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Introduction

Lung cancer is the leading cause of cancer-related 
death worldwide. With the development of multi-slice 
spiral computed tomography (CT) technology and the 
popularization of low-dose spiral CT screening, an 
increasing number of lung cancer cases are likely to be 

detected in the early stage, which significantly reduces the 
number of deaths due to lung cancer. In high-resolution 
CT (HRCT), the nodules showed solid, partially solid, or 
non-solid lesions, and most of the partially solid and non-
solid lesions were identified as malignant (1,2).

To solve the problem of the accurate classification of 
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pulmonary nodules, in 2011, the international association 
for lung cancer research (IASLC), the American Thoracic 
Society (ATS) and the European Respiratory Society (ERS) 
proposed a new classification of lung adenocarcinoma. 
Ground-glass nodules (GGNs) were classified as atypical 
adenomatous hyperplasias (AAHs), in situ adenocarcinomas 
(AISs), minimally invasive adenocarcinomas (MIAs), or 
invasive adenocarcinomas (IACs) depending on the size 
of the lesion and the presence of solid components in the 
pathological analysis (3). The new classification had an 
important effect on the choice of treatment and follow-up 
of patients because the prognosis of different pathological 
subtypes varies greatly. Studies have shown that disease-
free survival in early stage AIS and MIA patients is close to 
100% (4,5), while disease-free survival in IACs patients is 
60–70% (6-8). Therefore, it is very important to accurately 
evaluate the risk of malignant lesions on diagnostic CT for 
early intervention.

Lobectomy is still the standard surgical treatment for 
early non-small cell lung cancer (NSCLC); however, some 
studies (9-12) have shown that selecting the appropriate 
sublobar resection can achieve a prognosis comparable to 
lobectomy for peripheral small cell lung cancer. Sublobar 
resection has the advantages of preserving lung function, low 
perioperative morbidity and mortality, and the opportunity 
to resect the subsequent primary lung tumor (13). 
Patients with AIS or MIA may receive sublobar resection. 
Although invasive features of small-sized NSCLC have 
been identified by retrospective studies based on imaging 
features, these features are still difficult to apply to guide 
surgical treatment due to their unascertained accuracy. 
For these reasons, imaging techniques need to be further 
improved to guide sublobar resection.

Traditional computer-aided diagnosis (CAD) methods 
(14,15) utilize various feature extraction protocols to describe 
the characteristics of nodules. Machine learning algorithms 
have been employed to classify lesion properties. However, 
choosing appropriate features for nodule detection is difficult 
due to the variety of nodule locations, sizes, shapes, and 
densities. Instead of manual intervention in traditional feature 
engineering, deep learning techniques (16) automatically 
acquire features for nodule detection and classification. The 
cascade convolution neural network (CNN) framework was 
here used to detect nodules and to determine whether a 
nodule is benign or malignant.

Ever since the IASLC/ATS/ERS proposed a new 
classification of lung adenocarcinomas in 2011, preoperative 
HRCT has been used not only to diagnose pulmonary 

nodules such as malignant tumors but also to distinguish 
pre-invasive lesions (PILs) (AAH, AIS, or MIA) and IACs. 
In our hospital, the classification of GGNs by preoperative 
HRCT has become one basis for guiding resections of lung 
cancer.

The purpose of this study was to develop and validate a 
3D CNN using quantitative imaging biomarkers obtained 
from HRCT scans to classify GGNs as PILs (AAH, AIS, or 
MIA) or IACs.

Methods

Patient selection

Ethical approval was obtained for this retrospective analysis, 
and informed consent requirement was waived. Our 
study recruited consecutive lung adenocarcinoma patients 
with pulmonary lesions (F/M, 1075/470; mean age 55.8± 
10.6 years; age range, 32–84 years) between January 2010 
and March 2017. Within our institution’s PACS database, 
we selected patients with the words “GGN”, “GGO”, 
“ground glass opacity”, “ground glass nodule”, “non-
solid nodule”, “sub-solid nodule” or “mixed nodule”. All 
patients underwent routine chest CT scans before surgery 
on their lung lesions. The inclusion criteria consisted of: (I) 
histopathologically confirmed PILs (AAH, AIS, MIA) and 
IACs; (II) the presence of solitary pulmonary nodule (with 
lesion measuring >5 and <30 mm in the longest diameter). 
Patients who met one of the following criteria were 
excluded: (I) previous systemic treatment (chemotherapy 
or radiotherapy), which could produce changes in texture 
features; (II) incomplete CT datasets at our institution; and 
(III) two or more lesions that had been resected.

CT acquisition and reconstruction

CT examinations including the chest and the upper 
abdomen were performed as part of the routine CT 
imaging protocol for the selected patients at our institution 
by using the Somatom Definition AS (Siemens Healthcare, 
Germany), Sensation 64 (Siemens Healthcare, Germany) 
and Brilliance (Philips Healthcare, the Netherlands), with 
a tube voltage of 120 kV and a current of 200 mA. The 
target lesion (the largest one if there were multiple nodules) 
was selected for reconstruction. All imaging data were 
reconstructed using a standard reconstruction algorithm, 
and the reconstruction parameters were as follows: slice 
thickness, 0.625 mm; increment, 1 mm; pitch, 1.078; field 
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of view, 15 cm; and matrix, 512×512.

Preprocessing

First, all raw data were converted to Hounsfield units 
(HUs), a standard measure of radio-density in CT images. 
The preprocessing procedure consisted of two steps: lung 
mask extraction and the 3D reconstruction. Lung mask 
extraction removes tissues that are not in the lung but 
are similar to nodules in their spherical shapes, which 
reduces false positive signals in the detected lesions. The 
3D reconstruction enables the developed algorithm to 
preprocess the data collected from different scanners or 
imaging protocols. For lung mask extraction, morphological 
operations (erosion and dilation) were utilized to calculate 
all connected components, and strategies (e.g., convex hull 
and dilation) were employed to generate the left and right 
lungs (17). Then, 3D reconstruction was performed by 
resizing the data to 1 mm × 1 mm × 1 mm resolution, and 
the luminance was clipped between −1,200 and 600, scaled 
to 0–255 and convert to unsigned 8 bits integer.

Automatic lung cancer diagnosis

Automatic diagnosis of lung cancer involves the detection 
of all possible nodules and classification of GGNs as PILs 
or invasive lung adenocarcinoma. A 3D CNN framework 
was designed for nodule detection and invasive lung 
adenocarcinoma probability evaluation. The flow of the 
automatic diagnosis framework is shown in Figure 1.

For better nodule detection performance, multi-resolution 
data was used to train the nodule detection network. For 
high resolution CT (HRCT) data (thickness = 0.625 mm), 
raw resolution helps to retain initial information. For thicker 
data (e.g., thickness ≥1.5 mm), resizing to unified resolution 
(e.g., 1 mm × 1 mm × 1 mm) improves nodule detection, 
particularly on CT data with collected with small thickness. 
Thus, the data with raw resolution and 1 mm × 1 mm ×  
1 mm resized resolution were used during the training 
process, and raw resolution was used to predict nodules 
on HRCT data. One problem that should be considered 
during the training process is that high-resolution CT data 
cause GPU memory exploration. Thus, small 3D patches 
were cropped from the preprocessed data. The size of each 
cropped patch is 128×128×128×1 (height × length × width × 
channel) in space. If the cropped patch goes beyond the lung 
scan, the excess of cropped patch over the scanned data was 
padded with the value of 170, which corresponding to the 
intensity of normal tissue in CT. The cropped patch of 3D 
CT data will be entered into the network during network 
training. The amount of the training set, the validation set, 
and the test set were 1,075, 270, and 200, respectively.

An encoder-decoder structure-based framework was 
designed to detect nodules in the input data. The encoder-
decoder structure (18) enables the network to conveniently 
combine multi-scale resolution. A region proposal network 
proposed in Faster-R-CNN (19) was employed to first 
roughly locate the nodules and then to further regress the 
position and the diameter with the trained model. When 
training detection network, the learning rate was initialized 

Figure 1 Flow diagram of the automatic diagnosis of lung cancer.
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as 0.01, and the learning rate decreased a factor of 10 every 
50 epochs. Three different scales of square anchor boxes 
were used and the corresponding length with respect to 
the anchor boxes were 2, 10, and 30 mm, respectively. In 
the process of network design, key techniques, such as 
3D convolution and hard-example mining, were used to 
promote the recall and accuracy of the nodule detection.

Based on the nodule detection results, the probability 
of one subject suffering invasive lung adenocarcinoma was 
evaluated with a shallow neural network. The classification 
network consisted of a 64-neuron, fully connected layer and 
a one-neuron output layer. The classification network was 
added as a branch in the decoder structure in the detection 
network. Accurate nodule detection enables convincing 
cancer classification; thus, detection and classification 
networks were alternately trained after the first 100 
iterations. In this way, the information obtained from 
detection presented compelling evidence in making the final 
classification verdict.

Performance of radiologists with time constraints

An experienced radiologist (SPW, 14 years of medical 
imaging experience and 10 years of specialized chest 
imaging) labeled lung nodules on the test dataset and 
provided a list of nodule locations. Three radiologists 
volunteered to participate in the study. They understood 
and agreed with the basic principles and objectives of this 
study. As determined by the research ethics committee, 
the radiologists participating in the review panel were not 
required to provide written informed consent. Radiologists 
1, 2, and 3 had 3, 7, and 15 years of experience, respectively. 
The average age of the three radiologists was 47.7 years 
(range, 32–45 years) and the average number of years of 
practice was 7.3 years (range, 3–15 years). Radiologist 3 had 
experience in chest imaging as a special interest area.

Three radiologists with time constraints (radiologists 
WTC) independently evaluated the corresponding CT 
slices of these nodules using our hospital’s daily diagnostic 
display (E-3620, MP Single-head Nio Grayscale Display, 
BRACO, Italy). The three radiologists were asked to 
express their confidence in the interpretation of each 
nodule according to five levels: definitely PIL, probably 
PIL, equivocal, probably IAC, and definitely IAC. To obtain 
an estimate of the sensitivity and specificity from each 
radiologist, the five confidence levels were split in two by 
considering the definitely PIL and probably PIL confidence 
levels as negative findings and all the other levels as positive 

findings. To obtain the ROC curve, the threshold was 
changed to cover the entire range of possible ratings by 
the radiologist, and the sensitivity was plotted as a function 
of false positive score (1-specificity). A performance 
comparison was conducted between the 3D CNN model 
and the three radiologists in the classification between PILs 
and IACs in CT using the same test data.

Statistical analysis

The results of our automatic lung cancer diagnosis 
algorithm were evaluated by comparing them to those 
of three radiologists with different years of diagnostic 
experience. The indicators of sensitivity, specificity, 
and accuracy were used to quantitatively assess the 
performance of the automatic algorithm. In addition, 
for clear comparisons with the results obtained by the 
radiologists, ROC curves and the AUC of the ROC were 
plotted (20). A higher AUC indicated a better invasive lung 
adenocarcinoma diagnosis result.

Results

Patient characteristics

Upon histological examination, 864 (55.9%) cases were 
PILs, and 681 (44.1%) cases were IACs. The mean age in 
the IAC group was significantly greater than that in the 
PIL group (P<0.01). The end-to-end network predicted the 
nodule position and diameter, together with the probability, 
with respect to the IACs. The statistical results listed in 
Table 1 indicate that 87.4% of the nodules classified as IACs 
had a diameter larger than 10 mm. In contrast, 87.7% of 
the nodules diagnosed as PILs had a diameter smaller than  
10 mm. It is rather remarkable that the female patients 
made up a higher proportion of the subjects suffering from 
both PILs and IACs (P<0.01).

CNN performance

We used the AUC values of the overall classification 
accuracy, sensitivity, and specificity and the area under the 
ROC curve to evaluate the performance and discrimination 
of the deep learning model (CNN). Their quantitative 
measurements were calculated using accuracy, sensitivity, 
and specificity.

The ROC analysis results from the CNN model and 
from the three radiologists are shown in Figure 2. The 
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CNN model had the largest AUC value of 89.2%, which 
was significantly different from the AUC of the three 
radiologists (radiologist 1: 80.5%; radiologist 2: 83.9%; 
and radiologist 3: 86.7%). Discriminant analysis showed 
that the CNN model was the best for the differential 
diagnosis of PILs and IACs. The total accuracy rates of 
radiologist 1, radiologist 2, radiologist 3, and the CNN 
model were 80.2%, 80.7%, 81.7%, and 84.0%, respectively. 

The sensitivity and accuracy of the CNN model were 
significantly higher than those of the three radiologists 
(P<0.05).

Discussion

This study demonstrated the deep learning algorithm 
was able to achieve a better AUC than a panel of three 

Table 1 Clinicopathologic characteristics of the 1,545 patients in the study

Variable
Final pathology

P
Total (n=1,545) Non-invasive (n=864) Invasive (n=681)

Age, years (mean ± SD) 55.8±10.6 53.1±10.4 59.4±9.8 <0.01

Sex, n (%)

Female 1075 (69.6) 647 (74.9) 428 (62.8) <0.01

Male 470 (30.4) 217 (25.1) 253 (37.2)

Tumor diameter, cm, n (%)

≤1.0 912 (59.0) 758 (87.7) 154 (22.6) <0.01

1.1–2.0 551 (35.7) 89 (10.3) 449 (65.9)

>2.0 82 (5.3) 17 (2.0) 78 (11.5)

Tumor location, n (%)

RUL 542 (35.1) 336 (38.9) 206 (30.2) <0.01

RML 83 (5.4) 40 (4.6) 43 (6.3)

RLL 288 (18.6) 158 (18.3) 130 (19.1)

LUL 462 (29.9) 247 (28.6) 215 (31.6)

LLL 170 (11.0) 83 (9.6) 87 (12.8)

RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; SD, standard deviation.

Figure 2 Characterization of the sensitivity and specificity of our classification algorithm using receiver operating characteristic (ROC) 
curves.
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pathologists WTC were able to when participating in a 
simulation exercise involving the identification of PILs and 
IACs in stage IA lung adenocarcinoma. To our knowledge, 
this is the largest study based on HRCT and a deep 
learning algorithm to predict the invasive status of early 
lung adenocarcinoma so far. The sensitivity and accuracy 
of our GGNs classification model were 88.5% and 84.0%, 
respectively, which would be helpful in identifying IACs 
before operation. The results of our automatic classification 
method are competitive compared with other traditional 
methods (15), such as logistic regression (accuracy =81.5%), 
random forest (accuracy =83.0%), and adaboosting (82.1%). 
Automatic interpretation of radiological image features of 
pulmonary nodules has potential benefits, such as improved 
efficiency, reproducibility, and improved prognosis, by 
providing early detection and treatment.

PILs included AAHs, AISs, and MIAs, and the disease-
free survival rate after sublobectomy was 100% (4,12). 
However, lobectomy plus systemic lymph node dissection 
or sampling is the standard surgical approach for invasive 
adenocarcinoma (12). Given that intraoperative frozen 
sections are difficult to use to accurately determine the 
invasiveness of adenocarcinoma; preoperative identification 
of nodular invasiveness is helpful for preoperative  
planning (21). The CNN model predicted the invasiveness 
of GGNs with higher accuracy, sensitivity, and AUC values 
than those of the three radiologists.

A number of studies have reported the use of HRCT 
(22-26) or radiomics (27-29) in predicting early lung 
adenocarcinoma invasiveness. Methods such as HRCT 
and radiomics are limited by the significant pretreatment 
required to extract imaging biomarkers, reducing the 
reproducibility. Deep learning simplifies multistage 
pipelines by learning predictive features directly from the 
image, allowing for greater reproducibility. In this study, 
our accuracy (84.0%) was similar to or higher than that 
reported above, demonstrating that accurate predictions can 
be achieved in PIL and IAC patients without predesigned 
features. The sensitivity of our method is higher than 
those of the three radiologists. In fact, during the clinical 
diagnosis, the doctors tend to put more attention on 
patients suffered invasive lung cancer, which influences 
the value of sensitivity. Thus, our classification method is 
working on producing a high accuracy and high sensitivity. 
The results of the radiologists may be influenced by their 
experience. Some radiologists may prone to classify lung 
cancer as pre-invasive type, which produce a low sensitivity 

and a high specificity.
The algorithm was superior to the three time-limited 

radiologists in distinguishing the invasive status of 
lung adenocarcinomas. However, given sufficient time, 
radiologists may outperform the CNN algorithm in 
distinguishing PILs from IACs. In this study, the three 
radiologists were given only 3 hours to evaluate the 
CT images of all 230 nodules, each less than 1 minute. 
It is a remarkable fact that the locations of all nodules 
were provided for the three radiologists before reading. 
Thus, the radiologists only need to draw their attention 
on distinguishing whether a nodule is pre-invasive or 
invasive. There were two problems with this approach: 
one was that this was an impractical assessment of short-
term CT images, and the other was that, in routine clinical 
practice, radiologists are unlikely to review 230 consecutive 
pulmonary nodules. In most hospitals, radiologists 
require additional image post-processing and windowing 
techniques, which are factors that affect diagnostic 
performance. In addition, the simulation exercise invited 
the radiologists to review 230 nodular CT sections within 
approximately 3 hours to distinguish between PILs and 
IACs. Although feasible in this simulation environment, this 
does not represent the progression of work in other settings. 
Reducing the time limit for task completion can improve 
the accuracy of GGN diagnostic review. Although there is 
no perfect control, it is clear that there were limitations on 
this study.

In fact, the 3D CNN-based automatic method made 
an advance in lung cancer diagnosis in comparison 
with human diagnosis. First, on the basis of the 3D 
convolution technique, the CNN algorithm makes full use 
of information from sagittal, coronal, and axial views. In 
this way, the automatic diagnosis algorithm obtains more 
comprehensive and accurate information with respect 
to nodule size, shape, and location, which improves the 
reliability of the diagnostic results. Second, as in human 
beings, CNN works as memory network by learning critical 
features in cancer classification. In this process, CNNs 
are more flexible in adjusting learning strategies and are 
able to determine the critical clinical features even for 
confusing cases. In contrast, radiologists may be limited 
by experiences, and the results are likely to be tendentious 
at times. For example, the results in Table 2 indicate some 
radiologist tendencies to classify IACs as PILs.

A limitation of our developed automatic lung cancer 
diagnosis method is the effect of an insufficient data size on 
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final performance. To compensate for the limitation, various 
data enhancement strategies, such as rotation, enhancement, 
and scaling, were employed during the training process. In 
the future, data collection should be continued for further 
enhancement of classification sensitivity and specificity with 
respect to IACs and PILs, respectively.

The focus on this work in the future will be to use a 
larger network in the hope of achieving more accurate 
results. Deeper networks can potentially improve the 
model’s results and generalization capabilities; however, 
more multicenter data will be needed to minimize the 
effects of overfitting. A larger patient population will further 
improve the performance of the algorithm, especially 
considering the heterogeneity of the image acquisition 
parameters. The rates of IACs in our study varied among 
different patient groups. Ideally, all patient CT scans 
will be acquired using consistent acquisition parameters 
(kV, mAs, resolution, slice thickness, and contrast agent), 
and the rates of IACs will be the same. However, this 
will be a challenge in practice because the CT scanner 
model and acquisition parameters, as well as the captured 
patient’s demographic data, vary widely among different 
institutions. Our research validated the algorithm by using 
data from a single institution, and we hope to use data from 
multiple institutions in the future to enhance the model’s 
generalization capability.

Conclusions

In this paper, we have shown that the performance of a deep 
CNN trained on large datasets to classify IACs from PILs 
is superior to that of experienced radiologists. Our model 
may be used as a non-invasive tool to supplement invasive 
tissue sampling, to guide patient surgery protocols and to 
manage the disease early and during follow-up. We believe 
that deep CNNs or similar deep learning methods show 
great advantages, and these algorithms can ultimately help 
doctors identify PILs and IACs.
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