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Abstract

Mobile Health (mHealth) interventions are behavioral interventions that are accessible to 

individuals in their daily lives via a mobile device. Most mHealth interventions consist of multiple 

intervention components. Some of the components are “pull” components, which require 

individuals to access the component on their mobile device at moments when they decide they 

need help. Other intervention components are “push” components, which are initiated by the 

intervention, not the individual, and are delivered via notifications or text messages. Micro-

randomized trials (MRTs) have been developed to provide data to assess the effects of push 

intervention components on subsequent emotions and behavior. In this paper we review the micro-

randomized trial design and provide an approach to computing a standardized effect size for these 

intervention components. This effect size can be used to compare different push intervention 

components that may be included in an mHealth intervention. In addition, a standardized effect 

size can be used to inform sample size calculations for future MRTs. Here the standardized effect 

size is a function of time because the push notifications can occur repeatedly over time. We 

illustrate this methodology using data from an MRT involving HeartSteps, an mHealth 

intervention for physical activity as part of the secondary prevention of heart disease.
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Introduction

This paper addresses precision prevention through the development of a type of mobile 

health (mHealth) interventions called just-in-time adaptive interventions (JITAIs), which use 

an individual’s current mood, stress level, context, or behavior to provide tailored 

interventions that support positive behavior change. Mobile health interventions typically 

consist of several intervention components, such as tools for self-monitoring (e.g., graphs), 

reminders, educational materials, and so on. Some of these intervention components are 

“pull” components, in that they are accessed at will when the user decides that the 

component would be helpful. Pull components leave the user in control of the treatment, but 

their effectiveness depends on the user’s ability to determine when a particular component 

would be most useful and to remember to access intervention components at the times of 

need. Other intervention components are “push” components, which are sent by the 

intervention, not requested by the individual. Push components are usually provided as 

notifications or text messages, and common examples include reminders to perform self-care 

behaviors (e.g. to take medications), feedback on goal progress, and motivational messages. 

In traditional mHealth interventions, push components are typically provided based on a 

relatively simple set of decision rules. For instance, a medication reminder might be sent at 

the same time each day, or the intervention might send the user a motivational message if 

she missed her physical activity goal, measured in steps, three days in a row.

One problem with push components such as these is that they can be delivered in different 

contexts (e.g. in different locations or at different times of day), but they may not work 

equally well in all circumstances. For example, a reminder to take a medication might be 

ineffective if the individual is not at home and does not have the medication with her. 

Similarly, a message to help a person manage his nicotine craving that is intended to prevent 

smoking relapse might be more or less effective depending on whether the person is in a car, 

commuting home from work, or is at home on a weekend. In addition, push intervention 

components can interrupt and aggravate individuals during their daily lives, especially if the 

components arrive at inappropriate times or when they are not actionable (Smith et al., 

2017). In response, individuals may disengage from the intervention over time, or delete the 

mHealth application altogether. Ideally, then, push components should be delivered with 

precision, at moments when they are most needed by the individual and when the individual 

is receptive to treatment (Nahum-Shani et al., 2016).

JITAIs are a class of mHealth interventions that attempt to tailor push intervention 

components to the individual’s current context, behavior, and physiological and 

psychological states in order to maximize their effectiveness and minimize user burden. To 

design these precise interventions, prevention scientists need to understand how the 

effectiveness of specific push components varies among individuals, across different 

contexts and treatment histories, and over time. The micro-randomized trial (MRT) is a new 

trial design that provides data to answer these questions and to inform decisions about 

whether and in which contexts push intervention components should be provided (Klasnja et 

al., 2015). This trial design provides data for investigating whether a push intervention 

component has an effect, how that effect changes across a series of treatment occasions, and 

how that effect is influenced by the “state” (the individual’s stress level, context, etc.) in 
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which the intervention component is delivered. In this way, evidence from MRTs can help 

prevention scientists decide precisely when and where a particular intervention component 

should be delivered (or not delivered) to maximize its effectiveness and minimize user 

burden.

One statistical tool for evaluating intervention components using data from an MRT is the 

standardized effect size. A standardized effect size estimate can help scientists compare and 

select intervention components that might be included in a preventive mHealth intervention. 

In addition, standardized effect sizes can facilitate sample size calculations, meta-analyses, 

and rules of thumb for “small” and “large” effect sizes in mobile health. Indeed, 

standardized effect size estimates have been recommended as part of statistical analyses for 

decades (e.g. Wilkinson, 1999). Here we develop a method for using MRT data to form a 

standardized effect size estimate for mHealth intervention components that can be delivered 

repeatedly and may have varying effects over time.

This paper reviews the MRT design, motivates and describes a standardized effect size 

calculation for MRTs, and illustrates the MRT design and standardized effect size using a 

study of HeartSteps, a mobile intervention designed to improve physical activity as part of 

the secondary prevention of heart disease. For clarity we begin with a description of 

HeartSteps.

Example: HeartSteps

We are developing a mobile health intervention, HeartSteps, that encourages individuals to 

be physically active. The final version of HeartSteps will be a secondary prevention 

intervention to decrease the likelihood of subsequent adverse cardiac events among 

individuals with cardiovascular disease. In this paper we focus on the first of three micro-

randomized trials designed to inform the development of HeartSteps.

The first trial for HeartSteps was a 42-day study involving 44 sedentary adults. The 

participants were provided Android smartphones and wore a Jawbone Up Move wristband 

that recorded their step count every minute. Sensors on the smartphones collected contextual 

information including each participant’s location (classified as home, work, or “other”), 

current weather, and current activity classification (sedentary, walking, running, or 

potentially operating a vehicle). In addition, each evening, participants were asked to reflect 

on their day with questions about how stressful, typical, and hectic the day was.

One of the intervention components tested in this initial trial of HeartSteps was daily 

planning of physical activity. Each evening, as part of the evening reflection questions, 

participants might be prompted to create a plan for how they would be active during the 

following day. This intervention component embodied the construct of implementation 
intentions (Gollwitzer, 1999), which are specific plans for when, where, and how an activity 

will be performed. Implementation intentions have previously been used to support physical 

activity habits during cardiac rehabilitation (Luszczynska, 2006) and have been shown to be 

effective at initiating a range of health-promoting behaviors (Gollwitzer, 1999). We are 

interested in the effect that creating an activity plan has on the following day’s step count. 

This planning intervention component will be discussed at greater length below, when we 
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describe the micro-randomized trial design and illustrate our standardized effect size 

calculation using data from the HeartSteps trial.

Micro-randomized trials

The micro-randomized trial (MRT) is a randomized trial design for use in estimating the 

effects of push intervention components that might be delivered repeatedly over time. 

Examples of push intervention components include motivational messages, behavioral 

suggestions to take one’s mind off a craving and prevent relapse, or messages that help 

reframe a lapse to a health-risk behavior. In an MRT, participants are randomly assigned to 

different options for a given intervention component at each of many decision points. The 

decision points are times at which it might be appropriate to deliver the intervention 

component. At each decision point in an MRT, each participant is randomized to receive a 

specific version of an intervention component, such as different framings for motivational 

messages, or to receive no treatment.

In HeartSteps the decision points for the activity planning component occurred once per day: 

each evening as part of the daily reflection questions. At each decision point, that is, each 

evening, participants were randomly assigned to receive or not receive (each with probability 

0.5) the prompt to create an activity plan for the following day. Those receiving this 

intervention component were asked to plan their physical activity for the following day in 

either an unstructured or a structured format (each with probability 0.5). Unstructured 

planning required free text entry of a plan for the next day’s activity while structured 

planning required the participant to select from a tailored menu of options (see Figure 1).

By randomizing participants many times over the course of a study, MRTs enhance 

scientists’ ability to estimate the causal effects of time-varying mobile health intervention 

components as well as moderated effects of these time-varying components. Data from an 

MRT can reveal whether an intervention component is effective as well as the circumstances 

or context under which it is effective. The micro-randomized trial is thus a powerful 

experimental tool for developing precision-based, preventive JITAIs, as it provides an 

empirical basis for decisions about when intervention components should and should not be 

delivered. For example, using data from the HeartSteps MRT, we can estimate the effect of 

each type of planning activity (unstructured or structured) on the following day’s step count 

and determine whether this effect depends on whether the plan is created for a weekday or a 

weekend, the number of steps taken on the current day, and individual characteristics such as 

gender.

The causal effects estimated in an MRT, and hence the evidence an MRT provides about the 

efficacy of mobile health intervention components, rely on the notion of a proximal 

outcome. A proximal outcome reflects the short-term desired effect of a single 

administration of an intervention component. Often, proximal outcomes are postulated 

mediators on the path from the component to a distal outcome of interest. For example, an 

mHealth intervention for adolescents at high risk of substance abuse might involve 

reminders to practice stress-reducing mindfulness exercises, with the long-term goal of 

preventing substance use. In this case a proximal outcome might be the fraction of time the 
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participant is stressed in the two hours following the decision point, while the distal outcome 

might be the time until substance use. For the daily planning component in HeartSteps, the 

proximal outcome is the following day’s step count and the distal outcome is the average 

daily step count. Thus, in HeartSteps, the proximal outcome directly contributes to the distal 

outcome. Data from an MRT are used to estimate the causal effects of specific intervention 

components on proximal outcomes. For further discussion of MRTs see Klasnja et al. 

(2015), Liao, Klasnja, Tewari, and Murphy (2016), and Dempsey, Liao, Klasnja, Nahum-

Shani, and Murphy (2015).

In the following two sections, we will describe a standardized effect size estimate for the 

effect of an mHealth intervention component on a proximal outcome in an MRT. Since 

participants in an MRT are repeatedly randomized, that is, delivery of the mHealth 

intervention component is time-varying, this standardized effect size is a function of time 

describing how the effect of an intervention component changes across a sequence of 

decision points when that component might be delivered.

Treatment effects and standardized treatment effects

In this section we provide a conceptual description of the treatment effects investigated in a 

micro-randomized trial and discuss changes in these effects over the course of a study. We 

then introduce our standardized effect size calculation. For clarity, we consider only two 

treatment options at each decision point (receiving an intervention component versus not 

receiving the component) and a continuous proximal outcome. At each decision point, the 

effect of treatment (an intervention component) is the mean difference in a proximal 

outcome between treated and untreated participants at that decision point. Technically, let t = 

1, …, T index decision points with At = 1 if the participant was treated and At = 0 if not. 

Denote the proximal outcome following decision point t as Yt+1. In HeartSteps, for example, 

the decision points for the planning component occurred each evening and Yt+1 is the 

following day’s step count. The effect of treatment at decision point t is the expected 

difference in Yt+1 between treated and untreated participants, namely,

β(t) = E[Y t + 1 At = 1] − E Y t + 1 At = 0 . (1)

See Liao et al. (2016) for a full derivation of β(t) using causal inference notation. Notice that 

β(t) is the proximal effect of delivering a treatment at decision point t, as opposed to a time-

varying, longitudinal, effect of a single treatment administered at baseline. The decision 

point index t represents time since the first randomization.

There are several reasons why the treatment effect, β(t), might change across the repeated 

randomizations in an MRT. Since intervention components in an MRT are provided on many 

occasions over days or weeks, participants might start to habituate (ignore) those 

components. Or their enthusiasm for improving physical activity might be high at the start of 

the trial and diminish over time. In these cases it is plausible that the treatment effect for 

intervention components provided at earlier decision points would be higher than the 

treatment effect at later decision points. Seasonal changes during the study period could also 
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moderate the effects of the intervention components, especially in a study like HeartSteps, 

where the health behavior of interest (physical activity) likely depends on the weather.

Effect sizes for micro-randomized trials

A standardized effect size for the micro-randomized trial is the magnitude of the effect of an 

intervention component on the proximal outcome relative to the variability in the proximal 

outcome. Since the effect of receiving an intervention component may differ at each decision 

point in an MRT, a single standardized effect size statistic is an inadequate description of 

treatment efficacy. Here we provide a standardized effect size expressed as a function of 

time so as to reflect changes in the magnitude of the proximal treatment effect across the 

sequence of decision points in an MRT.

A natural effect size measure at a single decision point t is the standardized mean difference

d(t) = β(t)
σ(t) (2)

where σ(t) is the population standard deviation of Yt+1. This is Cohen’s d (Cohen, 1988) and 

measures the magnitude of the treatment effect in standard deviation units. Typically, the 

standard deviation estimate in Cohen’s d is a pooled estimate calculated assuming the two 

treatment groups have the same standard deviation. In this discussion we will use the pooled 

standard deviation as the denominator of d(t) (see Olejnik and Algina (2000) for other 

methods of standardizing a mean difference effect size).

Estimating the standardized effect size as a function of time

First we review how to estimate the standardized effect, d(t), at a single decision point. The 

standardized effect size for an intervention component in an MRT, expressed as a function of 

time, will be computed using estimates of d(t) from all decision points. A straightforward 

estimate of d(t) at decision point t is

ds(t) = b(t)
spool(t)

(3)

with

b(t) = Yt + 1, 1 − Yt + 1, 0

spool
2 (t) =

(nt, 0 − 1)s0
2(t) + (nt, 1 − 1)s1

2(t)
nt, 0 + nt, 1 − 2
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Yt + 1, a = sample mean of Yt + 1 for participants with At = a

sa
2(t) = sample variance of Yt + 1 for participants with At = a

nt, a = number of participants with At = a

Other choices are possible for b(t), an estimate of β(t). It is typical to adjust for pre-decision 

point covariates when estimating β(t) instead of using the unadjusted sample mean 

Y t + 1, 1 − Y t + 1, 0. In a micro-randomized trial, one natural pre-decision point covariate is the 

prior decision point’s proximal outcome. Denote the prior decision point’s proximal 

outcome measurement as Zt. Consecutive proximal outcomes in an MRT are within-person 

measurements within relatively short time intervals, so one expects a high degree of 

correlation between Zt and Yt+1. We therefore adjust for Zt by using as our estimate of β(t) 
the coefficient for At from a regression model with response variable Yt+1 and covariates At 

and Zt. Note that this regression model uses the cross-sectional data from decision point t, 
where At is the treatment variable and Zt is a covariate measured before the decision point.

Once standardized effect sizes are computed at every decision point, we combine these 

estimates to obtain a standardized effect size that can be displayed as a smooth function of 

time. Smoothing techniques such as LOESS, smoothing splines, and kernel smoothers (e.g. 

Friedman, Hastie, & Tibshirani, 2009) are well suited to this task. With dozens or hundreds 

of decision points in an MRT, these smoothing techniques will produce similar function 

estimates for the standardized effect size. Here we use LOESS with degree-1 polynomials 

(Cleveland & Devlin, 1988). For additional technical discussion of these smoothing 

techniques, see the supplemental materials (available online). To obtain the standardized 

effect size as a smooth function of time, we apply LOESS separately to b(t), the estimated 

treatment effect, and to spool(t), the pooled standard deviation, across all decision points. 

This produces estimates of these quantities as functions of time since the first decision point, 

and the final standardized effect size function is the ratio of these two function estimates. We 

apply LOESS separately to b(t) and spool(t) because simulation results (available online) 

suggest that this procedure has less bias and greater precision than applying LOESS to the 

ratios ds(t).

To describe the uncertainty in this standardized effect size function, we compute bootstrap 

confidence intervals (Efron & Tibshirani, 1994, Chapter 13) at each point for which the 

effect size function is displayed. This is done by repeatedly sampling the participants to 

create many bootstrap samples. For each bootstrap sample, the same standardized effect size 

function is computed. The 90% confidence limits at a decision point are the sample 95th and 

5th percentiles from this set of bootstrap effect size functions evaluated at that decision 

point.
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Example: standardized effect sizes for activity planning in HeartSteps

In this section we illustrate the calculation of standardized effects sizes using HeartSteps. 

We also illustrate how these standardized effects sizes can be used in a subsequent study to 

further develop HeartSteps. Recall that participants in the HeartSteps trial received the 

planning component each evening with probability 0.5. There were two formats for the 

planning component. In unstructured planning, participants were given an example activity 

plan and then asked to enter their plan for the following day in an open text box. In addition, 

at the start of the study, participants were instructed to be specific when writing their activity 

plans, including the time and location when they would complete the physical activity. In the 

structured planning format, participants were asked to choose from a list of plans they had 

entered in the text box on prior days. See Figure 1 for examples of these two formats. We 

were interested in investigating these two planning formats because they both target the 

same construct—implementation intentions—but with different potential benefits and 

drawbacks. Unstructured planning is flexible, as it enables participants to devise plans that 

are tailored to their upcoming day and to be mindful while they are planning, but it is also 

laborious. Structured planning, on the other hand, is much less work for participants, since 

they can simply pick a planning option from a list. Insofar as participants’ daily lives are 

often routine, this planning format should still allow them to pick plans that are relevant and 

actionable. However, choosing a predefined plan requires less attention compared to creating 

a new plan. We were thus interested in studying how these differences between the two 

planning formats influence their effectiveness and influence participants’ experience of the 

intervention. For participants assigned to receive the planning component, a single planning 

format (unstructured or structured) was assigned with probability 0.5. In evaluating the 

unstructured and structured planning components, we were primarily interested in their 

effect on the following day’s step count. We were also interested in the effect of creating an 

activity plan when the following day is a weekday, since individuals’ activity patterns are 

often different between weekdays and weekends.

Computing the standardized effect size function

Recall that the decision points, t, for the activity planning components occurred during the 

evening of each study day. The daily step counts were square-root transformed to obtain a 

more symmetric distribution, so the proximal outcome, Yt+1, for the planning component is 

the square-root daily step count on the following day. The prior decision point’s proximal 

outcome, Zt, is the square-root daily step count for the same study day (the day before the 

plan is meant to be carried out). As an example, consider a participant who is randomly 

assigned to create an activity plan on Tuesday evening, so that At = 1 and t is the index value 

for Tuesday evening’s decision point. For this participant, Yt+1 is her square-root step count 

on Wednesday and Zt is her square-root step count on Tuesday.

In the following standardized effect size calculations, data from 7 of the 44 participants in 

the HeartSteps trial were excluded: 3 participants used phones set to a non-English locale, 

resulting in corrupted data; 2 participants dropped out within 4 days due to unfamiliarity 

with the Android phones provided in the trial; and the final 2 participants dropped out within 

2 weeks. The remaining 37 participants were enrolled in the study for a combined 1,529 
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days (at most 42 days per participant). In the following calculations, we only include the 

decision points t for which Zt, the prior decision point’s proximal outcome, and Yt+1, the 

proximal outcome, are not missing. This eliminates 415 decision points that occurred while 

the participants were traveling or experiencing technical problems with their phones or 

wristbands as well as 37 decision points from each participant’s first study day, when there 

is no prior decision point and hence no value for Zt. Finally, we exclude the 37 decision 

points from the second study day because only partial step counts were recorded on the first 

study day. This leaves a total of 1,040 decision points across the 37 participants included in 

this illustrative analysis.

First we will compute standardized effect sizes for two contrasts: unstructured planning 

versus no planning treatment; and structured planning versus no planning treatment. Second, 

because the unstructured planning component shows promise in improving physical activity 

(see below), we computed the standardized effect size for unstructured planning for 

weekdays versus no planning treatment for weekdays. We omit standardized effect sizes for 

activity plans created for weekends because in the pilot study there were few weekends per 

participant and thus we have very little data concerning the effect of the activity plans on 

weekend step counts.

To demonstrate the intermediate calculations required to obtain the standardized effect size 

function, the left panel of Figure 2 displays estimates of the effect of the unstructured 

planning component on the square-root daily step count for each decision point t. Recall that 

the estimate b(t) at each decision point is the coefficient for At from an ordinary least 

squares regression model with response variable Yt+1 and covariates Zt and At. In this case, 

At = 1 if the participant received the unstructured planning component and At = 0 if the 

participant received no planning treatment. The right panel of Figure 2 displays the pooled 

standard deviation of Yt+1 for each decision point. All of the estimates in Figure 2 are 

separately computed using the cross-sectional data from each decision point. The curves in 

Figure 2 are LOESS regression functions for the estimates b(t) and spool(t), and the 

standardized effect size function for the unstructured planning component is the ratio of 

these two curves.

Figure 3 displays standardized effect size functions for the unstructured and structured 

planning components. These effect sizes suggest little or no effect of creating a structured 

plan on the next day’s physical activity and a small, positive effect of creating an 

unstructured plan, which becomes somewhat larger near the end of the study period. The 

estimated treatment effect for the unstructured planning component on study day 40 seems 

unusually high, so we recomputed this standardized effect size without the estimated 

treatment effect on study day 40; the qualitative results of the computation did not change. 

Sensitivity analyses such as this one, along with confidence intervals, can ensure an 

appropriately cautious interpretation of these standardized effect size functions.

We were also interested in whether the activity plans had an effect specifically when the 

plans were created for a weekday. Figure 4 illustrates a standardized effect size function 

motivated by this interest, namely, that of the unstructured planning component using only 

decision points for which the next day is a weekday. This effect size is larger than those of 
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the unstructured and structured planning components computed using all decision points 

(Figure 3), remaining roughly constant near 0.2 for the duration of the study.

These standardized effect size functions are intended to accompany main effects analyses for 

each intervention component. Statistical hypothesis tests for the unstructured planning 

component in this pilot study suggested that it may have a marginal proximal effect on 

participants’ step counts and prompted further investigation of its marginal effect on 

weekdays. These standardized effect sizes complement main effects analyses for the 

unstructured planning component by estimating the magnitude of its proximal treatment 

effect over time. As illustrated in the following two sections, this provides empirical support 

for intervention design and the planning of future MRTs. The confidence intervals for all 

three of the standardized effect size functions are quite wide, with interval widths close to 

0.4. This is not surprising, since just 37 participants were included in this study, and suggests 

that we have limited information on small fluctuations in the standardized effect over time 

and that we should use a conservative estimate of the standardized effect when conducting 

power analyses.

Using standardized effect size functions to inform future development of HeartSteps

The above calculations are useful in furthering the development of an mHealth intervention 

such as HeartSteps as well as in the design of future MRTs. First, the effect size calculation 

does not provide evidence that the structured planning component is useful. However, the 

unstructured planning component does appear useful in improving physical activity, 

particularly on weekdays. This motivates including only unstructured planning in future 

versions of HeartSteps. Furthermore, suppose that participants report in exit interviews that 

creating the unstructured activity plans is onerous even though the above results indicate that 

these unstructured plans hold promise for improving physical activity on weekdays. Suppose 

further that a follow-up trial will last three months and we wish to reduce participant burden 

while still providing the unstructured planning component. In the follow-up study, we could 

prompt participants, on evenings that precede a weekday, to create an unstructured plan with 

probability 0.4, leading to an average of two unstructured plans per week for each 

participant (since there are five weekdays per week). With these design considerations in 

mind, we can now use the methodology developed in Liao et al. (2016) and Seewald, Sun, 

and Liao (2016) to compute the sample size required to detect a given standardized 

treatment effect for the unstructured planning component in such a follow-up study.

For this sample size calculation, we need to specify the following: the study duration in 

days; the number of decision points per day; the randomization probability for the 

intervention component; and an average (across time) standardized treatment effect with a 

time-varying pattern (e.g. constant or linearly decreasing) for this treatment effect. The 

standardized effect size developed in this paper provides an empirical method for specifying 

the standardized treatment effect, and its time-varying pattern, to size future MRTs. Note 

that many time-varying patterns are possible for a given average standardized treatment 

effect; refer to Liao et al. (2016) for further illustration. (We also require a quantity called 

the expected availability of participants for treatment, expressed as a probability. Since the 

evening planning component is scheduled at a participant-specified time, the expected 
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availability is 1. See Klasnja et al. (2015) and Liao et al. (2016) for a discussion of 

participant availability.) Continuing our example, we refer to the graph of the effect size for 

unstructured planning on weekdays (Figure 4) to specify an average standardized treatment 

effect. In this case, the average standardized treatment effect is roughly 0.2 with a constant 

pattern over time (in describing this effect as constant over time, we have incorporated our 

uncertainty about this effect size as measured by the confidence intervals in Figure 4). In a 

three-month study, there will be 60 decision points that occur on evenings that precede a 

weekday. With a randomization probability of 0.4, the sample size required to detect a 

constant treatment effect of 0.2 with 80 percent power at significance level 0.05 is 17 

participants. If instead we specify a constant standardized effect size of 0.15 and 90 percent 

power, the required sample size is 35 participants. Alternatively, to obtain an average of one 

activity plan (for weekdays) per week, we would randomize the planning component with 

probability 0.2. Then, with a constant standardized treatment effect of 0.15 and 90 percent 

power, the required sample size is 51 participants. These calculations were performed using 

the software described in Seewald et al. (2016), which can be accessed at https://

pengliao.shinyapps.io/mrt-calculator/.

Discussion

The micro-randomized trial allows behavioral scientists to investigate the causal effects of 

time-varying push intervention components in an mHealth intervention and the contextual 

moderators of those effects, thus enabling the construction of precision JITAIs for positive 

behavior change and prevention of adverse health outcomes. The standardized effect size 

developed in this paper displays, as a function of time, the magnitude of proximal treatment 

effects for intervention components that can be delivered at each of many decision points in 

an MRT. In addition to enabling sample size calculations based on empirical estimates of 

standardized treatment effects over time, as we illustrated above with HeartSteps, this 

standardized effect size will help scientists decide which intervention components should be 

included in an mHealth intervention and when those components should be provided to 

specific people.

The MRT of HeartSteps illustrates this point. In this trial, the standardized effect size for the 

structured planning component was very small throughout the study period (Figure 3), 

suggesting that this component is ineffective for helping individuals increase their physical 

activity. For this reason, the next version of HeartSteps will not include a structured planning 

component. The standardized effect sizes for the unstructured planning component (Figures 

3 and 4), on the other hand, along with primary analyses for this component (omitted here 

for brevity), suggested that unstructured planning might be an effective treatment, especially 

when it asks individuals to plan their physical activity for a weekday. These findings 

motivated retention of unstructured activity planning in the next version of HeartSteps, as 

well as the decision to only provide this component on evenings that precede a weekday.

What is important to note, however, is that effect size estimates from MRTs do not 

automatically translate into selection of intervention components or the decision rules for 

their provision. Inclusion of any intervention component in a JITAI presents a set of trade-

offs, and effect sizes form just one of many factors that have to be considered when 
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designing a JITAI. Again consider HeartSteps as an example. The next HeartSteps trial will 

last three months, and the trial after that will last one year. In such studies where a JITAI has 

to be used over an extended period of time, inclusion of intervention components, even if 

they have a statistically “significant” proximal treatment effect, must be weighed against 

their potential for producing clinically meaningful improvements in health behaviors and for 

inflicting excessive burden on users of the intervention. For instance, the standardized effect 

size for another intervention component in HeartSteps, which provided contextually tailored 

suggestions for physical activity up to five times each day, indicated that the effect of this 

component was strong initially but deteriorated over the course of the study. Even though a 

hypothesis test for the marginal effect of this component had a p-value below 0.05, including 

the component in a longer study without modification would almost certainly fail. This is 

because the beneficial effects of this component would likely disappear early in the study 

and because repeated provision of suggestion messages would increasingly annoy 

participants, risking their disengagement with the intervention as a whole. For these reasons, 

for the next HeartSteps trial, we will reduce the frequency of activity suggestions and 

schedule week-long periods with very few suggestion messages so that the beneficial effect 

of the intervention component might be sustained over a longer period of time. The 

standardized effect size calculation presented here can provide empirical evidence for such 

considerations about intervention design.

Returning to our example of daily planning in HeartSteps, we expected prior to conducting 

this trial that the standardized effect sizes for this component would decrease over time due 

to participant burden and habituation to the planning activities. Somewhat surprisingly, this 

did not occur based on the effect sizes presented here. However, the bootstrap confidence 

intervals for the planning effect sizes lead us to believe that the apparent increase in the 

effect of this component near the end of the study is due to sampling variability. 

Standardized effect sizes presented as a function of time can assist in assessing possible 

changes in the effect of intervention components over time.

Another potential use of standardized effect sizes from MRTs is to begin to establish rules of 

thumb for small or large effects in mobile health and, thus, to provide guidance for which 

intervention components are worth investigating further. To make this possible, however, 

more studies are needed to assess the connection between standardized effect sizes for 

proximal outcomes and their impact on distal clinical outcomes. Our expectation prior to 

computing standardized effect sizes for the study of HeartSteps was that the suggested 

magnitudes for small and large effect sizes provided by Cohen (1992) would be far too large 

for treatment effects for proximal outcomes in mobile health. This is because, at each 

decision point, the standardized effect size function for MRTs describes the effect on a 

proximal outcome of a single administration of an intervention component, such as a single 

session of activity planning. However, the results presented here suggest that standardized 

effect sizes in MRTs may be similar in magnitude to standardized effect sizes for traditional 

trial designs. Whether this also means that Cohen’s heuristic standards for small, medium, 

and large effects will hold for MRTs is unclear, however. Additional data are needed before 

rules of thumb can be developed to evaluate results from micro-randomized trials and to 

predict clinical usefulness of individual intervention components. It might be that a 

standardized effect size of 0.4 or 0.5 for a single proximal outcome can be observed 
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alongside minimal changes in distal clinical outcomes. On the other hand, since the 

standardized effect size function for an MRT describes the proximal effect of an intervention 

component that is delivered many times, a small effect size that is consistent over time, like 

the one observed for the unstructured planning component in HeartSteps, might produce a 

clinically meaningful impact on a distal outcome. More data are needed to understand the 

relationship between proximal effect sizes observed over time and their impact on clinical 

outcomes.

The JITAI framework holds a great deal of promise for designing effective prevention 

interventions that provide highly tailored support when the individual most needs it and is 

most likely to benefit from it. For instance, the mobile intervention BASICS-MOBILE 

(Witkiewitz et al., 2014) sought to reduce heavy drinking and smoking among college 

students. The intervention prompted participants to assess, among other measures, their 

smoking urge and affect three times per day and sent an urge-surfing (Bowen & Marlatt, 

2009) component when participants reported an urge to smoke. A JITAI following this 

approach might use geofencing to detect that a college student is approaching a store where 

he has regularly purchased cigarettes in the past, or detect, using wearable sensors, that he is 

stressed and hence may have an urge to smoke. The JITAI could then send him a reminder of 

his goals for reducing tobacco use and a tailored message to help him avoid the temptation 

to smoke. Similarly, the cStress model for detecting stress episodes (Hovsepian et al., 2015), 

during which there may be increased risk of relapse, is being used in a smoking cessation 

JITAI to trigger stress-reducing intervention components (Kumar et al., 2017).

Construction of such precise, preventive JITAIs will require investigators to efficiently 

identify effective intervention components and determine the contexts in which they are 

most effective for specific individuals. As illustrated by our discussion of the HeartSteps 

trial, micro-randomized trials can help assess the causal moderated effects of intervention 

components and, through the use of standardized effect sizes, can describe the magnitude of 

those effects across a series of treatment occasions. This enables investigators to identify 

promising intervention components and to formulate decision rules for their optimal 

provision. The work we presented here further extends the usefulness of the micro-

randomized trial design by enabling comparisons of the effectiveness of different 

intervention components and investigation of the relationships between the proximal effects 

of push interventions and distal health outcomes.
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Figure 1. 
Screenshot of the unstructured daily planning component (left panel) and the structured 

daily planning component (right panel) in the study of HeartSteps.
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Figure 2. 
Estimates of β(t) (left panel) and pooled standard deviations (right panel) for the 

unstructured planning component for each decision point in the study of HeartSteps. The 

curves are degree-1 LOESS regression functions.
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Figure 3. 
Time-varying standardized effect size for the unstructured planning component (left panel) 

and the structured planning component (right panel) in the study of HeartSteps. The dashed 

lines are 90% bootstrap confidence intervals computed with 5,000 bootstrap samples from 

the 37 participants in this analysis.
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Figure 4. 
Time-varying standardized effect size for the unstructured planning component in the study 

of HeartSteps, using only the decision points for which the next day is a weekday. The 

dashed lines are 90% bootstrap confidence intervals computed with 5,000 bootstrap samples.
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