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Abstract

It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl−) 

fluxes via the inhibitory GABAA and glycine receptors. Here, we discuss the putative contribution 

of Cl− fluxes and intracellular Cl− to other forms of information transfer in the CNS, namely the 

bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the 

generic functions of Cl− in cellular physiology, (ii) recaps molecular identities and properties of Cl
− transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies 

implicating Cl− in the modulation of neuroglial communication. The existing literature suggests 

that neurons can alter astrocytic Cl− levels in a number of ways; via (a) the release of 

neurotransmitters and activation of glial transporters that have intrinsic Cl− conductance, (b) the 

metabotropic receptor-driven changes in activity of the electroneutral cation-Cl− cotransporter 

NKCC1, and (c) transient, activity-dependent changes in glial cell volume which open the volume-

regulated Cl−/anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl−]i 

through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, 

which open neuronal GABAA and glycine receptor/Cl− channels, or (b) the gliotransmitter-driven 

stimulation of NKCC1. The most important recent developments in this area are the identification 

of the molecular composition and functional heterogeneity of brain VRAC channels, and the 

discovery of a new cytosolic [Cl−] sensor – the Wnk family protein kinases. With new work in the 

field, our understanding of the role of Cl− in information processing within the CNS is expected to 

be significantly updated.
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1. Introduction: the physiological significance of transmembrane Cl− 

gradients

Chloride (Cl−) is the most abundant physiological anion. Yet, it receives little attention 

outside of the fields studying excitable cells and acid-base homeostasis. With the exception 

of kidney tissue and some secretory epithelia, the extracellular Cl− levels are kept in the 

narrow range of 98–106 mM. In contrast, the intracellular Cl− concentrations can vary from 

as low as 5 mM in neuronal cells to 65 mM or higher in certain epithelial cells (see for 

example [1;2]). Intracellular Cl− levels are largely determined by the transmembrane 

potential and presence of secondary active Cl− transporters. In this review, we propose an 

important role for [Cl−]i in bidirectional neuron-astrocyte communication. But before 

focusing on the significance of Cl− in the CNS, it is helpful to briefly recapitulate the 

general physiological functions of this anion. Fundamentally, Cl− serves as a counterion for 

movement of the major cations, Na+, K+, Ca2+, and H+ (for comprehensive reviews see [3–

5]). The plasmalemmal cation transport in excitable cells and ion-transporting epithelia is 

assisted by Cl− conductivity pathways, such as voltage-gated Cl− channels. Within the cell, 

electrogenic proton movement in acidic organelles is facilitated by Cl−/H+ exchangers. 

Other, equally important Cl− functions include (i) cell volume homeostasis, (ii) regulation of 

membrane potential, and (iii) cell proliferation and initiation of apoptosis. These are briefly 

introduced below and summarized in Fig. 1.

1.1 Cl− in the Gibbs-Donnan equilibrium and cell volume regulation

Participation in cellular volume homeostasis represents a very important and evolutionarily 

conserved role of Cl− in animal cells, which is rarely covered outside of the “specialized” 

reviews. Cl− contributes to cell volume control via two separate mechanisms.

Under steady-state conditions, low intracellular [Cl−] compensates for the presence of 

impermeable large-molecular-weight organic molecules, which in the intracellular milieu 

carry net-negative charge (illustrated in Fig. 1A). Due to the presence of organic anions, 

cells tend to accumulate positively charged particles in their cytosol and have a propensity to 

swell, a phenomenon termed Donnan cell swelling [6]. Extrusion of Cl− allows for the 

maintenance of electroneutrality across semi-permeable cell surface membranes, meaning 

that the sum of positive and negative charges is the same inside and outside the cell, 

irrespective of the type of charged particle (Gibbs-Donnan equilibrium). In living cells, 

colloidal accumulation of water is not completely compensated via this mechanism. 

Therefore, the Gibbs-Donnan equilibrium is, in reality, a quasi-equilibrium, which is 

maintained by the constant osmogenic and electrogenic activity of the Na+/K+-ATPase (2 K+ 

in in exchange of 3 Na+ out, discussed in [7]).

Besides the constant pressure of Donnan swelling, cells experience frequent transient 

changes in their volume due to a variety of factors, such as (a) changes in extracellular 

osmolarity, (b) intracellular catabolic processes, which lead to the accumulation of low 

molecular weight osmolytes, or (c) net accumulation or extrusion of ions and osmolytes due 

to activation of diverse plasmalemmal transporters and channels. Swollen or shrunken cells 

engage “emergency” mechanisms, involving a variety of volume-sensitive transporters. 
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These work collectively to extrude or accumulate inorganic ions and/or small organic 

molecules (see Fig. 1D). The net transfer of ions and other osmolytes drives the movement 

of osmotically obligated water, and powers cell volume normalization. Swollen cells 

undergo the process of regulatory volume decrease (RVD), which depends on the 

cooperative activity of swelling-activated K+ channels, Cl− channels, and/or electroneutral K
+-Cl− cotransporters. Shrunken cells restore their volume via regulatory volume increase 

(RVI) by engaging Na+/K+/Cl− cotransporters and/or the functionally coupled activity of Na
+/H+ and Cl−/HCO3

− exchangers. The molecular origins and functional properties of the 

relevant Cl− transporters are summarized in Section 2. This topic can be further explored by 

reading any of the relevant comprehensive reviews [7–11]. In general terms, RVD is 

mediated by the net-loss of KCl with the additional contribution of organic osmolytes. RVI 

is largely the result of net-accumulation of NaCl.

1.2 Regulation of the membrane potential

As the dominant anion in the extracellular milieu, Cl− has a high capacity for modulating the 

plasma membrane potential. Background (unstimulated) Cl− conductance contributes to 

setting the resting membrane potential. This aspect of Cl− physiology has been best studied 

in skeletal muscle cells, in which Cl− currents are responsible for up to 80% of the resting 

membrane conductance, stabilize the membrane potential, and limit muscle excitability [12]. 

Accordingly, mutations in ClC-1, the principal voltage-gated Cl− channel in skeletal muscle 

cells, have been linked to many cases of the autosomal recessive generalized myotonia and 

the autosomal dominant myotonia congenita, two diseases in which cell hyperexcitability 

causes skeletal muscle stiffness (see for example [13–15]).

Unlike skeletal muscles, cells in the CNS have comparatively low resting plasmalemmal Cl− 

conductance and maintain their [Cl−]i away from the levels predicted by the Nernst 

equilibrium (see Section 2.1). Consequently, neuronal cells utilize the ligand-gated Cl− 

channels, such as GABAA and glycine receptors, for modulating membrane potential and 

excitability (see Fig. 1B). Activation of these channels can cause depolarizing or 

hyperpolarizing currents based on the established transmembrane Cl− gradients (for detailed 

discussion see Section 2.3). The voltage-gated Cl− channels, e.g. ClC-2, can also regulate 

intracellular [Cl−] and excitability in neuronal cells and contribute to the buffering of 

extracellular [Cl−] by astrocytes (for references and discussion see Section 2.4).

1.3 Cell proliferation, migration, and initiation of apoptosis

There is a very extensive literature that links Cl− channels, principally, the volume-sensitive 

Cl− channels, to proliferation, migration, and apoptosis in numerous cell types (for review 

see [7;16]). Outside of brain development, the significance of cell proliferation in the CNS is 

limited. Therefore, we do not discuss the potential role of Cl− in this process. Migration is 

also not a major feature of normal brain physiology, with the notable exception of the innate 

immune cells of the CNS, microglia. Under normal physiological conditions microglial cell 

bodies are immobile, but these cells actively relocate their branched processes in search of 

pro-inflammatory stimuli and signs of neuronal hyperexcitation. In response to tissue 

damage or inflammation, microglia retract their processes and move towards the 

pathological foci, where they engage in phagocytosis and tissue remodeling [17;18]. In 
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microglia, broad spectrum Cl− channel blockers reversibly inhibit the formation of ramified 

processes and lamellipodia, limit the cytokine-stimulated cell migration, and block 

proliferation and phagocytosis [19–24]. Outside of the brain, contributions of Cl− channels 

to cell motility have been demonstrated in many other cell types (for review see [7;25]).

It is also important to acknowledge that Cl− transporters may be important in programmed 

cell death. One of the hallmarks of apoptosis is a marked cell shrinkage, which has been 

termed apoptotic volume decrease or AVD [26;27] (illustrated in Fig. 1C). In a number of 

cell types, AVD depends on the activity of the volume-sensitive channel VRAC (see Section 
2.5), is associated with the loss of intracellular Cl−, and can be induced by reductions in 

extracellular Cl− levels (see for example [26;28–30] and review [7]). In the CNS, activity of 

VRAC has been directly implicated in the excitotoxic cell death of neurons, and pathological 

release of excitatory amino acids from astrocytes (see [31–34] and review [35]). Therefore, 

in the brain, volume-sensitive Cl− channels may contribute to tissue damage, both directly – 

by promoting apoptosis, and indirectly – via the release of excitotoxic neurotransmitters and 

downstream activation of cell death pathways.

2. Cl− transporters and channels which govern intracellular Cl− levels

As briefly outlined in the Introduction, plasmalemmal Cl− gradients are established by 

several secondary active ion transporters, and allow neurons and astrocytes to maintain 

intracellular Cl− levels either above or below the electrochemical equilibrium for this ion. 

When [Cl−]i deviates from equilibrium, transient changes in Cl− membrane permeability via 

voltage-, volume-, and ligand-gated ion channels produce net charge transfer and influence 

many cellular functions. For neurons, the impact of Cl− currents on cellular excitability is 

well established and has been covered in several comprehensive reviews (see for example 

[36–38]). In contrast, the influence of Cl− fluxes on astrocytic properties is less understood, 

and will be discussed in the present manuscript in the context of bidirectional neuron-

astrocyte communication. In this section, we briefly describe the molecular nature of diverse 

Cl− transporters and ion channels in neural cells, and discuss their differential impact on 

intracellular Cl− levels (summarized in Fig. 2).

2.1 Na+, K+, 2Cl− cotransporters (NKCC)

NKCCs are two closely related proteins – NKCC1 (SLC12A2) and NKCC2 (SLC12A1), 

which belong to the large SLC12A superfamily of cation-chloride cotransporters. NKKC1 is 

ubiquitous, and can be found at various levels in all types of brain cells (reviewed in [39]). 

NKCC2 is the kidney-specific isoform [40] and, therefore, is not discussed in this 

manuscript. Both NKCCs mediate the bidirectional, electroneutral symport of one Na+, one 

K+, and two Cl− in or out of the cell. Because the combined electrochemical gradients for 

Na+, K+, and Cl− favor inward transport, NKCCs facilitate Cl− accumulation above the level 

of its electrochemical equilibrium [39].

In neuronal physiology, the ability of NKCC1 to drive net-accumulation of intracellular Cl− 

is functionally significant. Early in development, neural precursors and immature neurons 

express high levels of NKCC1 and consequently have elevated intracellular [Cl−] [36]. In 

these cells, GABA and glycine act as excitatory neurotransmitters [41]. Throughout the 
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maturation process, neurons downregulate NKCC1 and replace it with electroneutral KCC 

transporters (see Section 2.2). Such a change leads to the precipitous drop in intracellular [Cl
−], and this transition converts the actions of GABA and glycine from excitatory to 

inhibitory (reviewed in [36;38]). Based on the data derived from gramicidin-perforated patch 

recordings in brain slices, resting [Cl−]i drops from 37 mM in E16 neural precursors to 12 

mM in mature cortical neurons at P16 [42]. In the adult brain, [Cl−]i was measured as low as 

5 mM in certain neuronal populations [1].

Unlike neurons, astrocytes preserve high activity of NKCC1 throughout development and, 

therefore, have higher intracellular [Cl−]. This aspect of astroglial physiology has been 

thoroughly explored in cell cultures. In cultured astrocytes, the intracellular [Cl−] has been 

estimated at 20 to 50 mM. These estimates are derived using various experimental 

techniques, including steady-state isotope distribution (31–50 mM, [43]), sharp electrodes 

(20–40 mM [44]), and electrophysiological recordings with the K+ ionophore gramicidin (29 

mM [45]). The data on astrocytic Cl− levels in vivo and in situ are scarce. An early in vivo 
study used 36Cl− distribution to estimate glial (largely astrocytic) [Cl−] to be 46 mM in the 

cortex and 36 mM in the cerebellum [46]. More recently, Untiet et al. measured [Cl−]i of 52 

and 35 mM in immature and mature cerebellar Bergman glial cells, respectively, in brain 

slices using a chloride-sensitive MQAE FLIM signal [47]. Consistently, a number of studies 

in brain slices collected indirect evidence for high astrocytic [Cl−]i, including the 

hyperpolarizing effects of GABA receptor agonists and the depolarizing effects of Cl− 

channel blockers [48;49].

While discussing the impact of NKCC1 activity on cellular functions, it is important to 

remember that this transporter is potently stimulated by protein phosphorylation, low [Cl−]i, 

and cell shrinkage (reviewed in [37;38]). Early studies in non-neural cells found that 

NKCC1 is activated by numerous agonists linked to the cAMP-dependent PKA, Ca2+/DAG-

dependent PKCs, c-Jun N-terminal kinase (JNK), Erk1/2, and others (e.g. [50–54]). Yet, 

NKCC1 stimulation by various protein kinases is cell type-specific; in some cases, the same 

signaling cascades have been reported to produce opposite functional effects (discussed in 

[39;55]). For example, in the majority of cell types PKCs activate NKCC1, while in the 

kidney MDCK cell line it is completely inhibited by the PKC agonist PMA [56]. Based on 

this information and due to the lack of relevant phosphorylation motifs in the protein 

stricture, it has been concluded that many protein kinases modulate NKCC1 indirectly 

[39;55]. Recently, the critical role for the WNT/SPAK/OSR1 signaling cascade in the 

regulation of NKCCs and other cation-chloride cotransporters has been established 

(reviewed in [57–59], and discussion in Section 3.2). This signaling axis may be the actual 

target for indirect effects of the previously implicated protein kinases (see for example [60]).

2.2 K+, Cl− cotransporters (KCC)

The electroneutral KCC cotransporters encompass four additional members of the SLC12A 
family and include KCC1 (SLC12A4), KCC2 (SLC12A5), KCC3 (SLC12A6), KCC4 

(SLC12A7). All KCCs mediate the bidirectional transfer of one K+ and one Cl− in or out of 

the cell (reviewed in [61;62]). In the context of [Cl−]i homeostasis, KCCs are the functional 

opposites of NKCCs because they thermodynamically favor the efflux of intracellular Cl−, 
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and drive [Cl−]i below the level of its electrochemical equilibrium. KCC1 is expressed in a 

nearly ubiquitous manner, while KCC2 is neuron specific [62–64]. KCC3 and KCC4 are 

abundant in the brain, but present at diverse levels in various neuronal and astroglial 

populations [65–67].

In the CNS, the neuron-specific KCC2 has been particularly well-studied. Functional 

upregulation of KCC2 during neuronal maturation is responsible for the switch in the actions 

of GABA and glycine receptors from excitatory to inhibitory [38;41;68]. This isoform 

differs from other KCCs because it is constitutively active. Unlike KCC2, the “classical” 

KCC isoforms (1, 3, and 4) are largely silent under isoosmotic conditions, but become 

strongly activated in response to cell swelling [38;61]. Deletions and mutations in KCC3 and 

KCC4 produce severe central and peripheral phenotypes, and the relevant changes have been 

considered in the context of cell volume regulation in either neuronal or glial cells [69;70].

Although the essential role of protein phosphorylation/dephosphorylation in the regulation 

of KCCs has been known for many years, the underlying molecular mechanisms have been 

elucidated only recently. All KCCs are inhibited by direct phosphorylation by SPAK and 

OSR1, two closely related kinases which belong to the WNK signaling cascade [71;72] (see 

Section 3.2 for detailed description of signaling pathway). In contrast, dephosphorylation of 

KCCs by the serine-threonine phosphatases (PP) type 1 and 2A leads to their activation. This 

process was first explored for KCC1 in red blood cells [61;73–75]. It appears that the 

membrane-bound PP1 responds to changes in ionic strength, while the membrane-bound 

PP2A responds to cell swelling [75]. More recent model studies further elaborated on the 

mechanisms for phosphatase actions, and established both direct interactions with KCC 

proteins and involvement of the scaffolding protein, apoptosis-associated tyrosine kinase 

AATYK1 [76;77].

2.3 The ligand-gated GABA and glycine receptors-channels

The most recognized Cl− permeability pathways in the brain are the ionotropic receptors for 

two inhibitory amino acid neurotransmitters, γ-aminobutyric acid (GABA) and glycine. 

These two families of receptors are structurally related and belong to the superfamily of 

Cys-loop receptor proteins [78;79].

GABAA channels are pentameric ligand-gated Cl− channels assembled from nineteen 

diverse members of the GABAA family (GABR genes, for comprehensive reviews see 

[80;81]). In mature neurons, GABAA channels are located in either the postsynaptic 

membrane, where they mediate fast neuronal inhibition, or at extrasynaptic sites, where they 

respond to ambient extracellular GABA levels and produce long-term inhibition. As already 

mentioned, the functional impact of neuronal GABAA receptors is determined by chloride-

cation cotransporters, mainly by the opposing work of NKCC1 and KCC2 (see Sections 2.1 
and 2.2).

Astrocytes also express GABAA receptors [48;82;83], although the receptor arrangement in 

these cells is less clear. Unlike their actions in mature neurons, opening of GABAA channels 

in astrocytes causes outward Cl− movement and membrane depolarization (see for example 

[48;84]). The functional role of GABAA currents in astroglia may be questioned because 
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these cells have a highly clamped membrane potential, which is stabilized by the electrical 

connectivity within the astrocytic syncytium [85]. Yet, electrophysiological experiments in 

primary astrocyte cultures suggest that GABAA receptors are physiologically relevant. In 

hippocampal slices GABAA-mediated depolarization activates astrocytic voltage-gated Ca2+ 

channels and causes cytosolic [Ca2+] transients [83]. Another brain slice study reported 

modulation of the activity of astrocytic K+ channels by GABAA agonists [45].

The structurally related glycine receptor (GlyR) family has five distinct isoforms, GlyRα1-4 

(GLRA1-4) and GlyRβ (GLRB), which assemble in either homo- or heteropentameric 

channels, all of which are activated by glycine [86;87]. Various GlyR subunits are expressed 

throughout the CNS, with the highest abundance in the spinal cord, brainstem nuclei, and 

retina [87]. In neurons, GlyRs play a role, which is similar to GABAA, and in the adult brain 

mediate hyperpolarization due to Cl− movement into the cell [86;87]. Very little information 

is available on GlyRs in astrocytes. To the best of our knowledge, only one study has 

identified functional astroglial GlyR Cl− currents in situ, in spinal cord astrocytes [88]. 

Based on available expression data, it seems unlikely that GlyRs play a dominant role in 

astroglia.

In the context of receptor pharmacology and physiology, it is important to note that both 

GABAA and glycine receptors can be activated by the atypical aminosulfonic acid taurine, 

which in the brain serves as the endogenous agonist for these receptor-channels (reviewed in 

[89]).

2.4 Voltage-gated Cl− channels (ClC family)

The voltage-gated Cl− channels belong to the evolutionarily conserved ClC family (encoded 

by the CLCN1 through CLCN7, CLCNKA and CLCNKB genes). These have been 

discovered based on their homology with ClC-0 channels from the electric organ of ray 

Torpedo marmorata [90]. In mammals, there are nine diverse ClC proteins, four of which 

(ClC-1, ClC-2, ClC-Ka and ClC-Kb) form plasmalemmal Cl− channels, while five others 

(ClC-3 through ClC-7) function as intracellular Cl−/H+ exchangers (reviewed in [3]). As 

already briefly mentioned in Section 1.2, voltage-gated Cl− channels have a high capacity 

for modulating resting membrane potential and membrane conductance. Because neurons 

utilize ligand-gated Cl− fluxes to control their excitability, these cells tend to have low 

expression of voltage-gated Cl− channels. The same applies to astrocytes, whose membrane 

permeability is dominated by K+ currents. Yet, even the limited expression of voltage-gated 

Cl− channels in neural cells has a strong impact on their physiology.

ClC-2 (CLCN2) has been detected in both neurons and astrocytes, but the expression of this 

channel strongly varies depending on the brain region and cell subtype [91;92]. It seems that 

ClC-2 conductance counteracts GABAA function, because overexpression of CLC-2 in 

dorsal root ganglia neurons blunted GABA effects on neuronal excitability [93]. In 

hippocampal slices prepared from ClC-2-null animals, pyramidal neurons had lowered 

resting Cl− conductance and associated increases in their excitability [94]. The effect of 

ClC-2-deletion on electrical activity in neuronal networks was more complex, producing a 

net inhibition, which has been explained by the elevated excitability and activity of 

inhibitory neurons [94]. That being said, the overall impact of ClC-2 on neuronal excitability 
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is far from clear. Mutations in ClC-2 have been proposed as a susceptibility factor in 

idiopathic generalized epilepsy, although the direct link between ClC-2 and epilepsy remains 

tenuous [95]. ClC-2 knock-out mice have no changes in seizure thresholds [96].

In astrocytes, immunoreactivity of ClC-2 is region-specific and highly polarized, with a high 

abundance reported next to GABAergic neurons [91]. The latter findings led to the 

suggestion that ClC-2 may mediate Cl− delivery to the neuronal populations with intense 

GABAergic activity [91]. Whether ClC-2 function significantly impacts membrane potential 

and electrical properties of glial cells is still under debate. Deletion of ClC-2 does not 

dramatically change [Cl−]i levels in Bergman glial cells, suggesting its minimal contribution 

to resting membrane conductance [47]. Nonetheless, the ClC-2 knockout animals have 

severe glial phenotypes, particularly in their white matter. ClC-2−/− mice develop age-

dependent leukodystrophy, manifesting as widespread myelin vacuolation in the brain and 

spinal cord [96]. In humans, similar leukodystrophy was subsequently identified in three 

adult and three pediatric patients carrying ClC-2 mutations [97]. It is unknown in which cell 

type, astrocytes or oligodendrocytes, the loss ClC-2 causes myelin deficiencies. 

Nevertheless, the growing consensus in the field is that glial ClC-2 is critical for ion and 

water homeostasis in the brain. ClC-2 functions are likely additionally modulated by two 

auxiliary proteins, GlialCAM and MLC1, mutations of which cause leukodystrophies with 

phenotypes resembling those observed upon ClC-2 deletion (see [98–101]).

The widely distributed ClC-3 (CLCN3) is an intracellular Cl−/H+ exchanger that was 

initially cloned from the brain [3;102]. There, it is expressed in acidic intracellular 

organelles, particularly in synaptic vesicles [103]. Deletion of ClC-3 limits synaptic vesicle 

acidification and neurotransmitter uptake, and causes postnatal degeneration of the 

hippocampus and retina [103]. A number of publications expressed an alternative view that 

ClC-3, or some of its splice variants, can also mediate plasmalemmal Cl− conductance (e.g. 

[104–106]). Nevertheless, the bulk of the ClC-3 work and the recent papers, which 

extensively characterized the heteroexpressed ClC-3 variants, all strongly indicate that the 

previously reported plasmalemmal “ClC-3” conductances have likely been mediated by 

other types of endogenous anion channels [3;107;108]. Other intracellular Cl−/H+ 

exchangers, ClC-4 through ClC-7, have also been detected in neurons and astrocytes, with 

ClC-6 showing a neuron-specific pattern of expression [109–112].

2.5 Volume-regulated anion channels (LRRC8 family)

There is one Cl− channel that can be detected in virtually every type of mammalian cell: 

namely, the volume-regulated anion channel (VRAC). Initially, VRACs were identified only 

on a functional level, as the robust Cl− currents induced by cellular swelling upon exposure 

to hypoosmotic media. These volume-sensitive Cl− currents displayed very similar 

biophysical properties across many cell types, and thus, were ascribed to be mediated by the 

same channel or group of highly related channels (reviewed in [16;113;114]). Based on their 

unique biophysical profile, VRAC channel has been alternatively referred to as volume-

sensitive outwardly rectifying Cl− channel (VSOR), or volume-sensitive organic osmolyte-

anion channel (VSOAC) [16;113;114]. The VSOAC name highlights the channel 

permeability to both inorganic anions (such as Cl− and HCO3
−) and a variety of small, 
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organic osmolytes, either charged or uncharged. This latter feature of VRAC is highly 

important for understanding its roles in the brain.

The molecular nature of VRAC remained elusive for several decades. Many candidate 

proteins were proposed to mediate swelling-activated Cl− conductance, but all of them were 

eventually rejected (discussed in [115;116]). Recently, two laboratories used genome-wide 

siRNA screens to independently identify VRAC as the heteromeric product of proteins 

belonging to the leucine repeat-rich containing family 8 (LRRC8) [117;118]). The LRRC8 

family includes five related proteins, LRRC8A-E. One of these, LRRC8A, is indispensable 

for ion conductance, but must heteromerize with at least one additional subunit to produce 

functional VRAC channels [117;119;120]. RNAseq data and quantitative PCR indicate that 

all five LRRC8 proteins are expressed in brain cells, including neurons and astrocytes, 

however the expression levels of LRRC8E are very low, at least 10-fold lower compared to 

other members of the LRRC8 family [121;122]. The precise assembly of the partnering 

subunits determines the cell-type specific biophysical properties of VRAC [117;119;120], 

including its signature channel inactivation at positive potentials [117;123], and the 

selectivity for organic osmolytes passing through the VRAC pore [124–126].

The main function of VRAC is in cell volume regulation (see Section 1.1). VRAC activity 

drives regulatory cell volume decrease via two mechanisms: (i) it provides a route for Cl− 

and HCO3
− release, and in such a way assists in the electroneutrality of swelling-activated 

fluxes of K+ via separate but functionally coupled K+ channels, (ii) it creates a pathway for 

the release of small organic osmolytes. Altogether, VRAC directly or indirectly facilitates 

the movement of numerous osmolytes, and in such a way drives the efflux of osmotically 

obligated water (reviewed in [7–9]). Physiological stimuli that lead to VRAC activation are 

not limited to cell swelling. Stimulation of Gq-coupled GPCRs or oxidative stress have been 

found to produce limited VRAC activation and act synergistically even with small degrees of 

cellular swelling in various cell types, including glial cells [127–131]. The underlying 

mechanisms for GPCR actions are incompletely understood, but likely involve multiple 

intracellular signaling cascades. The Ca2+-dependent PKC isoforms, PKCα and β, have 

been most frequently implicated in the receptor-stimulated VRAC opening, however many 

other protein kinases may also contribute (see [132–135] and reviews [116;136;137]). This 

information is helpful for understanding VRAC behavior under physiological conditions and 

in pathological states.

Once activated, VRAC acts much like the ligand-gated Cl− channels and moves Cl− toward 

its electrochemical equilibrium, with the consequences that have been already discussed in 

Section 2.4. What makes VRAC unique among other Cl− channels is its ability to facilitate 

the efflux of various neuroactive substances, including the excitatory amino acids glutamate 

and aspartate, the inhibitory neurotransmitters GABA and taurine, and perhaps others 

[119;122;125]. The latter aspect of VRAC physiology is highly important for bidirectional 

neuron-astrocyte signaling as reviewed by one of us in [35], and further discussed in Section 
4.2. Recent findings suggest that certain cells, including brain astrocytes, express several 

distinct LRRC8-containing VRAC heteromers; one of which is preferentially responsible for 

the movement of Cl− and anionic amino acids, while the other favors small uncharged 

molecules, including GABA, taurine, and glutamine [124–126].
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Because of their recent discovery, the cell type-specific functions of the LRRC8 proteins, 

including LRRC8A, are yet to be explored using the powerful tools of molecular genetics. 

Global deletion of LRRC8A produces a severe phenotype, with significant embryonic and 

postnatal lethality, and defects in numerous organs and tissues [138]. The tissue-specific 

LRRC8A knockouts are now being developed, but none have been characterized thus far.

2.6 Anion exchangers

In addition to Cl− transporters and permeability pathways, which are discussed in the prior 

sections, brain cells express a variety of Cl−/bicarbonate transporters belonging to the large 

SLC4 transporter family [139]. These proteins are important for the exchange of products of 

cellular metabolism (CO2) and regulation of pHi; however, they also deserve brief 

mentioning due to their direct or indirect impact on [Cl−]i.

Two members of the Cl−-transporting SLC4 family, which are most abundant in the CNS, 

include the electroneutral Cl−/HCO3
− anion exchanger 3 (AE3, encoded by SLC4A3), and 

the Na+-activated Cl−/HCO3
− exchanger, (NDCBE, product of SLC4A8) (reviewed in 

[139]). These two exchangers perform functionally opposite roles in the context of Cl− 

transport and pH regulation. AE3 is stimulated by alkalosis and exports metabolically 

produced bicarbonate in exchange for extracellular Cl−, thus serving as an acid and Cl− 

loader. In contrast, the NDCBE exchanger responds to cytosolic acidification by taking up 

one Na+ and 2 HCO3
− ions in exchange for one Cl−, and thus works as an acid and Cl− 

extruder [140]. As mentioned in Section 1.1, the coordinated work of AE anion exchangers 

and Na+/H+ exchangers allows for regulatory volume increase in shrunken cells, as their 

functionally coupled work accumulates cytosolic NaCl (for comprehensive review see 

[141]).

3. Cl− as an intracellular signaling ion

As discussed in the previous two sections, the impact of Cl− on cellular functions is 

attributed to the charge transfer across plasmalemmal or intracellular membranes, without 

considering the potential intracellular signaling properties for this anion (but see review 

[142]). Yet, older reports and recently accumulated evidence suggest that this notion may be 

overly simplistic, and that alternative mechanisms of Cl− actions within the cell also exist.

3.1 Direct regulation of ion channels and transporters by [Cl−]i

The intracellular Cl− levels can directly modulate activities of some ion channels and 

transporters. In the simplest case, [Cl−]i regulates biophysical properties of the voltage-gated 

Cl− channels, ClC-0 and ClC-2, by acting as the gating particle within the channel pore 

[143;144]. More intriguingly, intracellular Cl− can allosterically modify activities of other 

ion channels, which do not conduct this anion. In neural and muscle cells of C. elegans, 

increases in [Cl−]i and [Ca2+]i additively activate the high conductance K+ channel cSLO-2 

[145]. Binding of these two regulatory ions occurs at adjacent C-terminal sites [145]. In 

mammals, the cSLO-2 orthologues, mSLO2.1 (also known as Slick, the product of KCNT2 
gene) and mSLO2.2 (Slack, encoded by KCNT1) produce K+ channels, which are activated 

by increases in [Cl−]i and [Na+]i, and inhibited by physiological levels of ATPi [146;147]. 
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Together, this unusual pattern of regulation makes SLO2 channels unique polymodal sensors 

for metabolic stress and possibly hypoxia. Regulation by [Cl−]i is not restricted to K+ 

channels. The nonselective cation channel TRPM7 (Transient Receptor Potential subfamily 

M member 7) is inhibited by high intracellular Cl− via anion biding to a poorly characterized 

domain within the protein [148].

Besides ion channels, direct sensitivity to [Cl−]i was established for two splice variants of 

the electrogenic Na+/HCO3
− cotransporter, NBCe1 (SLC4A4) [149]. NBCe1 and other 

related HCO3
− transporters from the SLC4 family were initially discovered in the renal 

tissue [150], but soon found elsewhere, including in astrocytes and neurons [151;152]. The 

activity of the NBCe1-B and NBCe1-C isoforms is strongly inhibited in the physiological 

range of [Cl−]i (5–60 mM) via interaction with one or more Cl−-binding GXXXP motifs 

[149]. The Cl−-dependent changes in transporter activity modulate acid-base homeostasis, 

and, in such a way, alter a variety of cellular functions. There are data indicating that [Cl−]i 

can also modulate the activity of the Na+/H+ exchanger NHE-1, in a manner dependent on 

the C-terminal domain of the protein [153].

3.2 Cl−i is a modulator of intracellular signaling cascades

A number of early experimental observations in 1980s and early 1990s, led to the hypothesis 

that Cl− can regulate intracellular signaling cascades. Thus, in purified enzyme assays, 

activity of Gαi/o was strongly inhibited by Cl− and Br− with the half-maximal effects at 3–

20 mM, while other anions showed no effect [154]. In permeabilized neutrophils, lowering 

[Cl−]i elicited robust protein phosphorylation and an oxidative burst, likely via the activation 

of small GTP-binding proteins [155]. In salivary epithelial cells, a [Cl−]i- and pertussis 

toxin-sensitive G-protein has been found to regulate the activity of Na+ channels [156]. 

Along the same lines, in the airway epithelium, [Cl−]i regulates protein phosphorylation via 

changes in the activity of nucleoside diphosphate kinase [157]. Surprisingly, these and other 

early findings gained little traction. More recently the idea of [Cl−]i sensing has been firmly 

linked to serine/threonine protein kinases belonging to the WNK (With No lysine [K]) 

family [59;158;159].

WNK refers to the unique catalytic site structure of the four kinases in this family, which 

lack one of the conserved lysine residues responsible for the coordination of ATP within 

their active center [158]. After their initial cloning, WNK1 and WNK4 genes were soon 

linked to familial cases of hypertension, hyperkalemia, and hyperchloremia [160], and later 

to pathological changes in activity of the thiazide-sensitive Na+,Cl− cotransporter (NCC) and 

the bumetanide-sensitive NKCC2 (reviewed in [59]). Subsequent work established that 

WNKs do not phosphorylate these transporters directly, but rather act via two closely related 

downstream protein kinases: SPAK (Sterile20-related Proline-Alanine-rich Kinase) and 

OSR1 (Oxidative Stress Responsive kinase 1) [161–164]. In addition to the activation of 

NKCC1/2, WNK-SPAK/OSR1 signaling cascade reciprocally regulates (inhibits) the 

activity of all four KCC transporters, thus providing coordinated control over the critical Cl− 

influx and efflux pathways [71;72] Among WNK family members, WNK3 appears to be the 

most abundant and functionally significant enzyme in the CNS, but other WNK proteins are 

also expressed [165;166].
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The idea that one or more WNK kinases serve as intracellular Cl− sensors had been around 

for a while and was indirectly supported by findings of [Cl−]i-sensitivity of cation-chloride 

cotransporters (for early discussion see [167]). However, the direct experimental support for 

this hypothesis has been collected in very recent studies. Several groups identified the 

structural basis for direct modulation of WNK1, WNK3, and WNK4 by [Cl−]i [168;169]. Cl
− (or Br−) binds to the DLG motif in the kinase domain and N-terminal activation loop of the 

WNK enzymes. This anion binding inhibits protein autophosphorylation, and prevents 

enzyme activation [168]. For WNK1 and WNK3, the inhibitory actions of Cl− develop in the 

concentration range of 5–20 mM. WNK4 is apparently more sensitive to [Cl−]i and is 

potently inhibited in the concentration range of 5–10 mM [169]. The proposed mechanism 

of WNK-mediated [Cl−]i sensing and the downstream effects on cation-Cl− cotransporters 

are depicted in a simplified form in Fig. 3.

Although the cell volume- and Cl−-sensitive changes in activity of the WNK cascade have 

been mainly considered in the context of regulation of SLC12A transporters, the relevant 

kinases have multiple targets, both membrane and intracellular. For example, in C. elegans 

the WNK signaling axis, specifically the SPAK-like kinase, inhibits the activity of the Cl− 

channels belonging to the ClC family [170;171]. There were also reports about direct 

interactions between WNKs and serum- and glucocorticoid-induced protein kinase 1 

(SGK1) [172], WNK1-dependent regulation of the Erk cascade proteins MEKK2/3 [173], 

and WNK-dependent phosphorylation of claudins [174], etc.

In the context of astroglial physiology, it may be relevant to mention the putative role of [Cl
−]i in regulating exocytosis. Astrocytes are the secretory cells of the CNS, which, among 

other mechanisms, utilize vesicular secretion for release of bioactive molecules [175]. In the 

past, intra-cellular Cl− has been shown to be important, or even obligatory for sustaining 

exocytosis in neurohypophysial nerve endings, cultured brain pituitary cells, and beta cells 

of the pancreas (e.g. [176–178]). This is likely related to the function of intracellular Cl−/H+ 

exchangers from the ClC family, which support vesicular acidification [178], but may also 

involve activation of small GTPases [179]. Interestingly, the effects of [Cl−]i on exocytosis 

can be bell-shaped, with non-physiologically high Cl−i suppressing this process [176]. It 

remains to be explored if the newly discovered [Cl−]i sensors WNK kinases are involved in 

these phenomena.

4. Potential role of Cl− in the crosstalk between neurons and astrocytes

Over the last two decades, the field of astroglial physiology has undergone a dramatic 

transformation. Rapidly accumulating evidence supports the existence of extensive and 

reciprocal signaling between neurons and astrocytes, which is largely mediated by neuro-

transmitters and gliotransmitters (see [180–183]). Activity-dependent fluctuations in 

extracellular ion levels, such as K+ and Na+, and intracellular transients in [Ca2+] and [Na+], 

represent important elements of intercellular information transfer [181;184;185]. In this 

section, we make an argument that Cl− fluxes also play a role in neuron-astrocyte signaling 

(see Fig. 4).
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4.1 Do neurons modify astrocytic Cl− and is it of functional consequence?

A well-characterized role of astroglia is maintenance of an optimal environment for neuronal 

activity, which is accomplished via uptake of neurotransmitters, export of metabolites, and 

regulation of ionic composition of the extracellular milieu, particularly extracellular K+ 

levels (reviewed in [186–188]). These processes are predominantly concentrated in 

astrocytic endfeet engulfing neuronal synapses and brain microvessels. Many of the relevant 

astrocytic transporters directly or indirectly impact the transmembrane Cl− fluxes.

Astrocytes express two main Na+/K+-dependent excitatory amino acid transporters; namely, 

EAAT1 (encoded by SLC1A3) and EAAT2 (SLC1A2) in humans, or GLAST and GLT-1, 

respectively, in rodents (reviewed in [189;190]). These transporters concentrate glutamate 

inside the cell using the energy of established gradients for monovalent cations. Each 

electrogenic transport cycle takes one glutamate molecule inside the cell together with 3 Na+ 

and 1 H+, in exchange for 1 K+ (reviewed in [191]). What is important for the present 

discussion – the activity of plasmalemmal glutamate transporters is also associated with Cl− 

currents [192–195]. EAATs’ Cl− permeability is uncoupled from the neurotransmitter 

transport, and, therefore, Cl− movement is governed by its electrochemical gradient. 

Accordingly, when gated by glutamate, EAATs behave like small-conductance ligand-gated 

Cl− channels (e.g. [195] and review [196]). In astrocytes, stimulation of the EAATs would 

be expected to decrease intracellular [Cl−]. In fact, this is exactly what has been confirmed in 

a recent study by the Fahlke laboratory. In slice recordings in Bergman glia, they found that 

developmental upregulation in the activity of GLAST and GLT-1 is associated with a drop in 

the intracellular [Cl−] from 52 to 35 mM [47]. As would be predicted, EAAT inhibitors 

increased the intracellular [Cl−] in Bergman glial by more than 15 mM [47]. Remarkably, 

the related neuronal EAAT4 and EAAT5 seem to function predominantly as ligand-gated 

inhibitory Cl− channels, rather than glutamate transporters per se (discussed in [190;196]).

The inhibitory amino acid transmitter GABA is taken inside the cells by three Na+- and Cl−-

dependent GAT transporters, GAT-1 (SLC6A1), GAT-2 (SLC6A13), and GAT-3 (SLC6A11), 

and the betaine-GABA transporter BGT-1 (SLC6A12) (reviewed in [190;197]). Among 

these, BGT1 is probably of minor importance because BGT-1-null mice have normal 

development and no high seizure susceptibility phenotype, indicating normal GABA 

signaling [198]. GAT-1 is found in both neurons and astroglia, GAT-2 levels are very low to 

undetectable in the brain, and the expression of GAT-3 appears to be restricted to astrocytes 

[190]. Activity of all GABA transporters depends on the gradients of Na+ and Cl−. Although 

the transport stoichiometry of these transporters is not fixed, normally each working cycle 

transfers 2 Na+ and 1 Cl− with one neurotransmitter molecule [199;200]. While GABA 

uptake is dependent on and associated with Cl− movement, much like for the EAATs, there 

is some evidence that GABA transporters also act as Cl−/anion channels [201]. The last 

caveat notwithstanding, GABA uptake by astrocytes is expected to lead to elevation in [Cl
−]i. Besides the possible modulation by neurotransmitter transporters, shifts in [Cl−]i may 

also occur as a result of activation of GABAA receptors, which has been already discussed in 

Section 2.3. An overview of astrocytic GABA receptors and GABA responses can be found 

in the comprehensive review by Porter and McCarthy [202].
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Another significant mechanism through which neuronal activity can be coupled to changes 

in astrocytic [Cl−]i is activation of NKCC1, which can be driven by metabotropic 

neurotransmitter receptors. The majority of such receptors on astrocytes are linked to either 

PLC-dependent increases in the intracellular [Ca2+] or cAMP signaling (reviewed in 

[202;203]). As outlined in Sections 2.1 and 3.2, NKCC1 activity is potently modulated by 

numerous Ca2+ and cAMP-dependent protein kinases, most likely via their downstream 

effects on the WNK signaling cascade. The physiological consequences of NKCC1 

activation would be two-fold: (i) elevation of intracellular [Cl−]i and (ii) cellular swelling, 

with the latter leading to opening of the swelling-activated channel, VRAC. In addition, 

metabotropic receptors for glutamate, ATP, and adenosine, and few other signaling 

molecules have been found to lead to limited, Ca2+-dependent VRAC opening, even in the 

absence of cell swelling (see for example [128;135;204]). Regardless of the stimuli, VRAC 

opening will reduce [Cl−]i.

Altogether, the impact of neuronal activity on astrocytic [Cl−]i is not uniform, and likely 

context-dependent. Activation of membrane Cl− conductance during uptake of the excitatory 

neurotransmitters glutamate and aspartate, opening of GABAA receptor-channels, opening 

of VRAC, or hyperpolarization-induced ClC-2 activity, are all likely to reduce intracellular 

[Cl−]. On the other hand, the activity of the Na+,Cl−-dependent transporters for GABA and 

several other neurotransmitters, or activation of NKCC1 should lead to elevations in [Cl−]i. 

As discussed in the preceding text, we do not think that Cl− movement causes significant 

shifts in the astrocytic membrane potential. Instead, [Cl−]i may modulate astrocytic 

functions via changes in the activity of the Cl−-sensitive WNK protein kinases.

4.2 How astrocytes modify neuronal Cl− and why is it functionally significant?

As a part of a “tripartite synapse”, astrocytes respond to and modulate neuronal synaptic 

activity via a Ca2+-dependent release of gliotransmitters, most notably glutamate and ATP, 

but also a variety of other substances [180–183]. Although the idea of vesicular 

gliotransmitter release dominates the field, several alternative mechanisms have also been 

considered, including the activation of VRAC, and others [128;205;206]. In this subsection, 

we discuss only the processes which rely on Cl− signaling within neuronal cells.

The most obvious way in which astrocytes can modulate neuronal [Cl−]i is the activation of 

neuronal GABA and glycine receptor-channels. It has been proposed that tonic GABA 

release in the healthy and pathological brain is largely of astrocytic origin, and mediated by 

the Bestrophin-1 Cl−/anion channels [207–209]. We speculate that the LRRC8-containing 

VRACs may also be involved in this process, because they are permeable to GABA, and, 

much like Bestrophins, can be activated in a Ca2+-dependent fashion [125;128]. In support 

of potential VRAC involvement, it has been known for years that activity of magnocellular 

neurons in supraoptic and paraventricular nuclei of the hypothalamus is modulated by 

gliotransmitter release by a volume-sensitive anion channel, likely VRAC. Hypothalamic 

astrocytes and specialized pituicytes in the neurohypophysis contain high levels of the 

atypical aminosulfonic acid taurine, and release it to the extracellular space both tonically, 

and in an osmolarity-dependent manner [210;211]. Taurine strongly modulates the secretion 

of vasopressin and oxytocin by the supraoptic magnocellular neurons, by acting as an 
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agonist at their glycine receptors and modulating their membrane potential via Cl− fluxes 

(see [212;213] and review [214]).

It is important to recall that neuronal [Cl−]i and the polarity of GABA actions are determined 

by the electroneutral cation-Cl− cotransporters. In neurons, the net activity of NKCC1 can be 

regulated at the expression level or via transporter phosphorylation. In cellular models, 

activation of neuronal NMDA, AMPA, or metabotropic mGluR1 and mGluR5 receptors 

leads to the Ca2+-dependent increase in NKCC1 activity [215;216]. Such activation may be 

driven at least in part by the release of excitatory gliotransmitters. The role of NKCC1 in 

setting normal neuronal [Cl−]i and determining GABA actions during development has been 

already discussed (see Section 2.1). In a pathological context, NKCC1 can promote 

excitation and tissue damage, for example in epileptogenesis and traumatic brain injury 

[217;218]. Whether astrocytes can modify the activity of the functionally opposite neuronal 

KCCs is less clear, yet, any potential effects cannot be overlooked. Deletion of the neuron-

specific KCC2 or neuron- and astrocyte expressed KCC3 and KCC4 lead to early postnatal 

mortality or severe central and peripheral phenotypes (reviewed in [38;70]). Finally, 

modulation of neuronal [Cl−]i, by astrocytes or otherwise, can regulate the activity of WNK 

kinases, and in such a way provides regulatory feedback to KCCs and NKCC1, but also 

mediates other effects via phosphorylation of alternative targets (see Section 3.2).

5. Perspectives and challenges

The regulatory role of Cl− conductance in neuronal signaling is well recognized. Therefore, 

it is very intuitive that astrocytic release of the inhibitory neuro/gliotransmitters, GABA and 

taurine, can provide a mechanism for the regulation of neuronal excitation. Substantial 

evidence in support of this notion already exists, at least for select brain areas (see Section 
4.2). What remains uncertain is how the inhibitory gliotransmitters are being released from 

astrocytes. A vesicular release mechanism has been proposed for a number of 

gliotransmitters, and is still very much a part of the discussion. However, astrocytes express 

low-to undetectable levels of the vesicular GABA transporter vGAT (SLC32A1) [121]. 

Consistently, unlike synaptic vesicles in neurons, astrocytic vesicles do not contain 

measurable levels of GABA or glycine [219]. We are not aware of any vesicular transporters, 

which would accommodate taurine. Based on these considerations, alternative mechanisms 

for glial GABA and taurine release are being pursued, including plasmalemmal amino acid 

transporters, as well as VRAC and Best1 anion channels (see Sections 2.5 and 4.2). This 

area is still very much in flux.

Unlike the clarity of the role of Cl− in regulation of neural function, we have a long way to 

go toward elucidating whether this anion plays signaling functions in astrocytes. The fact 

that astrocytic intracellular [Cl−] is kept above the level of its electrochemical equilibrium, 

indirectly implies the significance of Cl− in astroglial physiology. However, modulation of 

membrane potential by Cl−fluxes is likely less important in astrocytes as compared to 

neurons. Activation of Cl− permeability is expected to produce a moderate hyperpolarization 

of the already highly negative cell that is electrically coupled to its neighbors via an 

astrocytic syncytium. Perhaps the recent discovery that the WNK kinase family members 

can act as [Cl−]i sensors and modulate the activity of other Cl− permeability pathways points 
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to new, unexpected signaling properties for this anion. Additionally, there are a few reports 

that intracellular Cl− levels may impact exocytosis and vesicular release processes. Because 

astrocytes are considered to be the secretory cells of the CNS (see Section 3.2), exploring 

the putative connection between [Cl−]i and gliotransmitter release may yield new, 

unexpected information.

The field faces a number of significant technical and conceptual challenges in testing 

specific and distinct roles for Cl− fluxes and intracellular Cl− levels in neuron-astrocyte 

communication. The biggest obstacle is in separating the impact of intracellular Cl− 

signaling from the effects of changes in the membrane potential, because it is difficult to 

clamp intracellular [Cl−] without changing membrane polarization. Perhaps, new, 

specifically devised electrophysiological approaches will be of further assistance. Other 

barriers in the field are represented by the lack of Cl− sensors with a good dynamic range, 

which would match physiological Cl− levels, and the deficit of selective tools for 

manipulation of [Cl−]i in vivo. The latter two obstacles appear to be surmountable with the 

recent advances in the development of protein-based Cl− sensors and optogenetics tools. We 

think that introducing the Cl−-conducting channelrhodopsins into glial cells may be as 

instructive as recent studies in neurons. The relevant experiments will shed a light on already 

expected and, perhaps, as-yet-unanticipated Cl− functions in glial physiology, and strengthen 

the idea of Cl− as a signaling ion between neurons and astrocytes.
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AE anion exchanger

AVD apoptotic volume decrease

EAAT excitatory amino acid transporter

GABA γ-aminobutyric acid

KCC K+-Cl− cotransporter

NKCC Na+-K+-2Cl− cotransporter

RVD regulatory volume decrease

RVI regulatory volume increase

VRAC volume-regulated anion channel
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Highlights

• The transmembrane chloride fluxes via GABAA and glycine receptors are 

well-known to regulate excitability and communication within neuronal 

networks. Here we make an argument that chloride signaling is an important 

element in bidirectional neuron-astrocyte communication.

• Neurons modulate intracellular chloride levels in astrocytes as a result of (i) 

chloride fluxes associated with neurotransmitter uptake, (ii) modulation of 

astrocytic cation-chloride cotransporters, particularly NKCC1, (iii) activity-

dependent astrocytic swelling and opening of chloride/anion channel VRAC.

• Astrocytes can modify neuronal chloride levels and excitability via the release 

of GABA and taurine, two endogenous agonists of inhibitory GABAA and 

glycine receptors. Astrocytic release of inhibitory gliotransmitters involves 

VRAC and perhaps other release pathways.

• Finally, the recent discovery that the WNK family protein kinases are 

regulated by chloride opens the possibility that changes in cytosolic levels of 

this anion may act as an intracellular signal, both in neurons and astrocytes.

Wilson and Mongin Page 29

Neurosci Lett. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Diverse roles of Cl− in cellular physiology
A, The presence of membrane-impermeable organic anions (O−) and uncharged molecules 

(O0) makes cells accumulate positively charged ions, leading to the phenomenon known as 

Donnan cell swelling. Passive extrusion of Cl− allows cells to maintain electroneutrality 

across their semi-permeable surface membrane and prevent Donnan swelling. B, When 

intracellular [Cl−] deviates from its electrochemical equilibrium, activation of the ligand-

gated Cl− channels [GABAA and/or glycine (GlyR) receptors] leads to a depolarizing or 

hyperpolarizing current. C, During apoptosis, cells undergo apoptotic volume decrease as a 

result of the loss of intracellular K+ and Cl−. D, Cell volume homeostasis relies on the 

balance of inward and outward ion fluxes, which determine the movement of osmotically 

obligated water. Left panel, Swollen cells undergo regulatory volume decrease (RVD) driven 

by loss of KCl and osmotically obligated H2O. KCl is lost due to activation of the 

functionally coupled K+ channels and volume-regulated anion channels (VRAC), as well as 

the electroneutral K+,Cl− cotransporters (KCC). Right panel, Shrunken cells engage the 

process of regulatory volume increase (RVI) that is powered by the accumulation of NaCl. 

NaCl uptake is mediated by the net activity of the electroneutral Na+,K+,2Cl− cotransporters 

(NKCC), Na+/H+ exchangers, and Cl−/HCO3
− anion exchangers.
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Fig. 2. Overview of ion transporters and channels, which are responsible for setting intracellular 
Cl− levels in neural cells
The transmembrane gradients of Na+ and K+ are established by the Na+/K+-ATPases 

(NKA). The negative charge on the plasmalemmal membrane passively drives Cl− outside of 

the cell via a plethora of mechanisms, which are collectively termed Cl− “leak”. However, in 

neurons and astrocytes [Cl−]i deviates from the levels predicted by the electrochemical 

equilibrium due to the activity of the Na+,K+,2Cl− cotransporter (NKCC1) and/or the K+,Cl− 

cotransporters (KCC1-4). Opening of voltage-gated Cl− channels (VGCC), ligand-gated Cl− 

channels (LGCC), or volume-regulated anion channels (VRAC) moves Cl− in or out of the 

cell, depending on the electrochemical driving force. Additionally, Cl− movement also 

occurs via the Cl−/HCO3
− anion exchangers (AE3 and others).
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Fig. 3. Cl− as an intracellular signaling ion
Recent findings identified the With No lysine [K] (WNK) protein kinases as intracellular [Cl
−] sensors. Binding of Cl−, which occurs in the N-terminal activation loop of WNK1-4, 

inhibits autophosphorylation and activity of these enzymes. Reductions in [Cl−]i promote 

WNK1-4 autophosphorylation and activation. Active WNKs phosphorylate and stimulate 

two closely related protein kinases SPAK/OSR1, which in turn phosphorylate NKKC1 and 

KCC1-4. The functional effects of phosphorylation on cation-Cl− cotransporters are 

opposite: activation of NKCC1 and inhibition of KCC1-4. When WNKs are inactive, 

NKCC1 and KCC1-4 are dephosphorylated by the serine/threonine protein phosphatases 

PP1 and PP2A. See text for additional details.
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Fig. 4. The role of Cl− in the bidirectional astrocyte-neuron communication
The transfer of information from neurons to astrocytes, and the reverse process, are 

schematically separated by a dashed line. Top, Neurons alter astrocytic [Cl−]i through the 

release of both excitatory and inhibitory neurotransmitters. Glutamate uptake through the Na
+/K+-dependent excitatory amino acid transporters EAAT1 and EAAT2, gates the Cl− 

permeability pore. Additionally, glutamate, ATP and several other signaling molecules 

activate GPCR pathways (such as mGluR receptors) and stimulate Cl− uptake via NKCC1. 

Uptake of the inhibitory transmitter GABA through the GABA transporters, GAT-1 or 

GAT-3, is stoichiometrically associated with the symport of 2 Na+ and one Cl−. Bottom, 
Astrocytes directly modify neuronal [Cl−]i via release of the gliotransmitters, GABA and 

taurine, which subsequently activate Cl− fluxes through the neuronal GABAA and glycine 

receptor (GlyR) channels. The main pathway for astrocytic GABA and taurine release is 

thought to be the volume-regulated anion channel (VRAC), but other release mechanisms 

also exist. See text for additional details.
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