal.pone.0200091.g008
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Furthermore, we investigate the number of nodes being at the infected and recovered state

for various timesteps of the SIR model. We focus on the nodes that appear in the top-k lists of

each method. We initially set these nodes to be infected. Here we set k = 10 for the small net-

works (GDciting, Netscience and Email) and k = 100 for the large network (CA-CondMat).

The cumulative number of infected nodes (F(t)) as a function of time t in the four networks

are shown in Fig 9. Due to the randomness of transmission, the experimental result of SIR

model is different in each experiment. We use the error bar graph to present the results. As

shown in Fig 9, the number of cumulative infected nodes increases with time and ultimately

reach the steady value. For all these four networks, OC outperforms the other methods for

both spreading rate and the number of infected nodes.

In many cases, people are more interested in a small fraction of the most influential nodes

in the network. Here, we use L to represent the fraction of the most influential nodes measured

by each method. We let L vary from 0.1 to 1.0 and do the influence comparison experiment

between the top nodes ranked by different methods. As shown in Fig 10, our method outper-

forms the other methods on almost the entire range of L in the four networks.

Determine the number of communities c is a challenging task in community detection. As

our method need to use the result of community detection, it is necessary to evaluate the

impact of the number of communities c on the result. We divide the network into different

numbers of communities and then identify the influential nodes. Fig 11 shows the results in

the three networks. The horizontal axis represents the number of communities divided and

the vertical axis is the network correlation coefficient τ. As can be seen from Fig 11, the num-

ber of communities divided has a limited effect on the results. The fluctuation of τ does not

exceed 0.1 with c varying.

4. Conclusion

Identifying influential nodes in complex networks is very important in theoretical and practi-

cal applications. In this paper, we proposed an efficient method based on BIGCLAM model.

The method suggests that the community overlaps play the "bridging" role between the

Fig 9. The cumulative number of infected nodes as a function of time t in four networks: GDciting, Netscience,

Email and CA-CondMat.

https://doi.org/10.1371/journal.pone.0200091.g009
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communities. The number of communities that a node belongs to represents its propagation

capacity. In addition, we consider the network constraint coefficient of the node, which repre-

sents its propagation speed in community. The comparison results between the proposed

method and the benchmark algorithms demonstrated that proposed method can obtain the

best results. Our results could shed some light on how to utilize network representation learn-

ing and overlapping community detection to identify influential nodes.
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