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Abstract

Glycosaminoglycans (GAGs) play key roles in virtually all biologic responses through their 

interaction with proteins. A major challenge in understanding these roles is their massive structural 

complexity. Computational approaches are extremely useful in navigating this bottleneck and, in 

some cases, the only avenue to gain comprehensive insight. We discuss the state-of-the-art on 

computational approaches and present a flowchart to help answer most basic, and some advanced, 

questions on GAG–protein interactions. For example, 1) does my protein bind to GAGs?; 2) 

Where does the GAG bind?; 3) Does my protein preferentially recognize a particular GAG type?; 

4) What is the most optimal GAG chain length?; 5) What is the structure of the most favored GAG 

sequence?; and 6) Is my GAG–protein system ‘specific’, ‘non-specific’, or a combination of both? 

Recent advances show the field is now poised to enable a non-computational researcher perform 

advanced experiments through the availability of various tools and online servers.
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Introduction

Glycosaminoglycans (GAGs) are structurally diverse biopolymers that are present on nearly 

all cell surfaces as a part of proteoglycans [1]. Nature appears to have engineered GAGs as 

the ‘go-to’ agents. It has sought out GAGs to induce numerous responses in the human body 

including the seemingly opposite, e.g., self-renewal as well as differentiation, growth as well 

as inhibition, or microbial invasion as well as defense. It has reached out to GAGs for a 

variety of purposes, of which activity modulation, signal transduction, protein sequestration, 

mechanosensing, and simply water retention are just a few. Not surprisingly, these ‘go-to’ 

agents are found outside the cells, on the cells and in the cells. They may occur as intact, 

long polymers and also as cleaved, much smaller oligomers. And GAGs display spatial and 

temporal dynamism that is unlikely to be rivalled by any other biomolecule.

The origin of the ‘go-to’ characteristics of GAGs is their massive structural possibilities, 

which enables interaction with numerous proteins [2,3]. In fact, GAGs are arguably the only 

biomolecules for which ‘specific’ as well as ‘non-specific’ (or ‘plastic’) interactions are 

known to be obligatory for their myriad functions [3]. For example, the highly specific 

antithrombin (AT)– heparin interaction is the foundation for the anticoagulant function of 

heparin [4]. In contrast, plasticity is obligatory for GAG modulation of chemokines [5]. 

Even more interestingly, the AT–heparin–thrombin (T) ternary system simultaneously 

requires specific as well as non-specific binding to engineer biological function [6,7]. Yet, 

this understanding possibly represents only a drop in the bucket.

There is a reason why nature might have chosen GAGs as the ‘go-to’ agents. If one 

considers distinct sequences possible for a hexamer of repeating units, then GAGs 

outnumber peptides and nucleic acids by nearly 102 and 106–fold, respectively. Thus, GAGs 

offer chemical space and information that is several orders greater than other biopolymers, 

although not all of these sequences may exist in nature.

Common GAGs, including heparan sulfate (HS), heparin (HP), chondroitin sulfate (CS), 

dermatan sulfate (DS) and hyaluronic acid (HA), are made up of repeating disaccharide units 

of glycosamine and uronic acid residues that are not uniformly sulfated and acetylated 

across the chain. The enzyme-driven biosynthesis of GAGs is a template-free process that is 

spatiotemporally regulated [8,9]. It is tempting to speculate that such a regulation evolved to 

facilitate the ‘go-to’ characteristics of GAGs.

The diversity of GAG structures coupled with their negative charge density engineers 

interactions with a hundreds of human proteins. Of these, only a few have been studied 

reasonably well including some serpins, coagulation proteases, growth factors, and 

chemokines [2,3,10]. Yet, each protein has been studied from the perspective of binding to 

HP-like sequences, which is a useful starting point but may be completely inappropriate in 
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terms of biology, pharmacology and therapeutics. A case highlighting this is the interaction 

of GAGs with heparin cofactor II (HCII). Although generally believed to be non-specific, 

recent studies indicate highly selective binding of HS hexasaccharide to HCII [11].

A fundamental bottleneck in elucidating details of each GAG–protein system is the massive 

number of possible GAG sequences in vivo. We do not even have a small fraction of this 

number available on hand! The only means to access this library comprehensively is through 

in silico technologies. However, computational study of GAG–protein interactions has been 

thought of as ‘too dry’ (not involving water as solvent) and ‘too rigid’ (not invoking 

flexibility of bonds) [12,13]. Yet, recent advances incorporating both these aspects have 

shown that computational approaches offer major insight into the operation of GAG–protein 

systems. In fact, the field is now ready for non-computational researchers to perform 

advanced experiments through the availability of various tools and approaches.

A Brief History of Computational Advances

The first computational study of GAG-protein interactions published in 1989 presented two 

consensus sequences –XBBXBX– and –XBBBXXBX– (X = hydropathic residue; B = basic 

residue) that bind heparin [14]. Both molecular docking and molecular dynamics studies 

were used to deduce consensus sequences. Looking back, the computational tools used in 

the approach appear rudimentary. Docking involved manual placement of an oligosaccharide 

onto proteins, whereas MD trajectory was monitored for only 7.5 ps. Yet, the work is now 

recognized as having catapulted the field with the idea that there is some order in the 

apparently chaotic GAG recognition of proteins, which could be understood for the first time 

using computational approaches.

Several GAG–protein systems were studied following this work. Of particular note was the 

three-dimensional model building exercise of AT with HP pentasaccharide, despite the 

unavailability of the protein’s crystal structure [15]. Although this AT–pentasaccharide 

model did not match the crystal structure determined much later [16], it provided significant 

impetus to the idea of computationally predicting aspects of GAG–protein systems, e.g., the 

GAG binding site on proteins (Fig. 1A) [17–20], alternative modes of GAG binding (Fig. 

1B) [18,21,22] the most optimal GAG sequence for a target protein (Fig. 1C) [11,23,24], and 

the structure of ternary protein1-GAG-protein2 system (Fig. 1D) [21,25,26]. The wealth of 

this biochemical/biological knowledge has been made possible by the development of robust 

computational tools over the past 3 decades. Force fields, such as GLYCAM, CHARMM 

and GROMOS, and parameters for charged moieties of GAGs have been developed [27,28]. 

Likewise, tools for automated docking [23,29,30], handling multiplicity of GAG 

conformations [11,24,31,32], inclusion of solvent molecules [33,34], calculating nature of 

interactions [2,33,35,36], etc. have been developed. In the process, technologies such as 

combinatorial virtual library screening (CVLS) [11,23,26,37], dynamic molecular docking 

(DMD) [33], and online web-servers for GAG docking (http://cluspro.bu.edu) [38,39] and 

modeling (http://www.glycosciences.de/modeling/), have been developed.

Finally, computational studies of GAG binding to proteins have been made more feasible 

through compilation of the available GAG–protein complex structures in the PDB by 
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Samsonov and coworkers [29], who performed explicit computational analysis on the 

library. Since then, only 15 additional GAG–protein complex structures have become 

available in PDB, which highlights the difficulty of generating information through 

crystallography/NMR. But most importantly, the PDB structures do not represent the 

diversity of GAG sequences available in nature. This implies that computational approaches 

developed to date will be important in understanding GAG structural biology.

Key Questions Addressed by Computational Approaches

Several basic, and some advanced, questions can be addressed using computational 

approaches by following a rigorous line of sequential inquiry (Fig. 2). These include i) does 

my protein bind to GAGs? ii) what residues are involved? iii) which GAG sequence is the 

most preferred? iv) is my GAG–protein system ‘specific’ or ‘non-specific’? v) can I discover 

a GAG-based drug? and vi) can any mechanistic insights be computationally derived? This 

work describes how to answers these questions.

Does My Protein Bind to GAGs?

This question is the most basic question and traditionally its answer has relied on performing 

solution experiments, such as affinity chromatography. These days a number of in silico 
tools have been developed to derive an answer in a matter of minutes. First, the primary 

sequence of a protein is analyzed for the presence of certain consensus sequence(s) (Fig. 

2A). Starting from the two related Cardin and Weintraub consensus sequences (above) [14], 

several analog sequences have been presented as GAG-binding sequences, e.g., –

XBBBXXBBBXXBBX– in von Willebrand factor and –TXXBXXTBXXXTBB– (T = turn) 

in αFGF, βFGF and TGFβ1 [40,41]. However, it is important to recognize that many GAG-

binding proteins do not contain any of these contiguous, linear sequences. For example, 

chemokines have dissimilar GAG binding sites organized on multiple secondary structures 

[42]. So advanced approaches have emerged. One of these is the CPC clip motif [43], which 

relies on the presence of a polar residue, e.g., Gln or Asn, among two basic residues within a 

putative heparin-binding site for a dataset of 20 distinct proteins. Another projects that 

GAG-binding sites arise from non-contiguous basic patches of ~5 Å that are organized in a 

‘clamp-like’ manner with an internal angle of ~100° [44]. And yet another posits that GAG 

binding sites have a spatial distance ~20 Å between basic residues [45]. Thus, the 3D 

structure of a protein, either downloaded from the PDB or built using homology modeling is 

analyzed for the above consensus sequence(s) and/or structural motif(s). The presence of 

these will enhance, but not guarantee, the probability of GAG binding (Fig. 2A).

Where Does the GAG Bind?

Although GAGs have been viewed as binding to any basic sub-site on proteins, the above 

discussion suggests otherwise. At the same time, the absence of a consensus sequence or 

structural motif does not automatically eliminate GAG recognition. This ambiguity lends 

significant importance to the task of computationally identifying a true putative GAG 

binding site. The question is addressed in sequential steps. First, protein surface electrostatic 

potential (ESP) is calculated using tools such as APBS, DeepView, etc. to locate 
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electropositive sub-site(s) (Fig. 2B). This technique has been most widely used for 

identification of putative GAG binding site(s) since the beginning of computational studies 

and continues to be employed even today [18,25,29,31,46–49]. A tacit assumption in this 

analysis is that most GAG–protein interactions are predominantly electrostatic in nature. 

However, many GAG–protein systems utilize substantial non-Coulombic forces. In fact, a 

recent study with a subset of proteins shows that ESP at specific non-ionic residues adjacent 

to a constellation of basic residues is a better predictor of GAG-binding sites [7].

A slightly more involved approach to identify GAG-binding site is the preferential 

recognition of a probe atom, ion or molecule. This approach takes its roots from the GRID 

search algorithm [50], which uses polar or charged probes, e.g., predict position of H2O to 

identify areas of solvent displacement upon binding [34], H2O, N of -NH2, -OH, etc., to map 

interactions with a protein. This method has been adopted to predict energetically favorable 

locations of sulfate groups (−OSO3
−) on target protein surface [17,21,22]. An even more 

involved approach employs combination of GRID, ESP, site mapping method, small 

saccharide docking and MD to more accurately identify GAG binding sites 

[23,30,31,39,51,]. In recent years, advances in computational technology have brought about 

online servers that help predict GAG binding sites on protein surfaces through docking 

[38,39].

In principle, the computational deduction of GAG binding site should be validated in 

solution experiments. Examples of such studies include site-directed mutagenesis of gremlin 

[52] and TSG-6 [53], and NMR studies of IL-8 [54]. On the flip side, literature presents 

cases where congenital mutations, site-directed mutagenesis or similarity with a known 

protein have helped pinpoint the site of GAG binding [11,15,26,54].

Which GAG sequence is the Most Favored?

This is ‘the’ key question to answer whether a target GAG–protein system is worth detailed 

biochemical/biophysical studies. In fact, computational tools present ‘the only’ approach to 

answering this question in an exhaustive manner. The question can take several forms, e.g., 

which GAG (HS, HP, CS, or DS) is the most preferred?; or what is the most optimal chain 

length (di-, tetra-, hexa-, etc.)?; or which sequence, from among the all possible, is the most 

favored?

The primary tool used in this approach is molecular docking and scoring, which is 

fundamentally a structure-based drug design tool, wherein a sequence’s orientation in a 

target binding site on protein surface is identified (Fig. 2C). A protein carrying more than 

one GAG binding sites may have more than one most favored GAG sequences. Advances in 

automated docking and scoring tools coupled with library generation scripts enable 

screening of 1000s of individual GAG sequences, a feat nearly impossible to achieve in 

solution. Several groups have used docking and scoring approaches to identify the optimal 

length of a GAG chain [22,24]. Likewise, the site, affinity and mode of binding have also 

been elucidated using this approach [17,20,49,55].
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We have developed a combinatorial virtual library screening (CVLS) strategy that identifies 

‘high affinity & high specificity’ sequence(s) by studying a library of 1000s of GAG 

sequences. The key idea here is to use dual filters – ‘in silico affinity’ (GOLD score) and ‘in 
silico specificity’ (consistency of binding) – to separate the needles (‘high affinity & high 

specificity’ sequences) from the chaff (the vast majority of non-specific sequences). The 

strategy can take care of prefered conformations of IdoA residues, chains of different 

lengths, explicit enumeration of natural as well as unnatural modifications of residues, and 

flexibility of rotatable bonds. The first demonstration of this strategy utilized a small library 

of only about 7,000 HS sequences binding to AT, which correctly identified possible high 

affinity variants of the well-known pentasaccharide [23,26]. The most recent application 

used a library of ~100,000 sequences to identify the most favored HS hexasaccharides 

binding to HCII [11]. Solution experiments were used to confirm the predictions. The work 

demonstrated for the first time that it is possible to design GAG sequences de novo, which 

suggests its potential in discoverying GAG-based drugs. Also recently, this method was 

applied to identify a specific tetrasaccharide sequence to stabilize CXCL13 in its dimeric 

form, which was supported by solution-based experiments [56].

Although GOLD has been the primary docking tool for CVLS studies, other programs 

should be applicable too, as shown by several groups [2,29,39,55,57], following 

optimization of parameters for the library to be screened. The dual filter CVLS strategy 

appears to carry an advantage of being able to elucidate GAG sequences that selectively bind 

the target binding site with high selectivity. This is one of major considerations for GAG–

protein interactions because high in silico affinity (i.e., score) may also arise from non-

selective or plastic recognition. For discovery of GAG-based drugs, this is a major liability. 

CVLS has the capability of weaning out the inconsistent, non-specific binders. This helps 

minimize the burden associated with synthesizing and screening a large library of GAGs.

In addition to explicit computational studies, several groups have combined biophysical/

biochemical studies with computational approaches to understand the specificity of GAG–

protein systems. For example, the role of divalent cation for binding heparin and heparan 

sulfate to endostatin was characterized by surface plasmon resonance (SPR) and molecular 

modeling [58]; a carbohydrate microarray technique was combined with modeling to 

understand GAG recognition by growth factor proteins (FGF2/FGFR1), malarial protein 

VAR2CSA and tumor necrosis factor-α (TNF-α) [13]; spectrofluorimetry and NMR were 

combined with molecular docking and dynamics to study recognition properties of IL-8 by 

various GAG [59]; and SPR and GAG polarity studies were combined to understand FGF-1 

recognition [60]. Although these approaches are highly valuable, a serious limitations with 

these studies is that of the number of available GAG sequences. It is difficult to find a library 

of more than a few dozen diverse GAG sequences, which leaves lingering questions 

regarding the specificity/non-specificity of GAG–protein system. It appears that 

computational approaches of the CVLS type are more suitable for exhaustive analysis of the 

specificity of GAG–protein systems.
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Is My GAG–Protein Complex Stable?

Since the time of the earliest of MD studies [14], efficient and reliable tools have been 

developed to enable much larger (number of atoms) and longer timescale (ns to ms) studies 

to afford insight into the dynamics of GAG–protein co-complexes in water. These tools 

include three comprehensive force fields including GLYCAM [61], CHARMM [62], and 

GROMOS [63], of which GLYCAM has an extensive library of glycans [64]. These 

developments enable elucidation of atomistic, molecular and ensemble properties of GAG–

protein systems (see Table S1) [35,65–67]. MD studies are central to assessing the 

thermodynamic and kinetic stability of complexes, without which inferences drawn from 

docking and scoring approaches alone may sometimes lead to false positives or 

misinterpretations. Briefly, the co-complex structure obtained following molecular docking 

is used to generate the initial structure in the presence of explicit water using one of the three 

forcefields. The system is then minimized and equilibrated to physiological conditions for 

MD runs.

MD offers trajectories of structural coordinates as a function of time (Fig. 2D). Although the 

approach can simulate most conformational changes, large scale movements, such as domain 

movements in proteins arising from GAG binding (e.g., 10–100 Å), may not be simulated 

accurately. Once the trajectories are collected in sufficient resolution (e.g., one structure 

every ps or more), comparison of the macromolecular backbones from the initial ensemble 

affords insight into stability of the bound GAG. It is necessary to assess complex stability for 

50 ns or more to understand the nature of forces (Coulombic, H-bond, etc.) [35,36,67], IdoA 

puckering [32,65], role of water molecules [34,36,68,69], free energy contribution of 

individual residues/groups [2,67,68] and conformational hinge movements [36]. It is 

heartening to note that tools have been developed, many available in public domain, for such 

analysis (see Supplementary Information).

H-Bonds and Ring Puckering

Through MD analysis it is possible to observe the formation, breakdown and re-formation of 

bonds, such as H-bonds, in MD trajectories. This helps compute the percent occupancy of a 

GAG donor or acceptor atom/group onto the protein binding site (Fig. 3A). An occupancy of 

100% would imply persistence of a particular H-bond throughout the simulation time, which 

may correspond to specificity of interaction. In contrast, partial occupancy may imply 

plasticity/non-specificity (Fig. 3B) [5,35,68]. Such analysis has been used to deduce 

plasticity in GAG binding to FGF2 [35] and IL-8 [5] H-bond analysis studies have also 

presented transient formation of new interactions not invoked in X-ray structures [29,33,67]. 

Interestingly, the transient H-bond appeared to affect IdoA/IdoA2S puckering [67], which 

implies conformational mobility of GAG structure upon binding.

The Role of Water

MD simulations show radial distribution of water molecules around their polar atoms of 

GAGs in co-complexes [69], which implies that MD in a box of water presents a way of 

teasing out the role of water in GAG–protein interactions (Fig. 3C). In fact, a recent work 
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shows that about half of GAG–protein interactions are mediated by water molecules, which 

may be bridging and non-bridging entities [68]. More importantly, studies on cathepsin K, 

CD44 and CXCL5 show that bridging as well as non-bridging interactions are important for 

GAG recognition (Fig. 3D) [34,68,69].

Free Energy of Binding

The MD trajectories also allow deduction of free energy of binding by averaging molecular 

mechanical contributions from bonded, non-bonded, and solvent interactions by using 

Poisson-Boltzmann (PBSA)/Generalized Born methods (GBSA). The first application of this 

technique to PECAM-1 and annexin A2 showed the presence of high and low affinity 

heparin-binding sites and explained affinity increases with chain length [36]. Further studies 

using DMD, a targeted MD simulation strategy, demonstrated good validation with the 

experimental observations [29,31,33]. Because the molecular mechanics calculations are 

pairwise additive functions, individual residue wise contributions can be easily computed. 

This has yielded insight into identifying major points of GAG recognition (Fig. 3F) 

[29,31,33]. Such information could be useful for rationally deducing sites for mutagenesis 

and functional analysis.

Changes in free energy on GAG binding to a protein could also be calculated by linear 

interaction energy (LIE) approximation method, which is the energy difference between the 

bound and free states of GAG. When used for hyaluronan binding to A and B forms of 

CD44, the LIE method gave good correlation agreement with the solution data [70]. Finally, 

the free energy difference approaches such as free energy of perturbation (FEP) [71] and 

thermodynamics integration (TI) [2] are particularly useful to understand the effect of single 

site mutations (Arg to Lys) or chemical modifications (SO3 to OH in GAG residue) in 

structure function relationship. These are typically far more challenging to do in solution.

Limitations, Challenges and Validation

Despite the advances and successes, it is important to appreciate the limitations of 

computational approaches. Parameters for sulfate groups in various micro-environments 

continue to be updated and this has direct implications for all docking and dynamics 

experiments [64]. Likewise, although IdoA exhibits multiple conformations [32,72], it is 

typically simulated in two conformations only (1C4 and 2SO) [11,23,55,72]. Challenges also 

exist in computationally handling the number of rotatable bonds in an oligosaccharide. This 

has limited most studies to chains shorter than hexasaccharides [24,31]. On the dynamics 

front, it has been challenging to study large systems in explicit solvent, e.g., full-length 

GAG, and approximations, such as coarse grain models [73], have had to be implemented. 

This implies that validation of computational results through solution-based experiments is 

important and essential. Although generally computational studies have attempted direct 

correspondence with solution results [5,31,35,67,68], many derivations remain predictions at 

the present time. This implies that the current state-of-art still leaves room for some 

computational predictions to turn out to be false positives or negatives. Another challenge is 

that despite advances in prediction algorithms, pose accuracy is not very good. Because a 

large number of systems rely primarily on electrostatic interactions, a multitude of poses are 
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predicted by most computational approaches. In this connection, the CVLS algorithm 

appears to be especially useful in segregating specific systems, i.e., those with high level of 

consistency among poses, from non-specific system, i.e., those with poor pose consistency 

[11,23,24].

Future Inquiries

The liabilities should not deter non-computational researchers from undertaking 

computational studies, while these should embolden computational researchers’ the resolve 

to develop a more exact science. In fact, the field is at the doorstep of number of major 

advances in terms of biological insights. For example, computational approaches are likely 

to be the only means of understanding why nature has engineered such phenomenal diversity 

in GAGs? Beside the advantage of economy, it is highly likely that diversity affords much 

higher selectivity of protein recognition on a needs-basis than developing an evolutionary 

system geared to specific recognition of a particular set of proteins. It is also highly likely 

that non-selectivity, or plasticity, of protein recognition is a dominant component of GAG 

biology. Parsing these mechanisms at systems biology and biochemical/biophysical levels, 

difficult in solution-based experiments, is particularly suited at computational level. On the 

drug discovery front, a major area of inquiry is the computational design of GAG-based 

drugs. Theoretically, most GAG–protein systems should be ‘druggable’. However, other than 

AT–heparin system [15,65], none have been identified. Recent computational studies show 

that HCII–HS system appears to be a druggable system [11]. We predict that screening the 

library of natural and unnatural GAG sequences against a host of target proteins should 

afford many ‘high-specificity’ druggable systems. Finally, on the structural biology front, 

computational approaches will be used to understand larger ternary, quaternary and higher 

order systems in which GAG plays a key role. Such studies would hopefully help understand 

the role of two or more juxtaposed GAG chains on most proteoglycans in driving biology.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The state-of-the-art in computational approaches to understand GAG–proteins 

interactions is presented

• The focus is to help non-computational researchers undertake computational 

studies

• Computational tools can answer questions on the site and nature of GAG 

binding

• It is possible to address whether a GAG–protein system is ‘specific’ and/or 

‘non-specific’

• Future tools will address structural biology of higher order GAG–protein 

complexes and design of GAG-based drugs
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Figure 1. 
A) Prediction of GAG binding site on a protein by ClusPro docking server (http://

cluspro.bu.edu) [38,39]. A generic heparin sequence predicted to bind to FGF2 (cyan sticks) 

is compared with the crystal bound hexamer (magenta). B) Prediction of GAG binding 

modes through the DMD approach [31,33]. The study deduced most populated clusters of 

six DMD simulations with different GAG type and chain length binding to IL-10. Shown is 

schematic visualization of the two principally different GAG binding modes observed 

followed DMD. C) Prediction of the most favored GAG sequence that binds to HCII using 

dual-filter CVLS strategy that identifies ‘high-affinity & high-specificity’ sequences [11]. D) 

Prediction of two ternary GAG–protein complexes (AT–HS–T and HCII–HS–T) using 

CVLS approach [26]. Although the two serpins (AT and HCII) are strikingly similar, the 

position of T (thrombin) in the two is dramatically different and this matches with the 60° 

difference in mode of HS binding onto the two proteins. Figures to be reproduced after 

permission from respective publishers.
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Figure 2. 
A flowchart describing the use of computational approaches in addressing key questions on 

GAG–protein interactions (Panels A through D). Although shown in sequential format 

(A→B→C→D), it is not strictly necessary to rigorously follow this flowchart, especially if 

some information is already available for any of the steps. ➀ Sequence and atomic 

coordinates of a protein can be obtained from the protein data bank (www.rcsb.org). ➁ 
Homology model of a protein of unknown structure can be generated using programs such 

as Modeller (https://salilab.org/modeller/), Swiss-Model (https://swissmodel.expasy.org), 

etc. ➂ Consensus sequences include –XBBXBX-, -XBBBXXBX- (B = basic residue and X 

= hydropathic residue) [14], TXXBXXTBXXXTBB (T = turn),[41] CPC clif motif [43], 

clamp-like orientation of basic residues with beta sheet conformations [44]. ➃ If a protein 

satisfies step ➁, then it is likely to bind GAGs. ➄ a) Electrostatic potential (ESP) can be 

calculated using tools such as APBS from PyMol (https://www.pymol.org/), DeepView-

Swiss-PdbViewer (http://spdbv.vital-it.ch/) and others. GRID search refers to protocol 

described by Goodford [50]. Site-mapping technique [30]. b) from step 5a we can identify 

basic site / subsite(s) ➅ Experimental evidence typically includes site directed mutagenesis, 

NMR, congenital mutation information, etc [52–54]. ➆ Putative GAG binding site(s) are 

identified based on results from ESP, GRID search, site-mapping techniques [17–20, 30]. ➇ 
This includes protonation, addition of hydrogens, modeling of missing residues and 

minimization of protein using a modeling software. GAG structures can be built using 

CHIMERA (https://www.cgl.ucsf.edu/chimera/) or GLYCAM (http://glycam.org/tools/

molecular-dynamics/oligosaccharide-builder/build-glycan?id=8). ➈ Perform initial docking 

to site(s) of binding identified in step ➆ for various GAGs (HP, HS, CS, DS) of various 

lengths (dp2, dp4 and dp6) using either Autodock (http://autodock.scripps.edu), Autodock 

Vina (http://vina.scripps.edu), GOLD (https://www.ccdc.cam.ac.uk/solutions/csd-discovery/

components/gold/), DOCK (http://dock.compbio.ucsf.edu/), MOE (https://
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www.chemcomp.com/MOE-Structure_Based_Design.htm), or other programs(refer 

supplementary information) ➉ Here GAG length, radius of site of binding, number of 

iterations, number of docking runs, type of docking program, etc. are evaluated and the best 

protocol is implemented in production run. ⑪ Perform repeated molecular docking using 

the optimized program and parameters from step ➉ for a library of GAG sequences. A 

library of GAG sequences can be obtained from the Desai lab (built using SPL scripts) 

[23,24]. Based on need, this library could have 1,000 to more than 100,000 unique 

sequences. ⑫ Analysis includes ranking of docked poses by calculating either RMSD, 

energy, score, non-bonded interactions, etc. and identify the most favored GAG equence(s). 

⑬ Although typically not considered part of a computational program, validation of results 

in solution experiments obtained in ⑫ is extremely important. ⑭ Utilize the most favored 

GAG–protein complex from ⑬ and prepare initial coordinates for MD, which includes 

selecting force field, ensuring charge neutralization, immersing in an explicit box of solvent 

molecules, and minimizing the system. ⑮ Equilibration implies allowing the system to 

reach physiological conditions such as constant temperature and pressure (NPT/NVE) 

conditions. ⑯ This includes performing MD run for ~1 ns to ~1 ms, based on need, and 

collecting trajectories of data. ⑰ – ⑲ Analysis of trajectories may involve RMSD 

convergence, direct and water mediated H-bond interactions and their occupancies, binding 

free energy calculations (MMPBSA/MMGBSA), FEP, LIE and single residue energy 

decomposition calculations. ⑳ This involves ascertaining that computational deduction of 

thermodynamic stability on the basis of steps ⑰ through ⑲ is supported by some results in 

solution.
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Figure 3. 
The use of MD in understanding GAG–protein interactions. Analyzes of MD trajectories 

over a timescale of few picosec to hundreds of microsec affords a wealth of thermodynamic 

and kinetic information on GAG–protein co-complexes. Shown are results for an exemplary 

system, heparin octasaccharide (HS08) binding to CXCL5 in water (A-F). A) The observed 

intermolecular hydrogen bonds (H-bonds, broken black lines) between donors and acceptor 

atoms of GAG and side chains of amino acids at a given time frame. B) Percent occupancy 

of H-bonds between key amino acid residues with HS08 is shown (higher (red) to lower 

(blue)). C) A representative MD frame showing the bed of heterogeneous water molecules 

surrounding interacting regions. The distribution of water engineers GAG–water, water–

water, protein–water, protein–GAG–water H-bonds. Water molecules are represented as red 

spheres and interactions are shown as faint black dashed lines. D) Significant number of 

interactions arise from water mediated H-bonds (i.e., not direct) between GAG and protein, 

as shown. E) Shown is the overall occupancy of water mediated H-bond interactions 

between GAG and protein. F) Single residue energy decomposition (SRED) of interacting 

amino acids in the co-complex as deduced by MM-PBSA/MM-GBSA method.
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