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Abstract

The tongue’s deformation during speech can be measured using tagged magnetic resonance 

imaging, but there is no current method to directly measure the pattern of muscles that activate to 

produce a given motion. In this paper, the activation pattern of the tongue’s muscles is estimated 

by solving an inverse problem using a random forest. Examples describing different activation 

patterns and the resulting deformations are generated using a finite-element model of the tongue. 

These examples form training data for a random forest comprising 30 decision trees to estimate 

contractions in 262 contractile elements. The method was evaluated on data from tagged magnetic 

resonance data from actual speech and on simulated data mimicking flaps that might have resulted 

from glossectomy surgery. The estimation accuracy was modest (5.6% error), but it surpassed a 

semi-manual approach (8.1% error). The results suggest that a machine learning approach to 

contraction pattern estimation in the tongue is feasible, even in the presence of flaps.
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1. INTRODUCTION

Muscular contraction elicits tissue motion, which is necessary for a number of vital 

processes—for instance, cardiac contraction enables blood pressurization and tongue 

movement enables speech generation.1,2 In the tongue, muscular activation patterns 

correspond to the spatial distribution of active tone (among several intrinsic and extrinsic 

muscles3), which generates the internal forces necessary to produce motion.2 Activation 

patterns are sensitive to voluntary motion and reflexes, and can be affected by disease 

progression and procedures; thus, activation pattern characterization is of interest for 

improving our understanding of the processes on which the tongue is involved.4–6

In the absence of methods for direct characterization, activation patterns can be estimated 

from electrical activity in the muscles, or inferred from tissue deformation extracted via 
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tagged magnetic resonance imaging (MRI).7,8 Imaging methods are considered less invasive 

and more reliable.8 The deformation-based estimation process comprises a forward 
biomechanical simulator and an iterative law that applies changes to the input of the 

simulations.9 The forward simulations output a deformation field given a candidate 

activation pattern, while the iterative law updates candidate patterns until there is agreement 

between the simulated and experimentally measured deformation. The process generally 

uses numerical optimization according to an objective metric.9 Because the update 

component makes deformation the input and contraction the output, this approach is known 

as inverse modeling.

Optimization-based inverse modeling must also require regularization to achieve a stable 

solution.9 For instance, the muscular mass can be subdivided into regions, which are 

assumed to contract uniformly and smoothly with respect to time.4 Regularization limits the 

number of possible activation patterns from which an estimated can be generated (the 

solution space); for instance, if muscular subdivisions are imposed, the output is limited to 

specific regions. Since accurate subdivisions are difficult to achieve in abnormal anatomy, 

there is a need for methods that can handle larger solution spaces, yielding more accurate 

solutions.9,15

In principle, machine learning approaches can enable the analysis of abnormal anatomy by 

including examples of abnormal activation patterns (and deformations) as training data.10 In 

lieu of direct observations of activation (not yet possible) and tongue deformation in 

patients, these data can be synthesized using a forward biomechanical model. That said, the 

set of contractions used for the training should be in some way feasible—and this 

requirement results in a constraint of the solution space similar to regularization in 

numerical optimization. However, unlike optimization (where regularization is necessary to 

achieve a stable solution), machine learning methods can be expanded almost arbitrarily. 

Although biomechanical model inversion via machine learning is promising, there are very 

few testing architectures that incorporate modeling, machine learning, and experimental data 

for training and regression.

In this paper, we illustrate a machine-learning pipeline for inverse simulation of tongue 

dynamics. The goal of the study is to present the basic concepts used to build the pipeline, 

demonstrating their compatibility with experimental data. Intuitively, given the number of 

muscles in the tongue at different contraction levels,3 the possible contraction configurations 

give rise to a massive solution space. For this reason, we also explore strategies for 

expanding the training database to eventually identify areas with contractile deficiencies 

(flaps).

2. METHODS

2.1 Inversion Pipeline

The proposed inverse modeling pipeline contains a machine-learning regression engine, a 

forward model, and a contractile pattern generator. Depending on its immediate use, these 

components can be configured for prediction or training, as shown in Fig. 1.
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In its prediction state, the pipeline outputs a contraction pattern based on a deformation field. 

Contractions are defined as forces along the local fiber orientation (i.e. projections of the 

stress tensor); these forces are normalized as a percentage of the maximum theoretical 

sarcomertic force.11,12 Deformation fields consist of the local strain tensor (which is a 

tensorial measure of deformation) projected in the line of actions of local tissue fibers. 

Unlike contractile forces, strains and fiber orientations can be obtained experimentally from 

medical imaging via motion estimation and diffusion tensor MR, irrespectively.7,8 Note also 

that strain patterns can be obtained from a simulation to verify accuracy. Predictions are 

generated using random forest (RF) regression,10 and was deployed via MATLAB scripts 

(v2005a, Mathworks, Natick, MA, USA) using the Statistics and Machine Learning 

Toolbox. The RF consisted of 30 decision trees with a depth of 5 observations, which 

operate independently on features corresponding to 262 contractile elements in Fig. 2. Since 

most elements contained two orthogonal fiber orientations the length of the strain-activation 

feature array was 524-by-2.

During training, contraction data is used as an input to the forward simulator to obtain 

simulated deformation, and thus creating a contraction-simulation pair. The forward model 

was constructed using the FEBio Software suite.13 More information about tongue modeling 

including geometry, material directionality, material parameters, can be obtained in the 

literature.?,9,15 Contraction data is generated using the contractile pattern generator, which 

can contain different application-specific synthesis approaches, which are referred 

henceforth as training schedules. Depending of the experiment detailed in the next Section, 

training schedules were designed based on a priori knowledge anatomical knowledge, 

arbitrary synthesis rules, or a combination of the two. Construction of training datasets is 

iterative, and termination is achieved by completion of a given number of training samples, 

or by approximating the amount of new information provided by each sample when 

compared to existing data.

2.2 Experiments

2.3 Contraction Patterns from Tagged MRI

The goal of this experiment was estimating contraction patterns based on experimental data. 

Displacement information was obtained from a stack of tagged MRI images from a healthy 

volunteer using regularized harmonicbased analysis.7,16 Tagged MRI images were acquired 

in a 3T scanner using a complementary spatial modulation of magnetization (CSPAMM) 

sequence, and comprised 10 coronal slices, 7 sagittal slices, 256 × 256 pixels at a resolution 

of 1.9×1.9 mm per pixel. The images were acquired as the volunteer pronounced the 

utterance ə-suk (“a-souk”). The time frames corresponding to each sound were identified by 

the timing of the acquisition.

The RF regression training schedule assumed a healthy muscle positioning and fiber 

orientations according to the literature.3,17 Training was performed with a generic model 

based on a tongue atlas,18 which was later registered to the subject’s anatomy. The pattern 

generator was programmed to produce uniform contraction of 8 functional groups associated 

with 6 tongue muscles (Fig. 2b). The training data consisted of randomly sampling 50% of 

an equally spaced, 6-dimensional lattice, which represented combinatorial contraction of the 
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muscles at 4 levels (4096 simulations). Data generation which took approximately 10 hours, 

and training took roughly 5 minutes.

The first step of the analysis was calibration to account for size differences between the 

generic and subject-specific model. Calibration focused on two time frames corresponding 

to /ə/ (the sound “uh” as in “hut”), which was the reference configuration, and /s/ (the “s” as 

in ‘sierra’)—the deformed configuration. Experimentally observed strains Sexp were fed to 

the RF regression assemble, and the resulting contractions were simulated using the forward 

model, which produced Stest. Error was calculated using

ε = 100 × S − S
S

, (1)

where Ŝ is the estimate and S is the reference. Error, and the correlation between Stest and 

Sexp (with Sexp being the reference) were calculated to produce a scaling factor. This factor 

was obtained with and without averaging per muscle groups (i.e., using either of the models 

in Figs. 2b–c). The factor yielding the lowest error was kept for other time frames after 

calibration. For comparison, an additional simulation Sm of the calibration time frame was 

obtained using a semi-manual approximation of contraction as described in previous work.16

2.4 Activation Estimation with Contractile Deficiencies

The goal of this experiment was to test different training schedules for predicting contraction 

patterns with areas exhibiting contractile deficiency. These areas may be tissue grafts (flaps) 

introduced after tumor removal, or may arise from changes in innervation.19 It is assumed 

that either of these cases result in areas where no contraction occurs; thus, for simplicity, 

they are henceforth referred as flaps. It is also assumed that flaps are a subset of contraction 

patterns arising from those introduced in the previous section; Hence, the experiments were 

based on one seed contraction pattern without any flaps. The idea is that, in practice, the 

method in Section 2.3 can be used to achieve a coarse approximation of the overall 

contraction pattern (the seed), and the subset of data (versions of the seed containing flaps) 

can be used to refine the approximation in a second regression.

We aimed at characterizing prediction error as a function of the size of training datasets 

constructed following the training schedules described below. Initially, the training datasets 

contained the seed contraction pattern replicated a total of 50 times, which allowed setting 

up the minimum number of decision trees in the regressors (30) without any errors. The seed 

contraction pattern consisted of 32% contraction in the transversalis muscle, and 27% 

contraction in the verticalis muscle. The model shown in Fig. 2c was then used to generate 

training data according to the following training schedules (Fig. 3):

1. Control—Data was added at random directly from the training dataset in Section 2.3. 

These data are largely dissimilar to the seed. The control dataset represents a type of worse-

case scenario, since additional training data would not increase the accuracy of the regressor 

in cases with flaps.
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2. Random Assignment—Training data was generated by modifying the seed 

contraction pattern by randomly selecting a group of neighboring elements within the tongue 

model and rendering it inactive. In other words, each discrete set of inactive elements 

models a discrete flap placed at random. This training schedule had two variations: random 

assignment of flaps within the middle third of the tongue, which is one of the most common 

location of tumors,21 and across all active muscles. These variations are respectively referred 

as focused and general.

3. Wavelet Patterns—The seed was projected from the FE model onto a grid, forming a 

pseudo-image of the seed contraction pattern. Then, the pseudo-image underwent a third-

order wavelet decomposition, isolating geometrical features at different length scales. 

Wavelet coefficients associated with the size of the flap were modified using a random 

distribution. The resulting contraction pattern (a modification of the seed) was used to 

generate training data. This training schedule had the same (focused and general) variations 

described previously, which were implemented by applying wavelet transformations directly 

to the seed (general), or to a version of the seed with a flap (focused).

Training was terminated after a fixed number of new feature arrays were added to training 

data sets. Data generation ranged from 1–2 hours, and including time require for regressions 

on each iteration of new feature addition to the training data sets, the experiments ranged 

from 4–10 hours.

The training schedules were used to approximate contractions of five focused test cases. The 

focused test cases were kept separate from the training data, and represented versions of the 

seed contraction pattern with flaps. Percentage error was calculated using (1) applied across 

the entire tongue model. The Random Assignment training schedule was also tested using 

randomly assigned general test cases, since it is more useful for the regression to work in the 

general, rather than just the focused cases.

3. RESULTS AND DISCUSSION

3.1 Contraction Patterns from Tagged MRI

Preliminary activation estimates based on displacements from tagged images are illustrated 

in Fig. 4.

The initial calibration error between Sexp and Stest was 6.3%—an improvement over the 

semi-manual approach, which yielded 8.1% error. Linear comparison between these 

solutions resulted in a slope of 1.3 (Pearson coefficient = 0.92), which suggests the 

activations were overestimated. After rescaling the activations and comparing to the 

experimental data, the calibration error was reduced to 5.6% (with a slope Pearson 

coefficient of 0.98 and 0.92, respectively). The approximation obtained without averaging 

muscular groups (Fig. 2c), resulted in 5.7% error—the lack of improvement was likely due 

to the training data itself, which originated form a model with eight independent muscles 

(Fig. 2b).
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With the exception of the plot for the inferior longitudinalis, transition between sounds 

appeared smooth. Since no smoothness criteria was specified in the regression, this is likely 

a result of the image data. Earlier time frames suggest activity in the superior longitudinalins 

and transverse muscles, perhaps associated with extending the tongue into the “s” sound. 

The latter part of the utterance, appears to be dominated by activation of the inferior 

longitudinalis, which may play a role in the retraction needed for the “uk” sounds. The 

verticalis muscle appears to be inactive during the utterance; this result was unexpected as 

the tongue is expected to flatten during the “s” sound. Activation varyed from 0 to 24%. 

Altogether, it is still early to determine the precision and accuracy of the measurement, 

particularly because the prediction approach could compound error in motion estimation as 

well as in modeling. Therefore, it is difficult to describe the effectiveness of the regression 

pipeline in certain terms (other than predicting simulated states, which disregard modeling 

error). Nevertheless, this preliminary results show that it is possible to obtain an estimate of 

activation on which future work can build upon.

3.2 Flap Detection

3.2.1 Via Random Assignment Training—Fig. 5 shows how error changes as a 

function of the training data size. As expected, the control training schedule does not 

improve regression accuracy. In focused test cases, adding activation-contraction data from 

general flaps resulted in only marginal improvement in regression accuracy. Adding training 

data from focused flaps, however, resulted in more significant improvements in regression 

accuracy. This last approach caused approximately a 20% reduction in error. This result is 

expected, as the focused training data are more likely to have similarities with the focused 

test cases.

When calculating error against general test cases, both the Control training schedule and the 

focused version of the Random Assignment training do not result in error improvement 

trends. With each random set of test cases, there is little likelihood for focused training data 

to coincide with the test cases. That said, after a somewhat long initial learning period (as 

general Random Assignment yields a large number of configurations), error estimation 

began to improve dramatically, decreasing by approximately 50% (Fig. 6). These results 

show that adding randomly-placed flaps to training data, being a more general approach, 

results in increased capability of approximating contractile deficiencies in a broader set of 

locations.

3.2.2 Via Wavelet Pattern Training—Fig. 7a shows the evolution of error as a function 

of the relative size of the training database using both versions of the Wavelet Pattern 

training schedule. Unsurprisingly, control data did not result in any improvement on 

regression accuracy, and focused training was effective in detecting focused flaps with a 

trend showing improvement in approximation accuracy (20% error reduction). This suggests 

that perturbation of one of the test flaps can increase regression accuracy in other flap cases. 

The general training had no effect on the error trends. These results suggest that wavelet-

based training can expand the overall regression capability, only if adequate seed patterns are 

carefully chosen to synthesize new data.

Tolpadi et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In general, we found that finding a randomly located flap in the most general case requires a 

colossal amount of training data. For instance, attaining a 50% error reduction from an 

initial guess (provided by the method in Section 2.3) would require augmenting each of the 

2048 training samples from Section 2.3 with 72 additional data entries, resulting in a 

training data set of 149,504 entries! More research is necessary to determine precisely 

whether the error reductions justify these databases, how they relate to regularized 

optimization, and how can it be optimized. It is also possible that other machine learning 

methods, such as convolutional neural networks (CNNs),20 are more effective. This is 

provided that CNNs are developed for FE kernels, which were not available at the time of 

this research. Nevertheless, this research shows that machine learning offers a relatively 

modular and expandable framework, which has potential for dealing with abnormal 

anatomical configurations.

4. CONCLUSION

This work described and demonstrated a pipeline for inverse biomechancial modeling using 

machine learning. Instead of assuming an explicit regularization scheme for stabilizing 

numerical optimization, the proposed approach can include a larger number of samples in 

the contraction-deformation space. However, as these samples ought to be feasible, the data 

must be subject to a form of implicit regularization. Our results indicate that the method is 

compatible with experimental data, and could be used in diseased states.
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Figure 1. 
Inverse modeling pipeline. During regression, deformation information is extracted from 

imaging data to obtain contraction patterns. During training, contraction-deformation data 

pairs are generated by the contraction pattern generator in conjunction with the forward 

model.
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Figure 2. 
(a) In-vivo orientation of forward tongue model with 8 functional groups; (b) the forward 

tongue model with 8 uniformly-contracting groups modeled contraction of the superior 

longitudinal (SL), transversalis (T), verticalis (V), inferior longitudinal (IL), genioglossus 

(GG), styloglossus (SG), and support material (SM), while also designating some elements 

as non-contractile flaps; (c) tongue model with 262 independent functional elements (each 

colored uniquely).
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Figure 3. 
Training schedules for activation estimation with contractile deficiencies. The training 

approach schematic (a) shows the three training schedules. In the Control schedule, training 

data was added from patterns fundamentally different from the seed pattern. In Random 

Assignment, training data was generated from variations of the seed pattern, in which a flap 

was placed at random, either within a focused region (hashed area), or anywhere within the 

general seed pattern. Training using Wavelet Patterns were generated either focusing on a 

given region (white square), or the entire seed pattern (general variation). In the actual seed 

activation pattern (b), activation intensity varies with location.
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Figure 4. 
Regression output from imaging-based deformation measurements. The traces show 

activation percentages for the genioglossus (GG), superior longitudinalis (SL), transversalis 

(T), inferior longitudinalis (IL), verticalis (V) muscles. The first datapoint corresponds to the 

reference time frame.
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Figure 5. 
Performance of the Random Assignment training schedule for predicting focused test cases.
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Figure 6. 
Performance of the Random Assignment training schedule for predicting general test cases.

Tolpadi et al. Page 14

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Regression accuracy under different training regimes. Augmenting the training data with 

perturbed flaps improves regression accuracy (a). This trend does not occur when adding 

perturbations of the original data, or random contraction-deformation pairs. The 

improvement is present in all 5 test cases, resulting in reduced error near the flap (b).
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