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Abstract

The application of non-targeted metabolomic profiling has recently become a powerful non-

invasive tool to discover new clinical biomarkers. This study aimed to identify metabolic pathways 

that could be exploited for prognostic and therapeutic purposes in hepatorenal dysfunction in 

cirrhosis. One hundred three subjects with cirrhosis had glomerular filtration rate (GFR) measured 

using iothalamate plasma clearance, and were followed until death, transplantation, or the last 

encounter. Concomitantly, plasma metabolomic profiling was performed using ultrahigh 

performance liquid chromatography-tandem mass spectrometry to identify preliminary 

metabolomic biomarker candidates. Among the 1028 metabolites identified, 34 were significantly 

increased in subjects with high liver and kidney disease severity compared with those with low 

liver and kidney disease severity. The highest average fold-change (2.39) was for 4-

acetamidobutanoate. Metabolite-based enriched pathways were significantly associated with the 

identified metabolomic signature (P values ranged from 2.07E-06 to 0.02919). Ascorbate and 

aldarate metabolism, methylation, and glucuronidation were among the most significant protein-
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based enriched pathways associated with this metabolomic signature (P values ranged from 

1.09E-18 to 7.61E-05). Erythronate had the highest association with measured GFR (R-

square=0.571, P<0.0001). Erythronate (R=0.594, P<0.0001) and N6-carbamoylthreonyladenosine 

(R=0.591, P<0.0001) showed stronger associations with measured GFR compared to Cr (R=0.588, 

P<0.0001) even after controlling for age, gender and race. The 5 most significant metabolites that 

predicted mortality independent of kidney disease and demographics were S-

adenosylhomocysteine (P=0.0003), glucuronate (P=0.0006), trans-aconitate (P=0.0018), 3-

ureidopropionate (P=0.0021), and 3-(4-hydroxyphenyl)lactate (P=0.0047). A unique metabolomic 

signature associated with hepatorenal dysfunction in cirrhosis was identified for further 

investigations that provide potentially important mechanistic insights into cirrhosis-altered 

metabolism.

INTRODUCTION

The many successes realized in the fields of liver and kidney transplantation have prolonged 

the duration of life for many patients, but demand for donor organs remains high. Donor 

organ allocation and distribution is imperfect and presents important issues regarding how 

these organs can be equitably distributed. As such, there is a particular need for developing 

accurate biomarkers to conveniently assess a level of renal function and extent of kidney 

damage in patients with cirrhosis, because serum creatinine (Cr) concentration alone is 

insufficient to give true clinical assessments.(1)

In recent years, progress has been made toward a better estimation of GFR in cirrhosis. 

Serum Cr, which is heavily weighted in the Model for End-Stage Liver Disease-Sodium 

(MELD-Na) score(2, 3), inaccurately reflects glomerular filtration rate (GFR) in cirrhosis 

due to reduced muscle mass and increased tubular secretion of Cr.(4, 5) The Cr-based 

Modification of Diet in Renal Disease Study equation-6 (MDRD-6) used for simultaneous 

liver-kidney transplantation listing underestimates measured GFR(6) and increases the 

probability of unnecessary kidney transplantation. Conversely, severe renal disease, with 

significant increase in morbidity and mortality, can occur after liver transplantation when 

pre-transplant GFR is overestimated.(6, 7) Though not ideal or widespread in clinical use, 

the GFR equations combining serum Cr and cystatin C including the Chronic Kidney 

Disease Epidemiology Collaboration (CKD-EPI) Cr-Cystatin C equation(8) and Cr-Cystatin 

C GFR Equation for Cirrhosis(9) have shown significantly higher accuracy in predicting 

measured GFR compared to the conventional Cr-based GFR-estimating equations in 

cirrhosis.(5, 8–10) These tests have not gained widespread clinical use.

The application of non-targeted serum metabolomic profiling has evolved as a powerful non-

invasive tool to identify new clinical biomarkers.(11–13) Select metabolites can provide 

early diagnostic differentiation and insight into the pathological mechanisms underlying a 

variety of liver diseases and can also be exploited for drug development. In this preliminary 

study, we aimed to explore novel pathophysiological metabolomic pathways that could be 

subsequently validated and exploited for prognostic (e.g., to predict response to hepatorenal 

syndrome or predict native kidney recovery after liver transplantation) and therapeutic 
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purposes (e.g. development of new drugs targeting specific enriched pathways associated 

with a metabolomic signature) in kidney disease in cirrhosis.

MATERIALS AND METHODS

Study Population

After obtaining approval from the University of Maryland, Baltimore Institutional Review 

Board between 2010 and 2016, we conducted this study using the General Clinical Research 

Center and outpatient clinics of the University of Maryland Medical Center. Written 

informed consent was obtained from all study subjects. This study was also approved by 

Baylor College of Medicine Biomedical Research and Assurance Information Network 

(BRAIN). All methods and procedures were performed in accordance with the relevant 

guidelines and regulations. We previously described the study inclusion and exclusion 

criteria.(9) In brief, we included adult outpatients with cirrhosis. We excluded subjects with 

Acute kidney injury (AKI) or chronic kidney disease stage 5, transjugular intrahepatic porto-

systemic shunt placement, liver or kidney transplantation, any existing condition that could 

influence steady-state renal function (e.g. acute gastrointestinal bleeding, acute infection, 

exacerbation of hepatic encephalopathy, new use or dose modification of diuretics, 

angiotensin converting enzyme inhibitors, angiotensin receptor blockers within 1 week of 

enrollment).

Study Procedures

We previously described all study procedures in detail except analysis of metabolomic 

biomarkers.(5, 9, 14) Briefly, during Visit 1, we obtained informed consent, medical history 

and performed physical examination. Visit 2 procedures included measurement of GFR by 

iothalamate plasma clearance, renal and metabolomic biomarkers, and other laboratory 

analysis. Visit 2 was scheduled within 1 to 3 weeks of Visit 1.

Detection, Identification and Measurement of Plasma Metabolites

Non-targeted global metabolomic profiling (15–17) was performed on 103 blinded plasma 

samples at Metabolon, Inc. (Durham, NC). Following receipt by Metabolon, Inc., plasma 

samples were immediately stored at −80°C. The automated MicroLab STAR® system from 

Hamilton Company was used to prepare the samples. Proteins in the samples were 

precipitated with methanol under vigorous shaking for 2 minutes (Glen Mills GenoGrinder 

2000) followed by centrifugation. The subsequent extract was separated into five fractions: 

two for analysis by two separate reverse phase/ultrahigh performance liquid chromatography 

(UPLC)/tandem mass spectometry (MS/MS) methods with positive ion mode electrospray 

ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for 

analysis by Hydrophilic Interaction Liquid Chromatography (HILIC)/UPLC-MS/MS with 

negative ion mode ESI, and one sample was reserved for backup. The organic solvent in the 

samples was removed using TurboVap® (Zymark), and the sample extracts were stored 

overnight under nitrogen before preparation for analysis. Metabolite identification and 

measurement were performed using a Waters ACQUITY UPLC and a Thermo Scientific Q-

Exactive high resolution/accurate mass spectrometer (MS) interfaced with a heated 

electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 
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mass resolution. The Metabolon platform used four different methods mentioned above to 

identify and measure metabolites in a given sample. The majority of metabolites were 

measured on multiple platforms, and the platform that had the best characteristics (i.e., least 

amount of nearby interference, ion suppression, etc.) was reported back. The raw data that 

were reported back from each platform were the integrated peak areas for the quant ion of 

the molecule of interest (the units are ‘ion counts’) quantified using area-under-the-curve. 

Metabolites were identified based on three criteria including the presence of the quant ion of 

interest within a narrow retention index window for the proposed metabolite, an accurate 

mass match to the library +/− 5 ppm, and forward and reverse fit matches of the MS/MS 

ions present in the experimental spectrum and library spectrum. In regards to data quality, 

values for instrument and process variability were reported as a median relative standard 

deviation of 4% and 7%, respectively. All samples were processed and run on the same 

platform day except for aliquots that were run across the HILIC/UPLC-MS/MS platform, 

and which were collected across two platform run days. For metabolite data collected from 

the HILIC/UPLC-MS/MS platform, a run-day block normalization was performed in which 

the areas under the curve were scaled to the median of each run-day block and then 

multiplied by the global median across both run-day blocks to correct for variation resulting 

from instrument inter-day tuning differences. For the remaining data streams collected in a 

single run day, block normalization was not required nor applied.

Data were scaled to set the median equal to 1, and missing values (generally due to the 

metabolite level falling below the limit of detection of the instrument used) were imputed 

with the minimum observed value of that metabolite, as described elsewhere. (18, 19) For 

the entire data analysis, these scaled imputed data were used. Additional necessary data 

transformations are described below.

Data Analysis

All statistical analyses were performed using SAS Version 9.4 TS level 1M3 W32_7PRO 

platform (SAS, Cary, NC)(20) and R software(21) at Baylor College of Medicine, Houston, 

TX.

Identification of Metabolomic Signature—Statistical analysis of metabolomic 

biomarkers was performed after metabolite values were transformed into log base 2 scale. 

We preferred log base 2 over log base 10 and natural log transformation as log base 2 scale 

is commonly used in transcriptomics, metabolomics, and proteomics analysis.(22, 23) 

Patients were stratified based on low and high liver and kidney disease severity groups for 

nine clinical and laboratory variables (Table 1). The categories of the variables that defined 

low vs. high liver and kidney disease severity as shown in Table 1 were categorized as 

follows: ascites (absent vs. present), severity of ascites (no ascites, diuretic-sensitive and -

refractory ascites), measured GFR stages (stage 1: GFR ≥ 90, stage 2: GFR ≥ 60 to < 90, 

Stage 3: GFR ≥ 30 to <60, Stage 4: GFR ≥ 15 to < 30), measured GFR (< 60 vs. ≥ 60), 

MELD-Na score classes (6–9, 10–19, 20–40) and above vs. below the median values of 

GFR biomarkers (serum Cr, cystatin C and Symmetric dimethylarginine (SDMA)), and 

MELD-Na score. Fold change was defined as the change in the mean value of a metabolite 

from low disease severity to high disease severity category. We further inferred for each 
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metabolite the mean fold change as the average of all mean fold changes across comparisons 

for the nine clinical and laboratory variables. We used a t-test to determine statistically 

significant inducible metabolites between low and high liver and kidney disease severity 

groups. P values were adjusted for false discovery rate (FDR) using the Benjamini-Hochberg 

method (79), as implemented in the R statistical system.(21) Metabolites were considered 

significant for Q value <0.05 and at least 5% change in the mean value. For the categorical 

clinical variables with more than two categories including measured GFR stages, severity of 

ascites, and MELD-Na score classes, we considered a metabolite significant if it was 

significant across a comparison between any pair of patient groups, and if significant across 

multiple comparisons, the direction of change was consistent between low vs. high disease 

severity. Furthermore, we selected the highest fold change in the mean value of the 

metabolite between any pair of groups for this categorical clinical variable. After generating 

comparison results for each independent clinical variable, we further selected metabolites 

that were significantly changed across nine clinical and laboratory variables. For statistical 

rigor, we considered all the metabolites detected by Metabolon, Inc. For further 

interpretation of results and functional enrichment analysis, we excluded unnamed 

metabolites and xenobiotic metabolites. After applying these series of filters, we obtained a 

metabolomic signature comprised of 34 metabolites. For clarity of presentation, we further 

sorted the 34 metabolites in decreasing order of the mean fold change across all variables 

(Figure 1).

Power Analysis—For quantitative variables where we stratify patients based on the 

median values, we use a sample number of n=51 per group. Assuming a standard deviation 

of 75% of the population mean (a reasonably high assumption for human cohorts), we can 

detect a fold change of 1.25x at the significance level of α=0.05 with a power of 86.65%.

Identification of Enriched Pathways Associated with Metabolomic Signature—
To perform integrative analysis such as pathway enrichment, we applied a two-pronged 

strategy. First, we used the Super-Pathway and Sub-Pathways annotations provided by 

Metabolon, Inc. for each detected, named metabolite, excluding the xenobiotic metabolites. 

We determined enriched pathways and processes in the 34 metabolites by employing over-

representation analysis and hypergeometric enrichment; significance was assessed at 

Benjamini-Hochberg (79)-adjusted Q value <0.05. Next, we mined the Human Metabolome 

Database (HMDB) (24–26) compendium to identify proteins associated with each 

metabolite, then carried out enrichment analysis using hypergeometric distribution against 

the compendium of databases KEGG(27), REACTOME(28), BIOCARTA(29), and GENE 

ONTOLOGY(30), as compiled by the Molecular Signature Database (MSigDB) 

compendium.(31) The enrichment was carried out using the Python scientific computing 

libraries (32–34) NumPy (35) and SciPy (32). For clarity of presentation, enriched pathway 

significance was depicted as bar graphs after conversion to −log10 (Q value) form. To 

appreciate existing interaction between significant pathways, we inferred the network of 

enriched pathways by considering as nodes the enriched pathways, and considering common 

edges whenever two pathways shared common metabolites or common associated proteins. 

The inferred pathway networks were further visualized using the Cytoscape scientific 

visualization software package.(36)
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Associations between Metabolomic Signature and Measured GFR—After 

identifying the metabolomic signature, we assessed the association between metabolites and 

measured GFR using linear regression models. For this analysis, we used natural log 

transformed values of metabolites and measured GFR. We first sorted data by P values in 

ascending order and assessed significance at P<0.05. Then, we adjusted P values for FDR 

using the Benjamini-Hochberg method.(79) Metabolites were considered significant for Q 
value <0.05.

Associations between Metabolomic Signature and Mortality—Subjects were 

followed from the procedure date until death, liver transplantation, or the last encounter. We 

determined survival outcomes by either calling the subjects or reviewing their medical 

records. Patients were censored at the time of last follow-up or liver transplantation. For 

mortality analysis, we used natural log transformed values of metabolites. We performed 

Kaplan-Meier tests (80) to estimate median survival time. To assess the association between 

each metabolomic biomarker and mortality, we fit separate Cox proportional hazards 

regression (81) models for each metabolomic biomarker. We further evaluated the 

metabolites that were significant in univariate Cox models in multivariate Cox models to 

assess the mortality independent of kidney disease and demographics. We first sorted data 

by P values in ascending order and assessed significance at P<0.05. Then, we adjusted P 
values for FDR using the Benjamini-Hochberg method.(79) Metabolites were considered 

significant for Q value <0.05.

Associations between Metabolomic Biomarkers and Measured GFR Stages, 
Severity of Ascites and MELD-Na score classes—We assessed significant fold 

changes for each categorical variable including measured GFR stages, MELD-Na score 

classes and severity of ascites by taking all 1028 metabolites into account. For measured 

GFR stages, MELD-Na score classes and severity of ascites categories, significant 

metabolites were graphically depicted as a heatmap across all the patients after z-score 

transformation, using the Python Scientific Computing Libraries (32–34) NumPy (35) and 

Matplotlib (37). Metabolites were considered significant for Q value <0.05. We sorted 

metabolites by maximum fold change as described above for non-binary clinical variables. 

We considered a metabolite to be statistically significant if it was significant across a 

comparison between any pair of subject groups; we further selected the highest fold change 

in the mean value of the metabolite between any pair of groups for the respective GFR 

stages (1+2, 3 and 4), MELD-Na score classes (6–9, 10–19, 20–40) and severity of ascites 

categories (no ascites, diuretic-sensitive and diuretic-refractory ascites). For presentation 

purposes, the metabolite values were z-score transformed across all subjects; metabolites 

were further sorted in decreasing order based on the maximum fold change across 

comparisons between GFR stages, MELD-Na score classes and severity of ascites 

categories.

Analysis of variance (ANOVA) test was performed to compare differences in myo-inositol/

creatine ratio, beta-alanine, betaine and methionine among categorical variables that had 

more than two categories including GFR stages (1+2, 3 and 4), MELD-Na score classes (6–

9, 10–19, 20–40) and severity of ascites (no ascites, diuretic-sensitive and diuretic-refractory 
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ascites). However, we did not impose the additional criteria of consistent changes between 

low- and high-disease severity.

Study Subjects and Non-Metabolite Variables—T-test and Fisher’s exact tests were 

performed to compare differences in continuous and categorical variables, respectively 

between patients with measured GFR ≥ 60 ml/min/1.73m2 and those with GFR < 60 ml/min/

1.73m2.

RESULTS

Study Population

We enrolled a total of 134 subjects with cirrhosis of whom 103 completed GFR 

measurement and other study procedures.(9) Multiple clinical variables, summarized in 

Table 1 were rigorously collected for each subject. Table 2 shows the demographic, 

laboratory, and clinical characteristics of the study population. Thirty-three percent of the 

subjects had a measured GFR < 60 ml/min/1.73m2. The proportion of subjects was 

significantly different in GFR groups (measured GFR ≥ vs. < 60 ml/min/1.73m2) when they 

were compared based on severity of ascites (P=0.001) and MELD-Na score (P=0.004). The 

mean values of GFR biomarkers including serum Cr (P<0.0001), cystatin C (P<0.0001) and 

plasma SDMA (P<0.0001) were significantly higher among patients with GFR < 60 ml/min/

1.73m2 compared with those with ≥ 60 ml/min/1.73m2. There was no significant difference 

at the P<0.05 level in age, gender, race, etiology of cirrhosis, diabetes, the presence of 

proteinuria or glomerular disease between patients with measured GFR < 60 and ≥ 60 

ml/min/1.73m2.

Metabolomic Signature

Identification of Metabolomic Signature—We identified 1028 metabolites; of which 

771 were named and 257 were unnamed. Among the 1028 metabolites identified in plasma, 

34 were significantly increased and associated with all of the nine clinical and laboratory 

variables indicative of liver and kidney disease severity. We displayed fold changes of these 

34 metabolites in Figure 1. The highest mean fold change (2.39) was observed for 4-

acetamidobutanoate when subjects with low liver and kidney disease severity were 

compared with those with high disease severity across nine clinical variables. The lowest 

significant mean fold change (1.24) occurred with N1-methyladenosine.

Although creatine (precursor of Cr), beta-alanine, betaine and methionine were not among 

the 34 signature metabolites, we further assessed differences in these metabolites and in 

myo-inositol/creatine ratio among GFR stages, MELD-Na score classes and categories of 

severity of ascites to provide a more accurate mechanistic insight to explain significant fold 

changes in the levels of myo-inositol, 3-ureidopropionate and S-adenosylhomocysteine in 

the metabolomic signature. Mean and P values for these metabolites were as follows: Mean 

myo-inositol/creatine ratio was 0.85, 1.33 and 2.48 in subjects without ascites, diuretic-

sensitive ascites and diuretic-refractory ascites, respectively (P=0.0005); mean myo-inositol/

creatine ratio was 0.84, 2.99, and 2.86 in subjects with measured GFR stages 1+2, 3 and 4, 

respectively (P<0.0001); mean myo-inositol/creatine ratio was 0.68, 1.85, and 1.79 in 
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subjects with MELD-Na score 6–9, 10–19, and 20–40, respectively (P=0.015), mean beta-

alanine level was 1.03, 0.97 and 1.45 in subjects without ascites, diuretic-sensitive ascites, 

and diuretic-refractory ascites, respectively (P=0.001); mean betaine level was 0.87, 1.14 

and 1.75 in subjects with MELD-Na score 6–9, 10–19, and 20–40, respectively (P=0.003); 

mean methionine level was 0.88, 1.04 and 1.69 in subjects with MELD-Na score 6–9, 10–

19, and 20–40, respectively (P=0.001).

Identification of Enriched Pathways Associated with Metabolomic Signature—
Using the metabolites/genes association compiled in the HMDB, we further analyzed 

pathways enriched in the 34 metabolites. Figs 2 and 3 show the metabolite-based enriched 

pathways, in descending order, nucleotide, purine, pyrimidine, amino acid, amino sugar and 

polyamine metabolisms that were significantly associated with the metabolomic signature (P 
values ranged from 2.07E-06 to 0.02919; Q values ranged from 1.86E-05 to 0.02919) and 

their associated pathway network, respectively. Figures 4 and 5 show the 20 most 

significantly associated protein-based enriched pathways (P values ranged from 1.09E-18 to 

7.61E-05; Q values ranged from 3.49E-17 to 7.61E-05) and their associated pathway 

network, respectively.

Associations between Metabolomic Signature and Measured GFR—All 

metabolites were significantly associated with measured GFR (Table 3). The 10 metabolites 

that showed the strongest association with measured GFR based on R–square value, in 

descending order, were erythronate (R-square=0.571, P<0.0001), N6-

carbamoylthreonyladenosine (R-square=0.539, P<0.0001), 1-methylhistidine (R-

square=0.539, P<0.0001), pseudouridine (R-square=0.535, P<0.0001), N-acetylserine (R-

square=0.528, P<0.0001), Cr (R-square=0.525, P<0.0001), 7-methylguanine (R-

square=0.484, P<0.0001), N2-N2-dimethylguanosine (R-square=0.481, P<0.0001), C-

glycosyltryptophan (R-square=0.473, P<0.0001) and myo-inositol (R-square=0.464, 

P<0.0001). When controlled for age, gender and race, erythronate (R=0.594, P<0.0001) and 

N6-carbamoylthreonyladenosine (R=0.591, P<0.0001) showed stronger associations with 

measured GFR compared to Cr (R=0.588, P<0.0001).

Associations between Metabolomic Signature and Mortality—Median follow-up 

was 1.9 years. At last follow-up time, 52 subjects were alive, 34 subjects had died, and 17 

subjects had undergone liver transplantation. Median survival was 4.4 years. Table 4 shows 

the Cox models that assessed the association between 34 metabolites and mortality. Among 

34 metabolites, glucuronate (P=0.0004), 3-ureidopropionate (P=0.0015), S-

adenosylhomocysteine (P=0.0018), trans-aconitate (P=0.0025), 3-(4-hydroxyphenyl)lactate 

(P=0.0032), arabitol/xylitol (P=0.0080), 3-methoxytyramine sulfate (P=0.0155), 

phenyllactate (P=0.0167), N-formylmethionine (P=0.0253), erythronate (P=0.0447), 4-

acetamidobutanoate (P=0.0465), adenosine (P=0.0472), and 7-methylguanine (P=0.0486) 

significantly predicted mortality (Table 4). Among these metabolites, hazard ratio for S-

adenosylhomocysteine, glucuronate, trans-aconitate, 3-ureidopropionate, 3-(4-

hydroxyphenyl)lactate, 3-methoxytyramine sulfate, arabitol/xylitol, N-formylmethionine, 

phenyllactate and 7-methylguanine remained significant after controlling for measured GFR 

and demographics (Table 5).
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Metabolites Associated with Measured GFR Stages, MELD-Na Score Classes and Severity 
of Ascites

In addition to the metabolomic signature that consisted of 34 metabolites that significantly 

increased in both high liver and kidney disease severity groups, we identified several 

metabolites that significantly increased or decreased in either high liver (high MELD-Na 

score, diuretic-refractory ascites) or high kidney disease severity groups (reduced GFR) in 

patients with cirrhosis (Figures 6, 7, 8, and 9). We used volcano plots to assess the 

robustness of association of metabolites with the clinical variables including GFR stages, 

MELD-Na score classes, and severity of ascites (Figure 6). Volcano plots show all 

significant and non-significant metabolites across these clinical variables. As shown in 

Figures 7, 8, and 9, for GFR stages, MELD-Na score classes, and severity of ascites, 

metabolites can reliably separate patient samples based on their clinical profile.

In addition to volcano plots, we used heatmaps to show all metabolites that significantly 

increased or decreased across the clinical variables including GFR stages, MELD-Na score 

classes and severity of ascites. Figure 7 shows the heatmap of the metabolites that 

significantly changed across GFR stages. Figure 8 shows the heatmap of the metabolites that 

significantly changed across MELD-Na score classes. While mean value of several 

metabolite levels shown in the first 2/3 of the heatmap increased in subjects with MELD-Na 

score 20–40 compared with those with lower MELD-Na scores, mean values of several other 

metabolites (e.g. sphingomyelins, glycerophosphocholines [GPC], 

glycerophosphoethanolamines [GPE]) in the last 1/3 of the heatmap decreased (e.g. mean 

sphingomyelin [d18:1/21:0, d17:1/22:0, d16:1/23:0] levels were 1.50, 1.03 and 0.63 in 

subjects with MELD-Na score classes 6–9, 10–19 and 20–40, respectively, P<0.0001; mean 

1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4) levels were 1.21, 0.98, and 0.66 in subjects 

with MELD-Na score classes 6–9, 10–19 and 20–40, respectively, P<0.0001; mean 1-

arachidonoyl-GPE (20:4) levels were 1.35, 1.01, 0.66, P<0.0001). Figure 9 shows the 

heatmap of the metabolites that significantly changed across severity of ascites. While mean 

value of several metabolite levels shown in the first 2/3 of the heatmap significantly 

increased in subjects with diuretic-refractory ascites compared with those without ascites 

and with diuretic-sensitive ascites, mean value of several other metabolites in the last 1/3 of 

the heatmap decreased (e.g. mean sphingomyelin [d18:1/21:0, d17:1/22:0, d16:1/23:0] levels 

were 1.36, 1.03 and 0.89 in subjects without ascites, with diuretic-sensitive ascites and 

diuretic-refractory ascites, respectively, P=0.0007; mean 1-palmitoyl-2-arachidonoyl-GPC 

(16:0/20:4) levels were 1.18, 0.97, and 0.82 in subjects without ascites, with diuretic-

sensitive ascites and diuretic-refractory ascites, respectively, P=0.0002); mean 1-

arachidonoyl-GPE (20:4) levels were 1.24, 1.04, and 0.86 in subjects without ascites, with 

diuretic-sensitive ascites and diuretic-refractory ascites, respectively, P=0.004).

DISCUSSION

GFR was accurately measured in 103 subjects with cirrhosis using the non-radiolabeled 

iothalamate plasma clearance method and 1028 metabolites were simultaneously evaluated. 

This exploration identified 34 unique metabolites which were significantly increased across 

nine important clinical and laboratory variables in subjects with high liver and kidney 
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disease severity compared with those with low disease severity (Figure 1). To our 

knowledge, this preliminary report is the first to describe a distinct metabolomic signature of 

hepatorenal dysfunction and its associated mortality in subjects with cirrhosis. This broad 

metabolomic signature was significantly associated with 9 distinct metabolite-based 

pathways (Figures 2 and 3) and multiple protein-based enriched pathways (Figures 4 and 5) 

that are elaborated upon below. We also identified several metabolites that significantly 

increased or decreased in patients with high liver disease severity (high MELD-Na score, 

diuretic-refractory ascites) or high kidney disease severity (Figures 6, 7, 8, and 9). This 

preliminary report will serve as a foundation to refine these findings into a concise 

metabolomic profile that could be utilized clinically to make important management 

decisions.

This study found that the pathway with the strongest association with the metabolomic 

signature of hepatorenal dysfunction was ascorbate and aldarate metabolism. Signature 

metabolites associated with this pathway included 4-acetamidobutanoate, glucuronate, 

gamma-glutamylphenylalanine and myo-inositol. Among all metabolites, 4-

acetamidobutanoate, which is urea cycle product (24–26) had the highest significant mean 

fold change when subjects with low liver and kidney disease severity were compared with 

those with high liver and kidney disease severity across nine clinical variables (Figure 1). It 

has been previously reported that plasma 4-acetamidobutanoate is elevated in patients with 

reduced renal function.(38) Our findings showed that 4-acetamidobutanoate was associated 

with several key metabolic pathways including ascorbate and aldarate metabolism, arginine 

and proline metabolism, histidine metabolism, lysine degradation and phenylalanine 

metabolism. 4-acetamidobutanoate, is also reported to be a gamma-aminobutyric acid 

(GABA) derivative.(24–26) GABA is an inhibitory neurotransmitter of the nervous system.

(39) In cirrhosis, there is increased GABAergic tone resulting in hepatic encephalopathy.(39) 

Enhanced GABAergic tone (39) may also explain increased levels of 4-acetamidobutanoate 

in high liver and kidney disease severity groups (Figures 1, 7, 8, and 9) in patients with 

cirrhosis. However, lack of sufficient data related to a relationship between 4-

acetamidobutanoate and GABA limits further interpretation.

Glucuronate was most significantly associated with mortality; subjects with high plasma 

glucuronate level were 2.34 times more likely to die than those with low glucuronate levels 

(P=0.0004) (Table 4). Glucuronate is a carboxylic acid used extensively in phase II 

conjugation reactions in the liver and, to a lesser extent, in other organs (24–26) and is an 

intermediate product in the catabolism of myo-inositol.(40) The increased risk of death 

associated with increased levels of glucuronate (Tables 4 and 5) could correlate with altered 

glucuronidation in the liver (41) and/or increased beta-glucuronidase activity by the gut 

microbiota (e.g. Echerichia coli).(42) A study conducted using healthy and cirrhotic human 

livers showed the rate of glucuronidation was reduced in cirrhosis and in turn, impacted drug 

clearance.(41)

We found significant fold changes in the mean levels of myo-inositol when we compared the 

subjects with high liver and kidney disease severity to low disease severity. Serum and 

urinary myo-inositol levels have long been advocated as a sensitive and specific indicator of 

kidney function (43) and may be important in the setting of hepatorenal dysfunction, too. 

Mindikoglu et al. Page 11

Transl Res. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Myo-inositol is a cyclic polyalcohol that plays a key role in the synthesis of several 

secondary messengers. (24–26, 40) It is normally catabolized by the kidney.(24–26, 40) It is 

synthesized from D-glucose and has osmotic properties.(40, 44) Glucuronate is an 

intermediate product in the catabolism of myo-inositol.(40) We conclude that increased 

levels of glucuronate levels in subjects with high liver and kidney disease severity can be 

explained by increased breakdown of excess myo-inositol, which is consistent with findings 

by Tsalik et al.(38) who showed that plasma glucuronate levels were elevated in patients 

with renal dysfunction and consistent with findings from Suhre et al.(45) who reported the 

myo-inositol to be increased in urine samples of renal transplant patients with acute cellular 

rejection compared to control subjects. As the catabolism of myo-inositol occurs only in the 

kidney (40), significantly elevated plasma myo-inositol levels in our subjects with high 

disease severity can be an indicator of severe kidney injury.

We also found significantly elevated mean plasma myo-inositol/creatine ratio in subjects 

with high liver and kidney disease severity compared with low liver and kidney disease 

severity and this ratio was directly proportional to the severity of ascites (surrogate marker 

of portal hypertension), measured GFR stages and MELD-Na score categories. Higher myo-

inositol levels observed in subjects with high liver and kidney disease severity compared 

with those with low disease severity might be either secondary to renal dysfunction due to 

impaired myo-inositol catabolism as mentioned above or myo-inositol efflux to extracellular 

compartment secondary to hyperammonemia. By performing proton MR spectroscopy in 14 

subjects with cirrhosis without overt encephalopathy, Shawcross et al.(44) showed lower 

cerebral myo-inositol/creatine (precursor of creatinine) ratio in subjects with cirrhosis who 

showed deterioration in memory test compared to those who did not. Based on those results, 

the authors suggested that myo-inositol efflux from astrocytes buffered increased 

hyperammonemia.(44) Therefore, the deterioration in memory test and development of 

hepatic encephalopathy in hyperammonemia was because of the impaired capacity of the 

brain to maintain the osmotic equilibrium by sufficient myo-inositol efflux from astrocytes 

rather than the degree of hyperammonemia per se (44). Our findings are in line with this 

study.

We found significant fold changes in 3-(4-hydroxyphenyl)lactate, phenyllactate and gamma-

glutamylphenylalanine levels in subjects with high liver and kidney disease severity 

compared with low liver and kidney disease severity. Additionally, increased 3-(4-

hydroxyphenyl)lactate and phenyllactate levels were associated with substantial mortality 

[(3-(4-hydroxyphenyl) lactate, HR=2.63, P=0.0032; phenyllactate, HR=1.56, P=0.0167] 

(Table 4). Consistent with a previous report of impaired function of phenylalanine 

hydroxylase in cirrhosis (46), our findings suggest that dysfunction of the phenylalanine 

hydroxylase pathway exists and results in increased phenylalanine concentrations. 

Phenylalanine is transformed to tyrosine via phenylalanine hydroxylase which is a rate-

limiting enzyme in phenylalanine catabolism.(24–26, 46) In phenylketonuria, which presents 

with intellectual disabilities and neurological symptoms, there is a deficiency of 

phenylalanine hydroxylase and therefore, phenylalanine is converted into phenylpyruvic acid 

instead of tyrosine. (24–26, 47) Phenylpyruvic acid is a precursor of phenyllactate. (24–26) 

High levels of 3-(4-hydroxyphenyl)lactate and phenyllactate observed in our subjects in high 

disease severity categories suggest dysfunction of phenylalanine hydroxylase resulting in 
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increased phenylalanine concentrations. Indeed, impaired function of phenylalanine 

hydroxylase in cirrhosis was previously reported.(46) We also found significant fold changes 

in the mean values of gamma-glutamylphenylalanine levels when subjects with high liver 

and kidney disease severity were compared with those with low liver and kidney disease 

severity. Increased gamma-glutamylphenylalanine levels in subjects with high liver and 

kidney disease severity could be due to excessive phenylalanine accumulation. Gamma-

glutamylphenylalanine is a gamma-glutamyl amino acid that is possibly synthesized from 

glutathione and phenylalanine via transpeptidation reaction by gamma-glutamyl 

transpeptidase (GGT).(48) Indeed, in 1970’s, Orlowski and Wilk (48) showed that 

administration of L-phenylalanine resulted in detection of gamma-glutamylphenylalanine in 

the liver. Excessive phenylalanine accumulated due to phenylalanine hydroxylase 

dysfunction would saturate large neutral amino acid transporter (LNAAT) that moves large 

neutral amino acids across the blood-brain barrier and thereby prevent passage of large 

neutral amino acids to brain.(47) In 1978, Morgan et al.(49) showed that lower plasma ratio 
of valine+leucine+isoleucine to phenylalanine+tyrosine correlated with the severity of the 

liver disease independent of hepatic encephalopathy. McPhail et al.(50) found significantly 

higher phenylalanine levels in subjects with decompensated cirrhosis who did not survive 

compared to those with decompensated cirrhosis who survived and healthy controls. As 

such, we conclude that the accumulation of 3-(4-hydroxyphenyl)lactate and phenyllactate 

could be an important predictors of mortality and points to specific hypotheses to be tested.

S-adenosylhomocysteine levels were found to be significantly elevated in this study’s 

subjects with high liver and kidney disease severity and these subjects were 2.73 times more 

likely to die than subjects with low S-adenosylhomocysteine levels (P=0.0018) (Table 4). 

This finding suggested that transmethylation reactions were impaired because elevated levels 

of S-adenosylhomocysteine were shown to inhibit transmethylation reactions.(51–53) The 

liver is one of the principal organs for methylation reactions producing the large amounts of 

the S-adenosyl-L-methionine, the key methyl donor.(51–53) DNA methylation is one of the 

critical steps in protecting against overall genomic hypomethylation, a feature known to 

predispose to malignant transformation.(51, 52) Inhibition of transmethylation can also 

occur if the ratio of S-adenosylmethionine: S-adenosylhomocysteine is reduced(51, 54) and 

may increase hepatic tumor necrosis factor-alpha levels, caspase-8 activity, and contribute to 

cell death.(54) The pathway analysis showed that methylation was among the five most 

significant pathways associated with the metabolomic signature (Figure 4).

We also found significantly elevated methionine levels in subjects with MELD-Na between 

20 and 40 which suggests down-regulation of MAT1A or dysfunction of the enzyme 

methionine adenosyltransferase (MAT) (P=0.001). The MAT which synthesizes S-

adenosylmethionine from methionine and Adenosine triphosphate (ATP) is the gene product 

of MAT1A.(51, 52) Interestingly, Lu et al.(51, 55) showed that MAT1A knockout mice 

developed non-alcoholic steatohepatitis and hepatocellular carcinoma. Considering these 

findings and previous experimental model studies, supplementation of S-

adenosylmethionine in decompensated cirrhosis might be considered.

We found elevated mean betaine (P=0.003) and methionine (P=0.001) levels in subjects with 

higher MELD-Na scores. We also found increased S-adenosylhomocysteine levels in 
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subjects with high liver and kidney disease severity and this can also be due to down-

regulation of the enzyme betaine homocysteine methyltransferase (BHMT). BHMT was 

shown to be down-regulated in bile duct ligation-induced cirrhosis in rats (56) and down-

regulation of BHMT may result in accumulation of betaine and homocysteine, reduction in 

hepatic S-adenosylmethionine levels, hypomethylated DNA, and altered transcriptional 

activity.(56) Betaine functions as a methyl donor and methylates homocysteine to generate 

methionine, a process that produces N, N-dimethylglycine.(27, 51, 56–60) Increased betaine 

and methionine levels in subjects with cirrhosis at increased risk of death suggests the 

possibility that BHMT levels, its activity, or that of another methionine cycle enzyme may 

be altered. In addition to down-regulation of BHMT, up-regulation of BHMT was also 

reported in cirrhosis.(61) Up-regulation of BHMT may result in depletion of betaine in 

cirrhosis.(57, 61, 62) Several studies showed a beneficial effect of supplementary betaine in 

animal models of cirrhosis.(61–63) Betaine supplementation can reduce S-

adenosylhomocysteine levels, and increase S-adenosylmethionine.(61, 62) Together, our 

findings support significant alterations in methylation pathways at multiple enzymatic levels 

in advanced cirrhosis (Figures 4 and 5) and merit further investigations.

This study is also the first to report the signature metabolites that were independent 

predictors of measured GFR in cirrhosis (Table 3). We found that all the metabolites in the 

signature significantly predicted measured GFR (Table 3). Among these metabolites, 

erythronate, N6-carbamoylthreonyladenosine, 1-methylhistidine, pseudouridine, and N-

acetylserine showed stronger associations with measured GFR compared to Cr (Table 3). 

Erythronate, which is an organic acid that originates from different sources including 

glycated proteins, ascorbic acid breakdown or oxidation of N-acetyl-D-glucosamine (24–26) 

showed the strongest association with measured GFR among all metabolites with or without 

controlling for age, sex and race (P<0.0001). A metabolome-wide study conducted in a 

general population by Sekula et al.(64) identified significant associations between 

pseudouridine, erythronate, n-acetylalanine, and myo-inositol and estimated GFR. Similarly, 

a plasma metabolomic profile of subjects with diabetes mellitus type II showed that 

pseudouridine and myo-inositol accurately discriminated those who progressed to end-stage 

renal disease.(65) Tsalik et al.(38) showed that increased plasma concentrations of 

erythronate, pseudouridine, and N6-carbamoylthreonyladenosine were associated with 

reduced renal function. Elevated pseudouridine levels were previously reported in uremia.

(66) In regards to N6-carbamoylthreonyladenosine, the carbamylation, a form of post-

translational modification of amino acids or proteins, was shown to occur frequently in 

chronic renal failure. (67) In a study conducted in 158 subjects with diabetes mellitus type I, 

chronic kidney disease stage 3 and proteinuria, N6-carbamoylthreonyladenosine, 

pseudouridine, and N-acetylserine were shown to predict development of end-stage renal 

disease.(68) Our results are in line with the findings of these studies (Table 3).

The metabolic signature showed increased levels of several N-acetylated amino acids 

including N-acetylserine, N-acetylvaline, N-acetylalanine, and N-acetylputrescine in 

subjects with high liver and kidney disease severity compared with low liver and kidney 

disease severity. Our results also showed that N-acetylserine, N-acetylalanine, N-

acetylvaline, and N-acetylputrescine were independent predictors of GFR. Sekula et al.(64) 

previously reported that N-acetylalanine was associated with reduced estimated GFR; our 
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findings have confirmed that using measured GFR by iothalamate plasma clearance. 

Increased urinary excretion of N-acetylated amino acids were reported in patients with a 

deficiency of aminoacylase 1 (ACY1) that hydrolyzes N-acetylated proteins.(69) ACY1-

deficient individuals were reported to have psychomotor delays.(69) It remains to be 

determined whether there is ACY1 dysfunction in cirrhosis and whether increased 

concentration of N-acetylated amino acids play a role or contributes in hepatic 

encephalopathy.

This study is also the first to report several metabolomic predictors of mortality in cirrhosis 

independent of kidney function (Tables 4 and 5). As mentioned above, glucuronate, 3-(4-

hydroxyphenyl)lactate and S-adenosylhomocysteine were significantly associated with 

mortality independent of kidney disease which itself is a strong predictor of mortality in 

patients with and without cirrhosis.(70, 71) 3-Ureidopropionate was another metabolite that 

strongly predicted mortality in cirrhosis independent of kidney disease. Beta-

ureidopropionase is a bidirectional enzyme that catalyzes the conversion of 3-

ureidopropionate to beta-alanine and/or; beta-alanine to 3-ureidopropionate.(24–26) 

Deficiency of beta-ureidopropionase, an inborn error in the pyrimidine metabolism, results 

in elevated 3-ureidopropionate levels and presents with mental and psychomotor retardation.

(72) Beta-alanine functions as a GABAA receptor agonist and may increase in hepatic 

encephalopathy.(73, 74) Based on these findings, significant fold changes in the mean value 

of 3-ureidopropionate levels in high liver and kidney disease severity categories can be 

either secondary to dysfunction of the beta-ureidopropionase enzyme or elevated beta-

alanine levels in subjects with high liver and kidney disease severity categories or a 

combination of these two factors. We found increased beta-alanine levels in subjects with 

cirrhosis and diuretic-refractory ascites compared with those without ascites and with 

diuretic-sensitive ascites (P=0.001). These findings suggest that increased beta-alanine levels 

could be the source of elevation in 3-ureidopropionate levels in subjects with high liver and 

kidney disease severity categories.

When all the metabolites were analyzed in comparison to MELD-Na score classes (Figure 8) 

and severity of ascites (Figure 9), we observed significantly and concordantly decreased 

levels of several sphingomyelins, glycerophosphocholines and 

glycerophosphoethanolamines in subjects with high MELD-Na scores and diuretic-

refractory ascites compared with those with lower MELD-Na scores and lower severity of 

ascites and this may be due to either reduced synthesis or increased breakdown of these 

molecules. Sphingomyelins play important roles in both membrane stabilization and lipid 

signaling.(75, 76) In our cohort, the association between increased levels of sphingomyelin 

and decreased risk of death may suggest a better capacity for maintaining lipid signaling 

(ceramide utilization), membrane stability, and reduced endoplasmic reticulum stress.(75, 

76) Similarly, Zheng et al.(77), reported negative correlation between sphingolipids and 

MELD score in patients with hepatitis B cirrhosis while another study by Grammaticos et al.
(78) showed negative correlation between serum concentrations of long-chain and very long-

chain ceramides and severity of cirrhosis. Consistent with our findings, McPhail et al.(50) 

reported a negative correlation between lysophosphatidylcholines and phosphatidylcholines 

and mortality, and attributed this to hepatocyte death.
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Our exploratory study had two significant strengths including direct measurement of GFR 

and use of a robust metabolomic platform (Metabolon, Inc. (Durham, NC)), but had several 

limitations to be subsequently addressed in subsequent studies that will include and larger 

sample size, internal and external validations cohorts. None of the biomarkers have yet to be 

serially tested; therefore, it is difficult to ascribe a high degree of confidence to any isolated 

analytical outcome separate from the multivariate signature. Furthermore, the metabolomic 

signature described above may not apply to other etiologies of liver disease, beyond our 

population with cirrhosis studied herein, as it is not yet known how these biomarkers would 

change. We excluded subjects with cirrhosis with AKI and chronic kidney disease stage 5 

because the iothalamate GFR measurements required steady-state renal function that could 

not be adjusted for. The requirement for steady-state renal function for GFR measurements 

limited our ability to enroll more subjects with higher MELD-Na scores. Whereas the study 

was appropriately powered for quantitative clinical variables split over the median value, for 

categorical variables, some categories were comprised of relatively few patients; a larger 

cohort might provide additional insights into informative metabolites.

In conclusion, we identified a unique metabolomic signature associated with hepatorenal 

dysfunction in cirrhosis. Specific pathways including ascorbate and aldarate metabolism, 

methylation and cellular glucuronidation showed the strongest association with this 

metabolic signature. Metabolites including 4-acetamidobutanoate, erythronate, 

pseudouridine, glucuronate, S-adenosylhomocysteine, myo-inositol, glutamylphenylalanine, 

3-(4-hydroxyphenyl)lactate, phenyllactate and ureidopropionate along with other 

metabolites in the signature provide mechanistic insights into altered metabolism in 

hepatorenal dysfunction in cirrhosis. This study provides the rationale to target several of 

these newly identified metabolomic biomarkers, either alone or in combination to develop 

better evaluative approaches and new therapeutics in patients with cirrhosis and renal 

dysfunction.

BRIEF COMMENTRY

Background

There is an unmet need to developing accurate biomarkers to conveniently assess renal 

function and extent of kidney damage in patients with cirrhosis, because serum creatinine 

alone is insufficient to give true clinical assessments. Specifically, accurate estimation of 

glomerular filtration rate, differentiation of hepatorenal syndrome from acute tubular 

necrosis, identification of response to vasoconstrictive treatment, and prediction of 

recovery of renal function remain major challenges in managing cirrhosis.

Translational Significance

This study provides the rationale to target several of the newly identified metabolites, to 

develop better evaluative approaches and new therapeutics in patients with cirrhosis and 

renal dysfunction.
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Figure 1. 
Among the 1028 metabolites identified in plasma, 34 were significantly increased and 

associated with all the nine clinical and laboratory variables indicative of liver and kidney 

disease severity.
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Figure 2. 
Figure shows the metabolite-based enriched pathways, in descending order, nucleotide, 

purine, pyrimidine, amino acid, amino sugar and polyamine metabolisms that were 

significantly associated with the metabolomic signature (hypergeometric distribution; Q 
values ranged from 1.86E-05 to 0.02919).
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Figure 3. 
Pathway network representation of the metabolite-based enriched pathways for the 34 

metabolites associated with low vs. high liver and kidney disease severity. Nodes correspond 

to significant pathways, with node size associated with the number of significant metabolites 

in each pathway; edges indicate common metabolites between two pathways. We identified 

significant groups of processes including a) polyamine metabolism and amino acid; b) 

purine metabolism, pyrimidine metabolism, and nucleotides.
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Figure 4. 
Figure shows the 20 most significantly associated protein-based enriched pathways in 

descending order of significance (hypergeometric distribution; Q values ranged from 

3.49E-17 to 7.61E-05).

Mindikoglu et al. Page 25

Transl Res. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Network of enriched pathways for the 34 metabolites associated with low vs. high hepatic 

and kidney disease severity, based on functionally-related proteins. Nodes correspond to 

significant pathways, with node size associated with the number of associated proteins in 

each pathway; edges indicate common proteins between two pathways. We identified 

significant groups of processes including a) methylation; b) glucuronidation; c) GABA-ergic 

pathways.
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Figure 6. 
Volcano plots for the statistical analysis of metabolites vs clinical variables. Shown in the 

figure are the scatterplots of P value as a function of fold change for severity of ascites, GFR 

stages, and MELD-Na score classes. Overall, the plots show robust separation of metabolite 

values with clinical variables. Red color: significant metabolites. Gray color: detected 

metabolites, not significant.
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Figure 7. 
Figure shows the heatmap of the metabolites that significantly changed across GFR stages.
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Figure 8. 
Figure shows the heatmap of the metabolites that significantly changed across MELD-Na 

score classes. While mean value of several metabolite levels shown in the first 2/3 of the 

heat map increased in subjects with MELD-Na score 20–40 compared with those with lower 

MELD-Na scores, mean values of several other metabolites (e.g. sphingomyelins, 

glycerophosphocholines and glycerophosphoethanolamines) in the last 1/3 of the heat map 

decreased.
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Figure 9. 
Figure shows the heatmap of the metabolites that significantly changed across severity of 

ascites. While mean value of several metabolite levels shown in the first 2/3 of the heat map 

significantly increased in subjects with diuretic-refractory ascites compared with those 

without ascites and with diuretic-sensitive ascites, mean value of several other metabolites 

(e.g. sphingomyelins, glycerophosphocholines and glycerophosphoethanolamines) in the last 

1/3 of the heat map decreased.
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Table 1

Categories of Clinical and Laboratory Variables Stratified Based on Low and High Liver and Kidney Disease 

Severity

Clinical Variables Low Disease Severity Groups vs. High Disease Severity Groups

Measured GFR (ml/min/1.73m2) ≥ 60 (N=69) vs. < 60 (N=34)

Measured GFR Stages* (ml/min/1.73m2)

Stage 1+2 (N=69) vs. Stage 3 (N=32)

Stage 1+2 (N=69) vs. Stage 4 (N=2)

Stage 3 (N=32) vs. Stage 4 (N=2)

Creatinine (mg/dL) < 0.815 (N=51) vs. ≥ 0.815 (N=52)

Cystatin C (mg/L) < 1.04 (N=51) vs. ≥ 1.04 (N=52)

Symmetric Dimethylarginine (micromole/L) < 0.669 (N=51) vs. ≥ 0.669 (N=52)

Ascites Status Absent (N=32) vs. Present (N=71)

Severity of Ascites

No ascites (N=32) vs. Diuretic-Sensitive (N=38)

No ascites (N=32) vs. Diuretic-Refractory (N=33)

Diuretic-Sensitive (N=38) vs. Diuretic-Refractory (N=33)

MELD-Na Score Categories

6–9 (N=26) vs. 10–19 (N=61)

6–9 (N=26) vs. 20–40 (N=16)

10–19 (N=61) vs. 20–40 (N=16)

MELD-Na Score < 12.924 (N=51) vs. ≥ 12.924 (N=52)

*
Measured GFR stages (stage 1: GFR ≥ 90, stage 2: GFR ≥ 60 to < 90, Stage 3: GFR ≥ 30 to <60, Stage 4: GFR ≥ 15 to < 30)
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Table 2

Characteristics of 103 Subjects with Cirrhosis Stratified by Measured GFR

Characteristics

GFR ≥ 60 ml/min/
1.73m2

GFR < 60 ml/min/
1.73m2

P ValueN (%) N (%)

69 (67) 34 (33)

Gender
Male 40 (58) 18 (53)

0.676
Female 29 (42) 16 (47)

Race
Non-Black 53 (77) 24 (71)

0.630
Black 16 (23) 10 (29)

Etiology of Cirrhosis Hepatitis C 28 (41) 14 (41) 0.466

Hepatitis B 3 (4) 0 (0)

Alcohol 18 (26) 12 (35)

Nonalcoholic fatty liver disease 13 (19) 5 (15)

Primary biliary cholangitis 2 (3) 0 (0)

Primary sclerosing cholangitis 1 (1) 1 (3)

Autoimmune hepatitis 3 (4) 0 (0)

Sarcoidosis 0 (0) 1 (3)

Sickle cell disease 0 (0) 1 (3)

Hemochromatosis 1 (1) 0 (0)

Ascites

No ascites 29 (42) 3 (9)

0.001Diuretic-sensitive 23 (33) 15 (44)

Diuretic-refractory 17 (25) 16 (47)

MELD-Na score

6–9 24 (35) 2 (6)

0.00410–19 36 (52) 25 (74)

20–40 9 (13) 7 (21)

Proteinuria (> 0.5 g/24 hours) Yes 4 (6) 3 (9) 0.686

Glomerular disease (spot urine protein/
creatinine ratio ≥ 0.2) Yes 11 (17) 8 (24) 0.428

Diabetes Yes 21 (30) 9 (26) 0.819

Hypothyroidism Yes 7 (10) 4 (12) 1.000

Mean (SD) Mean (SD) P Value

Age (yr) 53.55 (9.06) 56.53 (8.15) 0.112

Weight (kg) 87.23 (18.9) 76.45 (17.92) 0.007

Height (m) 1.69 (0.09) 1.68 (0.1) 0.456

Body-surface area (m2) 1.97 (0.21) 1.85 (0.23) 0.012

MELD-Na score 12.25 (5.11) 16.12 (4.82) 0.0004
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Characteristics

GFR ≥ 60 ml/min/
1.73m2

GFR < 60 ml/min/
1.73m2

P ValueN (%) N (%)

69 (67) 34 (33)

Total bilirubin (mg/dL) 2.01 (2.12) 3.41 (5.88) 0.193

Prothrombin time (sec) 17.24 (3.53) 17.11 (2.74) 0.844

International normalized ratio 1.37 (0.37) 1.35 (0.29) 0.768

Serum albumin (g/dL) 3.08 (0.51) 3.07 (0.61) 0.937

BUN (mg/dl) 11.75 (6.93) 19.94 (9.28) <0.0001

Serum sodium (mmol/L) 137.09 (3.95) 136.68 (3.19) 0.603

Measured GFR (ml/min/1.73m2) 96.48 (31.74) 47.38 (9.25) <0.0001

Cr (mg/dL) 0.74 (0.2) 1.22 (0.35) <0.0001

Cystatin C (mg/L) 0.96 (0.27) 1.61 (0.43) <0.0001

SDMA (micromole/L) 0.65 (0.19) 1.07 (0.43) <0.0001

SD=Standard deviation
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