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Quantitative integration of epigenomic
variation and transcription factor binding
using MAmotif toolkit identifies an
important role of IRF2 as transcription
activator at gene promoters
Hongduo Sun1,2, Jiawei Wang3, Zhaohui Gong1, Jiaying Yao1,2, Yuangao Wang1, Jian Xu 4, Guo-cheng Yuan5,6,
Yijing Zhang3 and Zhen Shao1

Dear Editor,
Eukaryotic gene transcription is controlled by a large

cohort of chromatin-associated proteins including tran-
scription factors (TFs) and epigenetic regulators1,2. ChIP-
seq experiments are now widely used to characterize the
genome-wide binding of these proteins, and comparing
ChIP-seq data from different cell types can provide
valuable insight into understanding how cell type-specific
transcriptional programs are established3. Specifically,
epigenetic regulators often show dynamic chromatin
binding during development and disease progressions2.
However, most of them are broadly expressed across tis-
sues, and their chromatin binding is thought to be mainly
modulated by crosstalk with TFs, which could be con-
sidered as their cell type-specific co-factors4. Thus, iden-
tifying TFs that preferentially bind at the genomic regions
differentially bound by a chromatin-associated protein
between different cell types has become an important step
toward deciphering the molecular mechanism modulating
its chromatin binding4. Moreover, applying this analysis
to histone modifications marking active regulatory

elements such as H3K4me1-3 and H3K27ac is frequently
used for discovering cell type-specific regulators5.
A traditional way of this analysis is to first detect the cell

type-specific ChIP-seq peaks of the protein of interest,
which are typically defined as those that do not overlap
with peaks identified from other cell types, and then
search for TFs whose binding sites are significantly over-
represented in these peaks6. But, the cell type-specific
peaks defined in this way often suffer from high false-
positive rates, which can severely affect the accuracy of
downstream analysis6,7. Recently, it has been demon-
strated that quantitative comparison of ChIP-seq data
using MAnorm or other statistical models can more
precisely characterize the differential binding of proteins
than arbitrarily classifying their peaks into cell type-
specific and non-specific ones based on peak overlap,
and thus can provide a better basis for the following
analysis6–8. This is particularly important for identifying
the cell type-specific co-factors of the protein under study,
which highly relies on both the sensitivity and specificity
of the detection of differential binding6. Therefore,
developing computational tools that systematically
incorporate quantitative comparison of ChIP-seq data
based on appropriate statistical models into the identifi-
cation of cell-type specific regulators can effectively
facilitate the application of these models.
Here, we present a practical toolkit, MAmotif, for this

purpose. It can automatically perform quantitative com-
parison between ChIP-seq samples of the same protein
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Fig. 1 (See legend on next page.)
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but from different cell types, and identify TFs whose
binding is significantly associated with the cell type-biased
binding of this protein as its candidate co-factors (Fig. 1a).
To assess its performance, we re-analyzed the ChIP-seq
data of H3K4me3, a histone mark of active promoters,
from adult and fetal human pro-erythroblast cells
(proEs)9. More than 97% of the H3K4me3-associated
genes (defined as genes with H3K4me3 peaks at pro-
moters) are shared between adult and fetal stages, cov-
ering 93% of the genes differentially expressed between
two stages (Supplementary Fig. S2a). However, using
MAnorm model, we still identified hundreds of different
H3K4me3 peaks at gene promoters, and the associated
genes also tend to be differentially expressed (Supple-
mentary Fig. S2b-d), indicating that the H3K4me3 levels
at these genes are fine-tuned. Subsequently, we applied
both MAmotif and traditional overlap-based approach to
compare the ChIP-seq data. Interestingly, MAmotif
identified IRF family motifs as the top candidate co-
factors associated with adult-biased H3K4me3 peaks at
gene promoters, while traditional overlap-based method
ranked GATA2 motif as the most significant one (Fig. 1b).
Of note, it has been validated that IRF2 can function as
transcription activator at adult-specific enhancers9. Given
that a significant fraction (19%) of IRF2 ChIP-seq peaks in
adult proEs are located at gene promoters, we speculate
IRF2’s promoter binding may also be important for
adult proEs.
Next, we incorporated the gene expression profiles of

adult and fetal proEs to test these predictions. The
rationale is that if a TF does preferentially bind at the
adult-biased H3K4me3 peaks, genes bound by it at pro-
moters should be more likely to have adult-biased
expression than other H3K4me3-associated genes, as
H3K4me3 is a strong transcriptional activation mark2. By
taking all 14,108 H3K4me3-associated genes of adult
proEs as background, we found genes covered by the
H3K4me3 promoter peaks containing IRF family motifs

are significantly enriched in genes more highly expressed
in adult proEs than fetal proEs (named as adult-high
genes hereafter, Supplementary Fig. S2e and Fig. 1c) and
depleted of genes more highly expressed in fetal proEs
(named as fetal-high genes, Supplementary Fig. S2f). We
repeated the analysis with IRF2 ChIP-seq peaks of adult
proEs and observed a more significant enrichment
(Fig. 1c–e). Moreover, we included the gene expression
changes upon shRNA-mediated knockdown of IRF2 in
adult proEs9. Strikingly, a significantly higher fraction of
the genes downregulated after IRF2 knockdown (named
as IRF2-activated genes) were covered by the H3K4me3
promoter peaks co-occupied by IRF2 than expected by
chance (Fig. 1f), indicating that IRF2’s promoter binding is
linked with transcriptional activation of downstream
genes. On the other hand, the presence of GATA2 motif
at H3K4me3 promoter peaks failed to show any sig-
nificant association with adult-biased gene expression
(Fig. 1c). Then, we defined stage-biased H3K4me3 peaks
based on the log2-ratios of H3K4me3 intensities and
corresponding P-values, and confirmed that the IRF2
motif, but not GATA2 motif, is significantly enriched in
adult-biased H3K4me3 promoter peaks compared to the
fetal-biased ones (Supplementary Fig. S2g-h), especially in
those adult-biased peaks co-localized with IRF2 peaks
(Supplementary Fig. S2i). This is consistent with the
previous finding that GATA TFs regulate erythropoiesis
at both stages10.
We have shown that besides distal enhancers, IRF2 can

also function as transcription activator at gene promoters.
However, only a small fraction of IRF2 promoter-bound
genes overlap with the genes associated with IRF2-bound
enhancers (Fig. 1g), though the vast majority of these
genes have active promoters in adult proEs (marked by
H3K4me3 but not by repressive mark H3K27me3). Next,
by using all the active promoter genes as background, we
confirmed IRF2’s binding at promoter and enhancer
regions is regulating different pathways in adult proEs.

(see figure on previous page)
Fig. 1 Using MAmotif to compare the H3K4me3 ChIP-seq data of adult and fetal proEs. a The overall workflow of MAmotif toolkit for
comparing two ChIP-seq samples of the same chromatin-associated protein but from different cell types (a detailed introduction of the workflow and
implementation of MAmotif toolkit and its Motif-Scan module can be found in Supplementary information and Supplementary Fig. S1b-f). Of note,
MAmotif can also utilize TF binding information from other resources such as ChIP-seq data, instead of the TF binding motifs detected by its Motif-
Scan module. b The top JASPAR motifs predicted by MAmotif and traditional overlap-based approach that are significantly associated with the adult-
biased H3K4me3 promoter peaks compared to fetal proEs. c The overlap between adult-high genes and genes covered by the H3K4me3 promoter
peaks of adult proEs that contain IRF1/2, MYB, GATA2 motifs, and IRF2 ChIP-seq peaks of adult proEs, respectively. d Fractions of adult-biased, fetal-
biased, and unbiased H3K4me3-associated genes that have IRF2 peaks at their promoters. e Fractions of adult and fetal-high genes that have IRF2
peaks at promoters. Here the P-values shown in d and e were calculated by two-tailed Fisher’s exact test using hypergeometric distribution. f The
overlap between IRF2-activated genes (genes downregulated after IRF2 knockdown in adult proEs) and genes covered by the H3K4me3 promoter
peaks of adult proEs that contain IRF1/2, MYB motifs, and IRF2 ChIP-seq peaks, respectively. g Venn diagram shows the overlap between the genes
with active promoters in adult proEs (covered by H3K4me3 peaks and not by H3K27me3 peaks, a repressive histone mark) and the IRF2 promoter/
enhancer-bound genes of adult proEs. h Gene ontology (GO) enrichment analysis of the IRF2 promoter-bound genes in adult proEs. Here, all the
active promoter genes of adult proEs were used as background and P-values were corrected by the Benjamini–Hochberg procedure for multiple
testing
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More specifically, the IRF2 promoter-bound genes are
highly enriched in immune and viral response pathways
(Fig. 1h), while genes bound by IRF2 at enhancers are
more closely related with basic cellular functions such as
RNA transcription and protein phosphorylation (Supple-
mentary Fig. S2j). It should be noted that immune path-
ways comprise one of the key differences between adult
and fetal proEs at transcriptome level, but the molecular
mechanism has not yet been deciphered9. With our new
analysis, now it is clear that IRF2 preferentially regulates a
considerable number of immune-related genes by directly
binding at their promoters, and these genes tend to be
more highly expressed in adult proEs (Supplementary
Fig. S2k), suggesting that it plays an important role of
transcriptional activation at promoters.
In summary, we present a new computational toolkit,

MAmotif, for detecting co-factors associated with the
differential chromatin binding of proteins, based on
quantitative comparison of their ChIP-seq data and sys-
tematic integration with TF binding information from
motif analysis or other resources. Applying it to real
ChIP-seq data, we unveiled an important role of IRF2 as
transcription activator at gene promoters through coupling
with H3K4me3 mark, which clearly illustrates the power of
quantitative integration of epigenomic variation and TF
binding information at regulatory elements using MAmotif
for detecting cell type-specific regulators. MAmotif toolkit
is available at https://github.com/shao-lab/.
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