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Development of a Cannabinoid-Based Photoaffinity
Probe to Determine the D8/9-Tetrahydrocannabinol
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Abstract
Introduction: D9-Tetrahydrocannabinol (THC), the principle psychoactive ingredient in Cannabis, is widely used
for its therapeutic effects in a large variety of diseases, but it also has numerous neurological side effects. The
cannabinoid receptors (CBRs) are responsible to a large extent for these, but not all biological responses are
mediated via the CBRs.
Objectives: The identification of additional target proteins of THC to enable a better understanding of the
(adverse) physiological effects of THC.
Methods: In this study, a chemical proteomics approach using a two-step photoaffinity probe is applied to iden-
tify potential proteins that may interact with THC.
Results: Photoaffinity probe 1, containing a diazirine as a photocrosslinker, and a terminal alkyne as a ligation
handle, was synthesized in 14 steps. It demonstrated high affinity for both CBRs. Subsequently, two-step photo-
affinity labeling in neuroblastoma cells led to identification of four potential novel protein targets of THC. The
identification of these putative protein hits is a first step towards a better understanding of the protein interac-
tion profile of THC, which could ultimately lead to the development of novel therapeutics based on THC.

Keywords: photoaffinity labeling; chemical proteomics; tetrahydrocannabinol; cannabinoid receptors; protein
targets

Introduction
Preparations of the plant Cannabis sativa have been
used throughout history in various cultures as medicinal
concoctions or therapeutics, as well as for recreational or
religious purposes.1 In 1930, the isolation of cannabinol
and cannabidiol as the first active substituents was
achieved,2 which was followed by the discovery of D9-
tetrahydrocannabinol (THC) in 1964.3 THC is the psy-
choactive constituent of marijuana and exists in two iso-
mers: namely D9-THC and D8-THC, of which the latter
is the most thermodynamically stable isomer.4

THC treatment has been associated with therapeutic
effects, such as analgesia, relaxation and fatigue, appe-
tite stimulation,5 antiemesis,6 and reduction of nau-
sea.5 THC is used by patients suffering from
multiple sclerosis (MS),7 cancer, or AIDS.8 In addi-
tion, preclinical data of THC indicate beneficial effects
in several animal models of Alzheimer’s,9 Parkin-
son’s,10 and Huntington’s disease.11 However, THC
is also associated with many undesirable side effects,
including induction of psychoactivity, anxiety, mem-
ory loss, cardiac arrhythmias, and addiction.12
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Both D9-THC and D8-THC have similar affinity
to the cannabinoid receptor type 1 (CB1R) and type 2
(CB2R).13,14 The CB1R is the most abundant G protein-
coupled receptor (GPCR) in the mammalian brain,15

whereas the CB2R is predominantly present in periph-
eral tissues and cells of the immune system.16 Most of
the physiological effects of THC are mediated via the
CB1R and CB2R as demonstrated by the use of specific
CB receptor antagonists or genetically modified mice
that lack the CB receptors.17–20

It is, however, hypothesized that THC may have
other non-CB receptor targets. A study, using CB1R
and CB2R knockout mice, showed similar analgesia
upon THC administration compared with the equiva-
lent wild-type mice in the tail-flick test.21 This effect
was not observed in the hotplate test, which requires
spinal processing of nociceptive information. These ob-
servations suggest the existence of another protein tar-
get in the brain. Previously, orphan GPCRs GPR55 and
GPR18 and peroxisome proliferator-activated receptor
gamma were identified to bind to THC, but it is unclear
whether these targets are responsible for some of the
physiological effects of THC.22–24 Therefore, a more
complete view of the protein interaction of THC in
neuronal cells is desirable.

Photoaffinity-based protein profiling (pAfBPP) has
been previously used to map the protein interaction
landscape of small molecules.25,26 Photoaffinity probes
use a light-responsive element to covalently crosslink
the compound with its target protein upon irradiation.
To circumvent the problems associated with large re-
porter groups, photoaffinity probes with a bioorthogonal
ligation handle (e.g., alkyne), to introduce a fluorescent
or affinity tag (e.g., biotin) after crosslinking to a pro-
tein, have emerged as powerful tools to visualize small
molecule-protein interactions in living systems.27 Previ-
ously, we applied two-step pAfBPP to capture and visu-
alize the CB2R on human cells.28 Here, it was envisioned

that two-step pAfBPP could be used to map the THC in-
teraction landscape in neuroblastoma cells.

To this end, photoaffinity probe 1 (Fig. 1), a D8-THC
analog carrying a diazirine as the photoreactive moi-
ety and a terminal alkyne as the ligation handle, was
developed. Probe 1 was synthesized in 14 steps and
was found to have high affinity for both cannabinoid
receptors (CBRs). The protein interaction landscape
of THC was mapped in Neuro2A cells (a fast-growing
neuroblastoma cell line with several neuronal proper-
ties), in which four putative novel targets of THC
were identified.

Materials and Methods
Chemistry
General remarks. All reactions were performed using
air- or flame-dried glassware. Solvents were purchased
from Sigma-Aldrich, and dry solvents were analytically
dried by storing them for 24 h on activated molecu-
lar sieves. Use of dry solvents is mentioned explicitly.
Reagents were purchased from Sigma-Aldrich, Acros
Organics, and Merck and used without further puri-
fication. All moisture sensitive reactions performed
under an Ar atmosphere are mentioned explicitly.

1H and 13C nuclear magnetic resonance (NMR)
spectra were recorded on a Bruker AV 400 MHz spec-
trometer at 400 and 100 MHz, respectively, using
CDCl3 or CD3OD as solvent, unless stated otherwise.
Chemical shift values are reported in ppm with TMS
or solvent resonance as the internal standard (CDCl3/
TMS, d 0.00 for 1H [TMS], d 77.16 for 13C [CDCl3];
CD3OD, d 3.31 for 1H, d 49.00 for 13C). Data are
reported as follows: chemical shifts (d) in ppm,
multiplicity (s = singlet, d = doublet, dd = doublet of
doublet, ddd = doublet of doublet of doublet, dt = dou-
blet of triplet, t = triplet, td = triplet of doublet, q = quar-
tet, br s = broad singlet, and m = multiplet), coupling
constants J (Hz), and integration.

FIG. 1. Design of photoaffinity probe 1. The photoreactive diazirine is highlighted in red, the alkyne ligation
handle in blue.
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High-resolution mass spectra were recorded on a
Thermo Scientific LTQ Orbitrap XL. Liquid Chroma-
tography was performed on a Finnigan Surveyor
liquid chromatography-mass spectrometry (LC/MS)
system, equipped with a C18 column. Thin layer chro-
matography (TLC) analysis was performed on Merck
silica gel 60/Kieselguhr F254, 0.25 mm TLC plates.
Compounds were visualized by ultraviolet (UV) irradi-
ation or with a KMnO4 stain (K2CO3 (40 g), KMnO4

(6 g), and H2O (600 mL)). Molecules shown are drawn
using the ChemDraw Professional 16.0.

Synthetic procedures to photoaffinity probe 1. 3,5-
Dihydroxybenzyl alcohol (3): A flame-dried 500 mL
round bottom flask was charged with a magnetic stir-
ring bar, purged with Ar, and borane-dimethylsulfide
complex (18.8 mL, 100 mmol, 3 eq), along with trime-
thoxy borate (35.6 mL, 313.2 mmol, 4.7 eq) and dry
tetrahydrofuran (THF) (30 mL) were added at room
temperature (rt) (Fig. 2). The flask was purged with
Ar again and 3,5-dihydroxybenzoic acid 2 (10.28 g,
66.6 mmol, 1 eq) in dry THF (50 mL) was added drop-
wise over 20 min at rt, throughout which rigorous hy-
drogen gas evolution occurred. The reaction was
allowed to stir for 18 h at rt. Upon completion
MeOH (100 mL) was added dropwise, throughout
which minor hydrogen gas and heat evolution oc-
curred. The solution was filtered through celite,
and the filtrate concentrated, and then subsequently
coevaporated four more times with MeOH (100 mL
each), to give 3,5-dihydroxybenzyl alcohol 3
(9.31 g, 66.3 mmol, 99%) as white/gray amorphous
crystals. Rf: 0.5 (50% EtOAc/pentane). 1H NMR
(400 MHz, MeOD) d 6.32 (d, J = 2.2 Hz, 2H), 6.18
(t, J = 2.2 Hz, 1H), and 4.47 (s, 2H).

3,5-Dihydroxybenzaldehyde (4): A 500 mL round
bottom flask was charged with a magnetic stirring
bar, and benzyl alcohol 3 (7.82 g, 55 mmol, 1 eq) and
acetone (340 mL) were added. The solution was cooled
to 0�C using an ice bath, upon which freshly made
0.9 M Jones reagent (58.5 mL, 52.5 mmol, 1.05 eq)
was added dropwise over 10 min. The reaction was
stirred for an additional 10 min at 0�C, upon which
iPrOH was added (5 mL) and the reaction stirred an
additional 5 min, until all yellow color had disappeared,
indicating full reduction of residual CrO3. The reaction
was diluted with Et2O (1.5 L) and transferred to a sep-
arating funnel. The organic layer was washed with a 1:1
(v/v) solution of sat. NaHCO3/brine (150 mL) and then
washed successively with brine (8 · 150 mL). The organic

layer was dried over MgSO4, and concentrated, to give
3,5-dihydroxybenzaldehyde 4 (6.53 g, 47.3 mmol, 86%)
as light brown amorphous crystals. Rf: 0.4 (40%
EtOAc/pentane).1H NMR (400 MHz, MeOD) d 9.77
(s, 1H), 6.79 (d, J = 2.2 Hz, 2H), and 6.55 (t, J = 2.2 Hz, 1H).

2-(3,5-Dihydroxyphenyl)-1,3-dithiolane (5): A 500 mL
round bottom flask was charged with a magnetic stirring
bar, aldehyde 4 (2.9 g, 21 mmol, 1 eq), and purged with
Ar. Dry THF (15 mL) was added, and shortly after,
dry DCM (180 mL) and 1,2-ethanedithiol (2.65 mL,
31.51 mmol, 1.5 eq) were added. BF3.Et2O (0.95 mL,
6.93 mmol, 0.33 eq) was added dropwise, upon which
the reaction was allowed to stir for 16 h at rt. The reac-
tion was quenched with sat. NaHCO3 (200 mL) and
transferred to a separating funnel. The pH of the aque-
ous layer was adjusted to pH 7 with 1 M HCl aq. solution
and subsequently extracted with DCM (2 · 200 mL) and
with EtOAc (200 mL). The combined organic layers
were dried over MgSO4 and concentrated. The resulting
brown syrup was dissolved in tBuOMe (20 mL), cooled
in an ice bath, and ice-cold hexane (200 mL) was added.
The slurry was filtered and the solids washed gener-
ously with ice-cold hexane (100 mL) to give 5 (4.56 g,
21 mmol, 99%) as off-white flaky crystals. Rf: 0.5 (40%
EtOAc/pentane). 1H NMR (400 MHz, MeOD) d 6.47
(d, J = 2.1 Hz, 2H), 6.15 (t, J = 2.1 Hz, 1H), 5.50 (s, 1H),
3.49–3.42 (m, 2H), and 3.33–3.27 (m, 2H).

5-(1,3-Dithiolan-2-yl)-2-((1R,2S,5S)-4,6,6-trimethyl
bicyclo[3.1.1]hept-3-en-2-yl)benzene-1,3-diol (6): A
500 mL round bottom flask was charged with a magnetic
stirring bar, dithiolane 5 (2.2 g, 10.3 mmol, 1 eq), and
purged with Ar. Dry CHCl3 (90 mL) was added, along
with anhydrous camphorsulfonic acid (0.26 g, 1.03 mmol,
0.1 eq), and the flask purged with Ar again. (S)-cis-
Verbenol (1.73 g, 11.35 mmol, 1.1 eq, 50% ee) in dry
CHCl3 (10 mL) was added dropwise, and the reaction
allowed to stir at rt for 3 h. Upon completion, the re-
action was quenched with an aqueous solution of 1:4
(v/v) sat. NaHCO3/brine (100 mL), and transferred to
a separating funnel. The pH of the aqueous layer was
adjusted to pH 7 with 1 M HCl aq. solution, and sub-
sequently extracted with CHCl3 (2 · 120 mL) and with
EtOAc (120 mL). The combined organic layer was
dried over MgSO4 and concentrated. After concentra-
tion, the crude residue (*4 g) was purified by flash
column chromatography (150 g silica), eluting with 10%
EtOAc/pentane (8 CV) to give 6 (2.17 g, 6.24 mmol,
60%) as a viscous yellow oil, which forms a foamy amor-
phous white solid under reduced pressure at rt. Rf: 0.65
(20% EtOAc/pentane).1H NMR (400 MHz, CDCl3) d
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6.53 (s, 2H), 5.68 (d, J = 1.3 Hz, 1H), 5.48 (s, 1H), 3.92 (dd,
J = 5.0, 2.5 Hz, 1H), 3.46–3.43 (m, 2H), 3.33–3.30 (m, 2H),
2.33–2.23 (m, 2H), 2.19–2.16 (m, 1H), 1.85 (s, 3H), 1.50–
1.46 (m, 1H), 1.32 (s, 3H), and 0.95 (s, 3H). 13C NMR
(100 MHz, CDCl3) d 153.2, 140.5, 116.3, 115.0, 55.8,
48.0, 47.1, 40.9, 40.2, 38.1, 28.0, 26.1, 23.9, and 20.6.
LC-MS (ESI+) m/z: calculated for C19H25O2S2 [M +
H]+: 349.13, found 349.07.

(6aR,10aR)-3-(1,3-Dithiolan-2-yl)-6,6,9-trimethyl-
6a,7,10,10a-tetrahydro-6H-benzo[c]chromen-1-ol (7):
A flame-dried 1000 mL round bottom flask was charged
with a magnetic stirring bar, bicyclic resorcinol de-
rivative 6 (5.75 g, 16.51 mmol, 1 eq) was added.
The flask was purged with Ar, and dry DCM
(375 mL) was added, and the solution cooled to 0�C.
BF3.Et2O (4.2 mL, 33 mmol, 2 eq) was added dropwise

FIG. 2. Synthesis of probe 1. Reagents and conditions: (a) BH3Me2S, B(OMe)3, THF, rt, 16 h, 99%; (b) CrO3, H2SO4,
Acetone, 0�C, 10 min, 86%; (c) 1,2-ethanedithiol, BF3.Et2O, THF, rt, 16 h, 99%; (d) (s)-cis-verbenol, CSA, CHCl3, rt, 2 h,
60%; (e) BF3.Et2O, DCM, 0�C-rt, 1.5 h, 62%; (f) AgNO3, EtOH/H2O (10:1), rt, 18 h; (g) TBSCl, imidazole, DMF, rt, 3 h,
87% (yield over two steps); (h) LiBH4, THF, rt, 30 min, 99%; (i) CBr4, PPh3, DCM, rt, 1 h, 98%; (j) Thiourea, EtOH, 40�C,
1 h; (k) 1 M NaOH (aq.), EtOH, rt, 1 h, 80% (two steps); (l) LDA, THF,�40�C, 30 min; then propargyl bromide, 0�C, 1 h,
76%; (m) ethylene glycol, TsOH, PhMe, reflux in Dean-Stark apparatus, 3 h; (n) LiAlH4, THF, 0�C, 1 h, 92% (two
steps); (o) TsOH, 19:1 acetone/H2O, 50�C, 2 h, 98%; (p) NH3 (l), reflux, 5 h; then NH2SO3H in MeOH, rt, 16 h; (q) I2,
Et3N, DCM, 0�C, 83% (two steps); (r) I2, PPh3, imidazole DCM, rt, 1 h, 90%; (s) K2CO3, 2:1 THF/DMF, 30�C, 22 h; (t)
TBAF, THF, 0�C, 15 min, 84% (two steps). DMF, dimethylformamide; rt, room temperature; THF, tetrahydrofuran.
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over 5 min, upon which the reaction was allowed to
warm to rt, and was stirred for 1.5 h. Upon completion,
the reaction was quenched with an aqueous solution of
1:4 (v/v) sat. NaHCO3/brine (450 mL) and was trans-
ferred to a separating funnel. The pH of the aqueous
layer was adjusted to pH 7 with 1 M HCl aq. solution,
and subsequently extracted with CHCl3 (2 · 450 mL).
The combined organic layer was dried over MgSO4,
and concentrated. After concentration, the crude residue
(*6 g) was purified by flash column chromatography
(225 g silica), eluting first with 6% EtOAc/pentane (6
CV), then 8% EtOAc/pentane (8 CV) to give 7 (3.39 g,
10.3 mmol, 62%) as a viscous dark yellow oil, which
forms a foamy amorphous yellow solid under reduced
pressure at rt. Rf: 0.55 (1% TFA/DCM).1H NMR
(400 MHz, CDCl3) d 6.56 (s, 1H), 6.48 (d, J = 1.1 Hz,
1H), 5.48 (s, 1H), 5.41 (d, J = 3.8 Hz, 1H), 5.26 (s, 1H),
3.49–3.37 (m, 2H), 3.35–3.25 (m, 2H), 3.19 (dd,
J = 16.1, 3.5 Hz, 1H), 2.69 (td, J = 10.8, 4.6 Hz, 1H),
2.13 (dd, J = 11.0, 3.5 Hz, 1H), 1.81 (m, 3H), 1.69 (s,
3H), 1.37 (s, 3H), and 1.09 (s, 3H). 13C NMR
(100 MHz, CDCl3) d 155.3, 155.0, 140.2, 134.8, 119.4,
113.2, 109.9, 106.7, 77.13, 55.8, 44.8, 40.2, 40.1, 35.8,
31.80, 28.0, 27.6, 23.6, and 18.7. LC-MS (ESI+) m/z: cal-
culated for C19H25O2S2 [M + H]+

: 349.13, found 349.07.
(6aR,10aR)-1-((tert-Butyldimethylsilyl)oxy)-6,6,9-

trimethyl-6a,7,10,10a-tetrahydro-6H-enzo[c]chromene-
3-carbaldehyde (8): A 100 mL round bottom flask was
charged with a magnetic stirring bar, tricyclic dithiolan
7 (482 mg, 1.38 mmol, 1 eq), and EtOH (40 mL).
AgNO3 (756 g, 4.43 mmol, 3.2 eq) was added, followed
by millipore H2O (4 mL), and the flask was sealed with
a septum and allowed to stir at rt for 18 h, upon which
the reaction was diluted with EtOAc (75 mL), and fil-
tered through celite, washing solids with additional
EtOAc (50 mL). The combined filtrate was transferred
to a separating funnel and washed with an aqueous
solution of 1:1 (v/v) 10% Na2SO3/Brine (2 · 50 mL),
then with H2O (50 mL), and brine (50 mL). The organic
layer was dried over MgSO4, and concentrated. The
crude aldehyde was subsequently dissolved in dry
dimethylformamide (DMF) (4 mL) and transferred
to a 10 mL round bottom flask, and purged with Ar.
tert-Butyldimethylsilyl chloride (243 mg, 1.6 mmol,
1.25 eq) was added, followed by imidazole (217 mg,
3.2 mmol, 2.5 eq). The reaction was purged again
with Ar and stirred for 3 h at rt. Upon completion,
the reaction was quenched with 0.2 M HCl (25 mL),
EtOAc (25 mL) was added, and transferred to a sepa-
rating funnel. The layers were separated, and the

aqueous layer was extracted again with EtOAc
(25 mL). The combined organic layer was washed
with H2O (20 mL) and brine (40 mL) and subse-
quently dried over MgSO4, and concentrated. After
concentration, the crude residue (*600 mg) was puri-
fied by flash column chromatography (20 g silica),
eluting with 10% CHCl3 (8 CV), to give aldehyde 8
(464 mg, 1.20 mmol, 87% over 2 steps) as a clear, vis-
cous oil. Rf: 0.3 (10% CHCl3/pentane). 1H NMR
(400 MHz, CDCl3) d 9.81 (s, 1H), 6.96 (d, J = 0.7 Hz,
1H), 6.87 (s, 1H), 5.43 (d, J = 2.8 Hz, 1H), 3.24 (dd,
J = 16.5, 3.3 Hz, 1H), 2.66 (td, J = 10.8, 4.3 Hz, 1H),
2.24–2.05 (m, 1H), 1.81 (t, J = 10.9 Hz, 3H), 1.69 (s,
3H), 1.40 (s, 3H), 1.08 (s, 3H), 1.01 (s, 9H), 0.32 (s,
3H), and 0.18 (s, 3H). 13C NMR (100 MHz, CDCl3) d
191.8, 156.0, 155.7, 135.9, 134.7, 124.9, 124.7, 119.5,
114.2, 110.1, 77.3, 45.2, 37.4, 35.7, 33.0, 30.5, 29.8,
28.1, 27.4, 26.0, 25.9, 23.4, 18.4,�3.5, and�4.3.

((6aR,10aR)-1-((tert-Butyldimethylsilyl)oxy)-6,6,9-
trimethyl-6a,7,10,10a-tetrahydro-6H-benzo[c]hromen-
3-yl) methanol (9): A flame-fried 10 mL round bottom
flask was charged with a magnetic stirring bar, aldehyde
8 (193 mg, 0.5 mmol, 1 eq), and the flask was purged
with Ar. Dry THF was added (2 mL) and the flask
cooled to 0�C in an ice water bath. 2 M LiBH4 in
THF (0.375 mL, 0.75 mmol, 1.5 eq) was added drop-
wise, upon which the reaction was allowed to warm
to rt, and was stirred for 30 min. Upon completion,
the reaction was quenched with H2O (50 mL) and
transferred to a separating funnel. The aqueous layer
was extracted with Et2O (3 · 40 mL), and the combined
organic layer was dried over MgSO4 and concentrated.
After concentration, the residue (*200 mg) was filtered
through a short pad of silica (5 g), eluting with CHCl3,

to give primary alcohol 9 (192 mg, 495 lmol, 99%)
as a turbid, colorless syrup. Rf: 0.4 (CHCl3). 1H
NMR (400 MHz, CDCl3) d 6.46 (d, J = 1.2 Hz, 1H),
6.39 (d, J = 1.2 Hz, 1H), 5.41 (d, J = 3.6 Hz, 1H), 4.53
(s, 2H), 3.30–3.14 (m, 1H), 2.59 (td, J = 10.8, 4.2 Hz,
1H), 2.26–2.02 (m, 1H), 1.91–1.57 (m, 4H), 1.68 (s,
3H), 1.37 (s, 3H), 1.07 (s, 3H), 1.00 (s, 9H), 0.27 (s,
3H), and 0.15 (s, 3H). 13C NMR (100 MHz, CDCl3) d
155.5, 155.1, 140.4, 135.0, 119.4, 116.7, 109.9, 109.4,
76.9, 65.3, 45.4, 36.1, 32.5, 28.2, 27.5, 26.1, 23.5, 18.4,
�3.4, and�4.2.

(((6aR,10aR)-3-(Bromomethyl)-6,6,9-trimethyl-
6a,7,10,10a-tetrahydro-6H-benzo[c]chromen-1-yl)oxy)
(tert-butyl)dimethylsilane (10): A 10 mL round bottom
flask was charged with a magnetic stirring bar, 9
(192 mg, 495 lmol, 1 eq), DCM (2.5 mL), and CBr4
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(172 mg, 519 lmol, 1.05 eq). The flask was cooled
to 0�C in an ice water bath, and PPh3 (136 mg,
0.519 mmol, 1.05 eq) was added. The reaction was
purged with Ar and allowed to come to rt and stirred
for 1 h. Upon completion, the reaction was concen-
trated under reduced pressure, and hexane (1 mL)
was added. The resulting slurry was purified by flash
column chromatography (15 g silica), eluting first
with pentane (6 CV), then with 25% Et2O/pentane (6
CV) to give 10 (218 mg, 483 lmol, 98%) as a clear, vis-
cous oil. Rf: 0.35 (pentane). 1H NMR (400 MHz,
CDCl3) d 6.48 (d, J = 1.6 Hz, 1H), 6.40 (d, J = 1.5 Hz,
1H), 5.41 (d, J = 2.5 Hz, 1H), 4.41–4.27 (m, 2H), 3.22
(dd, J = 16.6, 3.6 Hz, 1H), 2.58 (td, J = 10.8, 4.2 Hz,
1H), 2.20–2.05 (m, 1H), 1.84–1.72 (m, 3H), 1.63 (s,
3H), 1.37 (s, 3H), 1.04 (s, 3H), 1.00 (s, 9H), 0.28 (s,
3H), and 0.15 (s, 3H). 13C NMR (100 MHz, CDCl3)
d 155.2, 155.0, 136.7, 135.0, 119.4, 117.8, 112.1,
111.6, 76.9, 45.3, 36.0, 33.9, 32.5, 28.2, 27.5, 26.1,
23.5, 18.5,�3.4, and�4.2.

((6aR,10aR)-1-((tert-Butyldimethylsilyl)oxy)-6,6,9-
trimethyl-6a,7,10,10a-tetrahydro-6H-benzo[c]chromen-
3-yl)methanethiol (11): A 10 mL round bottom flask
was charged with a magnetic stirring bar, bromide
10 (31 mg, 68 lmol, 1 eq), and EtOH (1.3 mL). Thio-
urea (10 mg, 134 lmol, 2 eq) was added, the reaction
heated to 40�C in a warm water bath and stirred for
1 h. Upon completion, the reaction was cooled, dry N2

gas was bubbled through the reaction for 5 min, and
subsequently 1 M NaOH (0.2 mL) was added, and the
reaction was stirred another 1 h. Upon completion, the
reaction was quenched with 0.1 M HCl (10 mL) and
transferred to a separating funnel. The aqueous layer
was extracted with Et2O (20 mL), and the organic
layer was washed with sat. NaHCO3 (10 mL), H2O
(10 mL), brine (10 mL), dried over MgSO4, and concen-
trated. After concentration, the crude residue (*25 mg)
was purified by flash column chromatography (2 g sili-
ca), eluting first with pentane (4 CV), then 5% CHCl3/
pentane (8 CV) to give 11 (22 mg, 54 lmol, 80% over
two steps) as a turbid, viscous oil. Rf: 0.5 (5% CHCl3/
pentane). 1H NMR (400 MHz, CDCl3) d 6.41 (d,
J = 1.7 Hz, 1H), 6.35 (d, J = 1.7 Hz, 1H), 5.41 (d,
J = 3.8 Hz, 1H), 3.66–3.53 (m, 2H), 3.22 (dd, J = 16.6,
4.3 Hz, 1H), 2.57 (td, J = 10.9, 4.3 Hz, 1H), 2.23–2.07
(m, 1H), 1.92–1.68 (m, 3H), 1.68 (s, 3H), 1.36 (s,
3H), 1.07 (s, 3H), 1.00 (s, 9H), 0.27 (s, 3H), and
0.15 (s, 3H). 13C NMR (100 MHz, CDCl3) d 155.02,
140.3, 135.0, 119.4, 116.2, 111.2, 110.5, 76.9, 45.4,
36.1, 32.4, 28.9, 28.2, 27.6, 26.1, 23.5, 18.5,�3.4, and�4.2.

Ethyl 3-oxohept-6-ynoate (13): A flame-dried
Schlenk tube was charged with a stirring bar and
purged multiple times with Ar. Dry THF (30 mL) and
then freshly distilled diisopropylamine (9.71 mL,
69.28 mmol) were added, and the solution cooled to
�78�C. 1.6 M nBuLi in hexanes (39.38 mL, 63 mmol)
was added dropwise, and stirred for 15 min. The gener-
ated LDA solution (0.8 M by titration, 73 mL, 2.12 eq)
was transferred via cannula to a flame-dried 250 mL
round bottom flask. The flask was cooled to �40�C,
upon which ethyl acetoacetate 12 (3.47 mL,
27.5 mmol, 1 eq) in dry THF (25 mL) was added drop-
wise. The reaction was stirred for 30 min, upon which
propargyl bromide (80% in toluene, 3 mL, 28 mmol,
1.01 eq) was added dropwise, and the reaction was
allowed to warm to 0�C and stirred for 1 h. Upon
completion, the reaction was quenched with 0.5 M
HCl (200 mL) and transferred to a separating funnel.
The aqueous layer was extracted with Et2O
(2 · 200 mL). The combined organic layers were
washed with brine (100 mL), dried over MgSO4, and
concentrated. The resulting amber syrup (4.80 g)
was purified by fractional distillation (118�C, 15
mBar) to give 13 (3.49 g, 20.8 mmol, 76%) as a clear
oil. Rf: 0.4 (50% CHCl3/hexane). 1H NMR
(400 MHz, CDCl3) d 4.20 (q, J = 7.1 Hz, 2H), 3.47 (s,
2H), 2.82 (t, J = 7.2 Hz, 2H), 2.53–2.43 (m, 2H), 1.97
(t, J = 2.7 Hz, 1H), and 1.29 (t, J = 7.1 Hz, 3H). 13C
NMR (100 MHz, CDCl3) d 200.7, 167.0, 90.2, 82.6,
69.1, 61.6, 49.3, 41.7, 14.2, and 12.9.

2-(2-(But-3-yn-1-yl)-1,3-dioxolan-2-yl)ethan-1-ol (14):
A 50 mL round bottom flask was charged with a mag-
netic stirring bar, equipped with a Dean-Stark ap-
paratus, and purged with Ar. Thirteen (383 mg,
2.27 mmol, 1 eq) in toluene (35 mL) was added, along
with ethylene glycol (211 mg, 1.5 eq), followed by
para-toluenesulfonic acid (39 mg, 0.23 mmol, 0.1 eq),
and the reaction heated to reflux for 3 h. Upon comple-
tion, the reaction was quenched with sat. NaHCO3

(25 mL), diluted with EtOAc (25 mL), and transferred
to a separating funnel. The organic layer was washed
with H2O (50 mL), brine (50 mL), dried over MgSO4,
and concentrated. The crude ester was dissolved in
dry THF (10 mL) and added dropwise to a flame-
dried 25 mL round bottom flask previously cooled to
0�C, purged with Ar, and containing LiAlH4 (150 mg,
3.97 mmol, 1.75 eq) suspended in dry THF (10 mL).
Upon addition, the reaction was allowed to warm to
rt and stirred for 1 h. Upon completion, the reaction
was quenched with 10 mL EtOAc, stirred for 5 min,
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and aq. 10 wt.% Rochelle’s salt (50 mL) was added and
stirred for an additional 10 min. The reaction was
transferred to a separating funnel, upon which the or-
ganic layer was washed with brine (30 mL), dried over
MgSO4, and concentrated. After concentration, the
crude residue was filtered through a short pad of silica
(*10 g), eluting with CHCl3, to give 14 (357 mg,
2.09 mmol, 92% over two steps), as a pale yellow oil.
Rf: 0.35 (50% CHCl3/hexane). 1H NMR (400 MHz,
CDCl3) d 4.00 (m, 4H), 3.75 (t, J = 5.7 Hz, 2H), 2.73
(s, 1H), 2.42–2.21 (m, 2H), and 2.05–1.79 (m, 5H).
13C NMR (100 MHz, CDCl3) d 111.0, 84.0, 68.3, 65.0,
58.6, 38.4, 36.0, and 13.1.

1-Hydroxyhept-6-yn-3-one (15): A 25 mL round
bottom flask was charged with a magnetic stirring
bar, and 14 (357 mg, 2.09 mmol, 1 eq) in acetone
(9.5 mL) was added, followed by para-toluenesulfonic
acid (99 mg, 0.52 mmol, 0.25 eq), and millipore H2O
(0.5 mL), and the reaction was heated to 50�C for 2 h.
Upon completion, the reaction was quenched with
sat. NaHCO3 (10 mL), diluted with EtOAc (30 mL),
and transferred to a separating funnel. The organic
layer was washed with brine (20 mL), dried over
MgSO4, and concentrated. After concentration, the
crude residue was filtered through a short pad of sil-
ica (*15 g), eluting with CHCl3, to give 15 (258 mg,
2.05 mmol, 98%) as a pale yellow oil. Rf: 0.25
(CHCl3). 1H NMR (400 MHz, CDCl3) d 3.87 (t,
J = 5.5 Hz, 2H), 2.71 (dd, J = 9.1, 5.5 Hz, 4H), 2.55–
2.40 (m, 3H), and 1.97 (t, J = 2.5 Hz, 1H). 13C NMR
(100 MHz, CDCl3) d 209.1, 82.9, 69.0, 57.8, 44.7,
41.9, and 12.9.

2-(3-(But-3-yn-1-yl)-3H-diazirin-3-yl)ethan-1-ol (16):
A 50 mL amber three-necked flask was charged with a
magnetic stirring bar, purged with Ar, and cooled to
�50�C in an acetone-dry ice bath. NH3 gas (5 mL)
was condensed into the flask using a dry ice condenser,
upon which 15 (255 mg, 2.04 mmol) in dry DCM
(1 mL) was added dropwise. The reaction was allowed
to warm to �40�C and was stirred at reflux for 5 h,
upon which hydroxylamine-O-sulfonic acid (425 mg,
3.76 mmol, 1.83 eq) in dry MeOH (1 mL) was added
dropwise. The reaction was kept at reflux for an addi-
tional 1 h, and then allowed to warm to rt over 16 h.
Dry N2 was subsequently bubbled through the reaction,
allowing all excess NH3 to evaporate, the reaction was
filtered over celite, and the filter cake was washed with
dry MeOH (40 mL). The filtrate was concentrated
under reduced pressure, and the crude diaziridine res-
idue redissolved in DCM (2 mL) and transferred to a

10 mL round bottom flask, purged with Ar, and cooled
to 0�C in an ice bath. Dry Et3N (0.5 mL) was added,
and a solution of I2 (500 mg) in DCM (8 mL) was
added dropwise over 1 h until a brown/red color per-
sisted for at least 0.5 h. Upon completion, the reaction
was quenched with 1 M HCl (3 mL), and diluted with
EtOAc (40 mL) and transferred to a separating funnel.
The organic layer was washed with aq. 10 wt.%%
(2 · 20 mL), brine (20 mL), dried over MgSO4, and
concentrated. After concentration, the crude residue
(*250 mg) was purified by flash column chromatogra-
phy (10 g silica), eluting with 75% CHCl3/pentane (2
CV), 80% CHCl3/pentane (4 CV), then CHCl3 (4
CV) to give 16 (234 mg, 1.69 mmol, 83% over two
steps) as a dark yellow oil. Rf: 0.4 (CHCl3). 1H NMR
(400 MHz, CDCl3) d 3.49 (t, J = 6.2 Hz, 2H), 2.14–
1.95 (m, 3H), 1.85 (br s, 1H), and 1.74–1.63 (m, 4H).
13C NMR (100 MHz, CDCl3) d 82.9, 69.4, 57.4, 35.6,
32.7, 26.7, and 13.3.

3-(But-3-yn-1-yl)-3-(2-iodoethyl)-3H-diazirine (17):
A 25 mL amber flask was charged with a magnetic
stirring bar, and 16 (234 mg, 1.69 mmol, 1 eq). DCM
(7.5 mL) was added. The flask was cooled to 0�C in
an ice bath, and imidazole (345 mg, 5.07 mmol, 3 eq),
was added, followed by I2 (515 mg, 2.03 mmol, 1.2
eq) and PPh3 (488 mg, 1.86 mmol, 1.1 eq). The reaction
was purged with Ar, allowed to come to rt, and stirred
for 1 h. Upon completion, the reaction was quenched
with aq. 10 wt.% Na2S2O3 (10 mL) and transferred to
a separating funnel. The aqueous layer was extracted
with CHCl3 (3 · 20 mL). The combined organic layer
was dried over MgSO4 and concentrated. After concen-
tration, the crude residue (*500 mg) was purified by
flash column chromatography (25 g silica), eluting
with pentane (6 CV), then 5% Et2O/pentane (6 CV)
to give 17 (378 mg, 1.52 mmol, 90%) as a clear oil.
Rf: 0.25 (pentane). 1H NMR (400 MHz, CDCl3) d
2.90 (t, J = 7.6 Hz, 2H), 2.13 (t, J = 7.6 Hz, 2H), 2.07–
1.96 (m, 3H), and 1.69 (t, J = 7.1 Hz, 2H). 13C NMR
(100 MHz, CDCl3) d 82.6, 77.4, 69.6, 37.7, 32.0, 28.8,
13.4, and�3.9.

(6aR,10aR)-3-(((2-(3-(But-3-yn-1-yl)-3H-diazirin-
3-yl)ethyl)thio)methyl)-6,6,9-trimethyl-6a,7,10,10a-
tetrahydro-6H-benzo[c]chromen-1-ol (1): A 10 mL
round bottom flask was charged with a magnetic
stirring bar, tricyclic probe precursor 11 (20 mg,
49 lmol, 1 eq), and THF (0.5 mL), and the reaction
cooled to 0�C in an ice water bath. Minimalist linker
17 (19 mg, 75 lmol, 1.53 eq) in THF (0.5 mL) was
added, followed by anhydrous K2CO3 (13.5 mg,
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98 lmol, 2 eq), and DMF (0.5 mL). The reaction was
purged with Ar again, allowed to come to rt, then
warmed to 30�C, and stirred for 22 h. Upon comple-
tion, H2O (10 mL) was added, and the reaction was
transferred to a separating funnel. The aqueous layer
was extracted with CHCl3 (2 · 10 mL), and the com-
bined organic layer was washed with brine (10 mL),
dried over MgSO4, and concentrated. The crude silyl
ether was subsequently dissolved in THF (0.5 mL)
and transferred to a 10 mL round bottom flask, purged
with Ar, and cooled to 0�C in an ice water bath. 1 M
TBAF in THF (98 lL, 98 lmol, 2 eq) was added, and
the reaction stirred for 15 min at 0�C. Upon comple-
tion, the reaction was quenched with H2O (10 mL),
and transferred to a separating funnel. The aqueous
layer was extracted with Et2O (10 mL) and the organic
layer washed with brine (10 mL), dried over MgSO4,
and concentrated. After concentration, the crude res-
idue (*25 mg) was purified by flash column chroma-
tography (2 g silica), eluting first with 20% CHCl3/
pentane (4 CV), 40% CHCl3/pentane (4 CV), and
then 50% CHCl3/pentane (4 CV) to give probe 1
(17 mg, 41 lmol, 84% over two steps) as a clear, viscous
oil. Rf: 0.3 (50% CHCl3/pentane). 1H NMR (400 MHz,
CDCl3) d 6.34 (d, J = 1.2 Hz, 1H), 6.26 (s, J = 1.6 Hz,
1H), 5.43 (d, J = 3.8 Hz, 1H), 4.87 (s, 1H), 3.52 (s,
2H), 3.19 (dd, J = 16.0, 4.0 Hz, 1H), 2.70 (td, J = 10.7,
4.5 Hz, 1H), 2.25 (m, 3H), 1.99 (m, 3H), 1.81 (t,
J = 8.9 Hz, 3H), 1.70 (s, 3H), 1.62 (dd, J = 14.7,
7.5 Hz, 5H), 1.38 (s, 3H), and 1.10 (s, 3H). 13C NMR
(100 MHz, CDCl3) d 155.4, 155.2, 137.7, 134.8,
119.5, 111.0, 107.7, 77.1, 69.4, 44.9, 36.1, 36.0, 33.0,
32.30, 31.8, 29.9, 28.0, 27.7, 25.7, 23.6, 18.6, and 13.4.
LC-MS purity found >95%. High resolution mass spec-
trometry (HRMS) (ESI+) m/z: calculated for
C24H31N2O2S [M + H]+: 411.2101, found 411.2100.

Biology
General remarks. All common reagents were pur-
chased from commercial sources and used as received.
Probe 1 was synthesized as described above, D9-THC,
D8-THC and CY5-N3 were synthesized according
to previously published procedures29,30 and biotin-N3

was purchased from Bio-Connect Life Sciences.
[3H]CP55940 (specific activity 141.2 Ci/mmol) and
GF-B/GF-C filters were purchased from Perkin Elmer
(Waltham, MA). The CHO-K1 CNR1 and CNR2 cell
lines (catalog numbers 93-0959C2 and 93-0706C2,
respectively) were obtained from DiscoveRx. Cell cul-
ture plates were purchased from Sarstedt.

Cannabinoid receptor ligands CP55940 and AM630
were obtained from Sigma Aldrich (St. Louis, MO),
and rimonabant was obtained from F. Hoffmann-La
Roche Ltd. (Basel, Switzerland). Reagents used for
the pulldown procedure are: avidin-agarose from
egg white (50% glycerol suspension from Sigma
Aldrich), 10· phosphate buffered saline (PBS) (pro-
teomics grade, Sigma Aldrich) and Trypsin, sequenc-
ing grade (Promega). The CaproBox� was kindly
provided by Caprotec Bioanalytics GmbH, Berlin. All
buffers and solutions were prepared using Millipore
water (deionized using a MilliQ A10 Biocel�, with
a 0.22 lm filter) and analytical grade reagents and
solvents. Buffers are prepared at rt and stored at
4�C, unless stated otherwise.

Cell culture and membrane preparation. CHOK1hCB1_
bgal and CHOK1hCB2_bgal (source; DiscoveRx, Fre-
mont, CA) were cultured in Ham’s F12 Nutrient Mix-
ture supplemented with 10% fetal calf serum, 1 mM
glutamine, 50 lg/mL penicillin, 50 lg/mL streptomycin,
300 mg/mL hygromycin, and 800 lg/mL geneticin in a
humidified atmosphere at 37�C and 5% CO2. Cells
were subcultured twice a week at a ratio of 1:20 on 10-
cm ø plates by trypsinization. For membrane prepara-
tion, the cells were subcultured 1:10 and transferred to
large 15 cm diameter plates. Next, the cells were de-
tached by scraping them into 5 mL PBS and collected
and centrifuged at 1000 g for 5 min. Pellets derived
from 30 plates were added together and resuspended
in 20 mL ice-cold buffer (50 mM Tris-HCl, 5 mM
MgCl2, pH 7.4). An UltraThurrax homogenizer was
used to homogenize the cell suspension. Membranes
and the cytosolic fraction were separated by ultracen-
trifugation (100,000 g, with a Ti-70 rotor in a Beck-
ham Coulter Ultracentrifuge) at 4�C for 20 min. The
supernatant was discarded and the pellet was resus-
pended in 10 mL of the same buffer and the homoge-
nization and centrifugation steps were repeated.
Supernatant was discarded and the pellet was resus-
pended in 5 mL buffer. Aliquots of 200 lL were frozen
at�80�C until further use. Protein concentration was
determined using the BCA method.31

[3H]CP55940 displacement assay. The affinity of
probe 1 on CBRs was determined on membrane frac-
tions of CB1R- or CB2R overexpressing CHO cells, as
described previously.13 Membrane aliquots containing
5 lg (CHOK1hCB1_bgal) or 1 lg (CHOK1hCB2_bgal)
of membrane protein in 100 lL assay buffer (50 mM Tris–
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HCl, 5 mM MgCl2, 0.1% BSA, pH 7.4) were incubated at
30�C for 1 h, in presence of 3.5 nM (CHOK1hCB1_bgal)
or 1.5 nM [3H]CP55940 (CHOK1hCB2_bgal). Non-
specific binding was determined in the presence of
10 lM SR141716A (CHOK1hCB1_bgal) or 10 lM
AM630 (CHOK1hCB2_bgal). Incubation was termi-
nated by rapid filtration performed on GF/C filters
(Whatman International, Maidstone, United King-
dom), presoaked for 30 min with 0.25% polyethylene-
imine (PEI), using a Brandel harvester (Brandel,
Gaithersburg, MD). Filter-bound radioactivity was
determined by scintillation spectrometry using a
Tri-Carb 2900 TR liquid scintillation counter (Perkin
Elmer, Boston, MA).

Data analysis
Graphs and statistics were performed with GraphPad
Prism 7, using the results of three independent ex-
periments performed in duplicate. The nonlinear
regression analysis for one site—Fit Ki (constrains:
top = 100 and bottom = 0) was used to obtain logKi val-
ues, which are provided by Prism by direct application
of the Cheng–Prusoff equation32: Ki = IC50/(1 + ([L]/
KD)), in which [L] is the exact concentration of
[3H]CP55940 determined per experiment (i.e., *3.5
or *1.5 nM) and KD = 0.10 (CB1R) or 0.33 (CB2R)
nM of [3H]CP55940.

Two-step photoaffinity labeling, gel-based analysis
Wild type (WT)CHO, CB1R, and CB2R membrane al-
iquots were diluted to 2 lg/lL and homogenized for
20 sec with a Heidolph Silent crusher at 25,000 rpm,
and benzonase was added (1:10,000 dilution from
working stock of 2,500,000 U/mL, assay concentration:
250 U/mL). Eighteen microliters of protein was added
per well of a 96-well flat bottom plate and 20 lM
CP55940 or MilliQ water with the same% of dimethyl-
sulfoxide (DMSO) was added, but the sample without
UV was kept in an Eppendorf tube protected with alu-
mina foil. After incubation of 30 min at rt, 2 lM LEI121
or probe 1, or MilliQ water with the same% of DMSO
was added, and the protein was again incubated for
30 min at rt. The samples were then diluted with
30 lL 50 mM Hepes buffer and irradiated for 5 min
with CaproBox, preset at 350 nm and cooled during ir-
radiation. The ligation reaction was then performed
with 5 lL click master mix per sample (0.455 mM
CuSO4, 2.73 mM NaAsc, 0.09 mM THPTA, 3.6 lM
Cy5-N3). The click mix is prepared as follows: 2.5 lL
10 mM CuSO4 and 1.5 lL 100 mM NaAsc were mixed

together until the copper is fully reduced (visible by
the change from the rusty brown color to bright yellow),
then 0.5 lL 10 mM THPTA and 0.5 lL 0.4 mM CY5-N3

were added. After incubation in the dark for 1 h, the pro-
tein was denatured with 18 lL 4 · Laemmli sample buf-
fer, and the samples were resolved on a 12.5%
acrylamide gel (12 lL per sample per well). Bio-Rad
ImageLab was used for gel analysis and quantification.

Chemoproteomic profiling of THC protein targets
Neuro2A cells were cultured at 37�C with 7% CO2 in
DMEM supplemented with 10% New Born Calf serum,
10% fetal calf serum, 1 mM glutamine, 50 lg/mL penicil-
lin, and 50 lg/mL streptomycin and passaged twice a
week. Cells were washed with PBS, then pretreated in
PBS, containing 1 mM MgCl2 and 1 mM CaCl2, with or
without 10 lM THC, for 30 min at 37�C. Then, 1 or
10 lM probe 1 (or the same amount of DMSO for the
untreated control) was added (final concentration in a
total volume of 3 mL) and incubated for 30 min at
37�C. The solution was removed from the cells and
replaced by 1.5 mL PBS containing 1 mM MgCl2 and
1 mM CaCl2, then the plates were immediately irradiated
(except the No UV control) with CaproBox (350 nm) for
5 min, and the cells were harvested by scraping.

The cells were pelleted (10 min, 1200 g, 4�C), super-
natant removed, and resuspended in 250 lL 50 mM
Hepes buffer. The cells were destroyed with the Hei-
dolph Silent Crusher (20 sec, 25,000 rpm). Samples
were sonicated for 10 · 2.5 sec with 0.5 sec interval
(using a probe sonicator from Branson, Digital Soni-
fier) and 2 lL of 10% sodium dodecyl sulfate (SDS)
was added. If samples were frozen at �80�C before
continuation of the experiment, the samples were
sonicated again for 10 · 0.5 sec with 0.5 sec interval
using a probe sonicator. The protein content was
quantified using Bradford33 and the experiment was
continued using the same amount of protein for
each sample. Sample volumes were adjusted to
400 lL with 50 mM Hepes buffer, then the ligation
reaction with biotin-N3 was performed with
43,7 lL click mix per sample (1.25 mM CuSO4,
7.5 mM NaAsc, 0.25 mM THPTA, 22.5 lM biotin-
N3) for 1 h at rt in the dark. For step-by-step prepara-
tion of the click reagents, mix 21.85 lL 25 mm CuSO4,
13.15 lL 250 mM NaAsc, 4.37 lL 25 mM THPTA, and
4.37 lL 2.25 mM biotin-N3 in this order.

To remove all click components, the protein was
precipitated by the addition of 666 lL MeOH, 166 lL
CHCl3, and 300 lL MilliQ and centrifuged at 20,238 g
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for 10 min. The supernatant was removed and the pel-
let was resuspended in 600 lL MeOH using sonication
(6 · 0.5 sec, interval 0.5 sec). The protein was pelleted at
20,238 g for 10 min and the supernatant removed. The
protein was then denatured in 15 min at rt with 500 lL
1% SDS containing 25 mM NH4HCO3, followed by re-
duction (65�C, 15 min, 700 rpm shaking) using 5 lL
1 M DTT per sample. Samples were cooled to rt before
alkylation with 40 lL 0.5 M IAA per sample for 30 min
at rt in the dark. One hundred forty microliters of 10%
SDS was added per sample, and each sample was added
to 6 mL PBS containing 50 lL avidin beads (prewashed
with PBS 3 · , pelleting at 2000 g for 2 min), and incu-
bated for 2 h at rt while rotating. Beads were pelleted
(2000 g, 2 min) and washed with PBS with 0.5% SDS
(1·) and with PBS (3·).

On-bead digest of peptides was performed over-
night at 37�C, at 1000 rpm with digestion buffer
(250 lL per sample, recipe: 300 lL 1 M Tris, 300 lL
1 M NaCl, 3 lL of 1 M CaCl2, 60 lL ACN, 3 lL
0.5 lg/lL Trypsin and 2334 lL MilliQ). Samples
were quenched with 12.5 lL formic acid (FA) and
beads were removed using a Biospin column (600 g,
2 min). Samples were added on C18 StageTips (con-
ditioned with 50 lL MeOH, then 50 lL of 0.5% (v/v)
FA in 80% (v/v) ACN/MilliQ (solution B), then
50 lL 0.5% (v/v) FA in MilliQ (solution A), each con-
ditioning step was performed using centrifugation
for 2 min at 600 g) by spinning for 15 min at 800 g,
then washed with solution A for 10 min at 800 g,
and eluted with solution B for 5 min at 800 g into
low-binding Eppendorf tubes. Samples were evapo-
rated using an Eppendorf SpeedVac (Eppendorf
Concentrator Plus 5301) and 50 lL of LC/MS solu-
tion was added (recipe for 2 mL: 1900 lL MilliQ,
60 lL ACN, 2 lL FA, 40 lL of 1 nmol/lL yeast eno-
lase stock). Samples were measured using a Nano-
ACQUITY UPLC System coupled to a SYNAPT
G2-Si high-definition mass spectrometer (Waters).
The peptides were separated using an analytical col-
umn (HSS-T3 C18 1.8 lM, 75 lM · 250 mm, Waters)
with a concave gradient (5–40% ACN in H2O with
0.1% FA). [Glu1]-fibrinopeptide B was used as lock
mass. Mass spectra were acquired using the UDMSe

method.34 The mass range was set from 50 to 2000
Da with a scan time of 0.6 sec in positive, resolution
mode. The collision energy was set to 4 V in the trap
cell for low-energy MS mode. For the elevated energy
scan, the transfer cell collision energy was ramped
using drift time-specific collision energies.

Raw data were processed using Progenesis QI for
Proteomics (3.0, Waters), with lock mass correction
(7,858,426 Da) and a database search was performed
against the proteomic database of Mus musculus, with
trypsin as digestion reagent, max two missed cleavages,
carbamidomethyl C as a fixed modification, oxidation
M as a variable modification, and FDR set to 1%. Rel-
ative quantitation using Hi-3 was performed after fil-
tering the peptides on score (cutoff 5).

Data analysis
The average normalized abundance of proteins in sam-
ple replicates of two independent experiments was used
to calculate the ratio of proteins in the probe-treated
sample and the ‘‘No UV’’ sample, to determine the
level of enrichment by UV-irradiation (Fig. 5A). Pro-
tein targets that were enriched >2 · by probe 1 are
shown in Supplementary Table S1. Proteins that were
<2-fold enriched and highly abundant (>20%) in the
‘‘CRAPome’’ database35 www.crapome.org/, version
1.1) were excluded from further analysis. Gene ontol-
ogy data of the *150 resulting putative probe targets
(Fig. 5B, C) were derived using the DAVID Bio-
informatics Database (https://david.ncifcrf.gov/home
.jsp, version 6.8).

In THC competition experiments, the normalized
abundance of proteins in sample replicates of three in-
dependent experiments was used to calculate the ratio
of proteins in THC-pretreated samples over probe-
treated samples. The average of the mean ratios of
the triplicate samples of each independent experiment
was used to calculate the effect of THC (as fold change),
and a Student’s t-test was used to determine whether
the fold change was significantly lower than 1, indicat-
ing a significant reduction of the abundance of that
particular protein in the THC-treated samples
(Fig. 5D). A p-value less than 0.05 was considered sta-
tistically significant. Proteins that showed <50% inhi-
bition (Supplementary Table S2) were excluded from
gene ontology analysis. This analysis yielded one pu-
tative protein target of D9-THC and three putative
targets of D8-THC (Fig. 5A, B, [red dots] and E).
Gene ontology and KEGG pathway analysis of the
resulting putative protein targets was derived using
the DAVID Bioinformatics software (https://
david.ncifcrf.gov/home.jsp, version 6.8). In addition,
it was investigated whether these proteins are associ-
ated with pathophysiologies or diseases using the Online
Mendelian Inheritance in Man (OMIM) database
(www.omim.org/, September 2017).
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Results and Discussion
Synthesis of photoaffinity probe 1
To identify the best position in THC to introduce
the photoreactive group and the ligation tag, an
analysis of previously reported structure-activity
relationship data of THC analogs was conducted.36

This led to the design of probe 1, which contains a
diazirine and ligation handle on the alkyl side
chain of THC. An advantage of this design is the di-

rect coupling of the bifunctional side chain as ‘‘min-
imalist linker.’’37

The synthesis of probe 1 commenced with reduction
of commercially available 3,5-dihydroxybenzoic acid 2
to corresponding benzyl alcohol 3 in near-quantitative
yield, using dimethyl sulfide complex of borane, along
with co-reagent trimethoxyborate (Fig. 2).38 Benzyl al-
cohol 3 was oxidized to aldehyde 4 using a stoichio-
metric amount of Jones reagent, which prevented

FIG. 4. Gel-based analysis of two-step photoaffinity labeling efficiency of probe 1. Probe 1 was not able
to covalently label the CBRs in membranes from (A) CB2R- or (B) CB1R-overexpressing CHO cells, whereas a
CB2R-selective probe (LEI121)28 specifically labeled CB2R (A).

FIG. 3. CBR binding affinity of probe 1. Binding affinity of probe 1 was measured on membrane fractions
of (A) CB1R- or (B) CB2R-overexpressing CHO cells, using previously described [3H]CP55940 displacement
assays.13 CBR, cannabinoid receptor.
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overoxidation to the benzoid acid.39 Protection of the
aldehyde was performed under Lewis acidic conditions,
which resulted in 1,3-dithiolane 5 in excellent yield.
Electrophilic aromatic substitution of resorcinol deriv-
ative 5 under acidic conditions with the commercially

available chiral monoterpene (S)-cis-verbenol yielded
bicyclic intermediate 6 in moderate yield.

The tricyclic intermediate 7 was obtained in moder-
ate yield by ring-closing rearrangement of bicyclic
dithiolane 6, due to the generation of side products.

FIG. 5. Proteomic analysis of proteins targeted by probe 1. (A) Representative plot showing the level of
enrichment by probe 1 after UV-irradiation. (B, C) Pie charts showing gene ontology analysis of the cellular
location (B) and cellular function (C) of probe targets identified in two independent experiments performed
in duplicate. (D) Volcano plots showing the fold change in abundance of probe targets after pretreatment
with either D8-THC and D9-THC (ratio THC pretreated samples over noncompetition samples). Proteins of which
the abundance were >40% lowered by THC ( p-value <0.05) are shown in red. Statistics performed was an
unpaired Student’s t-test. (E) 3 and 1 putative protein targets of D8-THC and D9-THC, respectively, were
identified. Data shown are the mean – SEM of three independent experiments performed in triplicate.
THC, D9-Tetrahydrocannabinol. SEM, standard error of the mean; UV, ultraviolet.
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D8-THC was synthesized in two steps from olivetol and
(S)-cis-verbenol using the same procedures, in a similar
yield and comparable to literature.30 Intermediate 7 was
deprotected by Ag(I) salts, using a AgNO3/wet EtOH
system.40 Overoxidation of the resulting aldehyde to
the equivalent benzoic acid was prevented using a mod-
ified workup, comprised additional washing steps with
10 wt.% Na2SO3 (aq.), on top of the sole filtration step
described in the literature.40 The resulting aldehyde
was not isolated but subjected directly to phenol protec-
tion with TBS ether, to yield aldehyde 8 in excellent
yield over 2 steps. Reduction of 8 to benzyl alcohol 9
with LiBH4 proceeded with near-quantitative yield,
and a subsequent Appel reaction afforded benzyl bro-
mide 10 in excellent yield. Benzyl mercaptan 11 was
obtained by substitution of the bromide by thiourea,
followed by cleavage of the amidine moiety from the
sulfur atom with NaOH (aq).

The synthesis of minimalist linker 17 started with
the functionalization of commercially available ethyl
acetoacetate 12 to propargyl ketoester 13 via genera-
tion of the dienolate under strongly basic conditions,
followed by regiospecific electrophilic attack by prop-
argyl bromide.37 Ketoester 13 was then protected
with ethylene glycol to the corresponding ketal, with
azeotropic removal of water under acidic conditions,
followed by direct reduction of the ester group with
LiAlH4, afforded corresponding alcohol 14 with excel-
lent yield over 2 steps.41 Deprotection of ketal 14
afforded ketone 15 in a near-quantitative yield, which
was next functionalized by refluxing in liquid NH3, fol-
lowed by addition of hydroxylamine-O-sulfonic acid.
The resulting crude diaziridine was subsequently oxi-
dized to diazirine 16 using molecular iodine in mild
basic conditions and was obtained in high yield over 2
steps. Sixteen then underwent a modified Appel reac-
tion to generate minimalist linker 17 as alkyl iodide,
in excellent yield.

Finally, minimalist linker 17 was coupled overnight
at 30�C to resorcinol mercaptan 11 using K2CO3 in a
2:1 THF/DMF solvent system and the crude sulfide
underwent rapid TBS ether deprotection in the pres-
ence of TBAF, affording target probe 1 in high yield
over two steps. Overall, probe 1 was synthesized
from commercially available 3,5-dihydroxybenzoic
acid 2 in 14 steps, with a total yield of 18%.

CBR binding affinity of probe 1
To test the affinity of probe 1 on both the CB1R and
CB2R, a [3H]CP55940 displacement assay was used Ta
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(Fig. 3). Probe 1 bound to the CB1R and CB2R with a
pKi value of 8.5 – 0.1 and 8.0 – 0.4, respectively, which
is similar as previously reported for D9-THC (pKi = 8.5
– 0.1 and 8.2 – 0.2, respectively) and D8-THC (pKi =
7.4 – 0.1 and 7.4 – 0.2, respectively).13,14

Two-step photoaffinity labeling of CB1R and CB2R
The ability of probe 1 to label CBRs in membranes of
CB2R- or CB1R-overexpressing CHO cells was tested
using a two-step photoaffinity labeling assay for gel-
based imaging as previously reported.28 Probe 1 at a
concentration of 2 lM, which is more than sufficient
to fully occupy the binding site of the receptors, did
not label either one of the CBRs (Fig. 4). Of note,
positive control LEI121, a CB2R-selective photoaffin-
ity probe previously reported,28 did show profound
labeling of CB2R. This may indicate that the diazirine
of probe 1, positioned on the ‘‘flexible’’ alkylic side
chain, is not in close proximity to the amino acid res-
idues in the binding site of CB1R and CB2R to form a
covalent bond with the protein. This observation is
in line with previous results showing that the posi-
tion of the photoreactive diazirine on the scaffold
of CBR ligands is essential to capture the CBR.28

Chemoproteomic profiling of THC protein targets
using probe 1
The ability of probe 1 as a chemical tool to identify
additional, non-CBR, protein targets of THC was
evaluated next. Live Neuro2A cells (a fast-growing
neuroblastome cell line with neuronal properties
and therefore a suitable test system) were incubated
with probe 1 (10 lM). Vehicle-treated and nonirradi-
ated cells were used as control. Ligation with biotin-
N3 for affinity enrichment on avidin agarose beads

enabled identification of nearly 800 proteins by mass
spectrometry-based proteomics (Fig. 5A).

Nearly 200 proteins were more than twofold
enriched by probe 1 compared to the untreated control,
of which *50 proteins were also found in the ‘‘CRA-
Pome’’ database (Contaminant Repository for Affinity
Purification).35 The CRAPome database constitutes a
list of frequently identified proteins (e.g., ribosomal
proteins or histones) in photoaffinity labeling experi-
ments regardless of the type of probe. These CRAPome
proteins can, therefore, be considered as false positives,
suggesting that nearly 150 unique probe targets were
identified. Gene ontology analysis revealed that pro-
tein targets of probe 1 are mostly located in the endo-
plasmic reticulum, mitochondria and membranes
or in the cytoplasm (Fig. 5B). The proteins are
mostly associated with energy metabolism and pro-
tein transport (Fig. 5C). Probe targets that were
more than twofold enriched are shown in Supple-
mentary Table S1.

To assess which of the probe targets also interact
with THC, competition experiments with probe 1
(1 lM) and D8-THC (10 lM) or D9-THC (10 lM)
were performed. This resulted in one putative protein
target of D9-THC (Cox4i1) and three for D8-THC
(Reep5, Mtch2, Gnb1) (Fig. 5A, D [red dots]) for
which the labeling of the protein by probe 1 was reduced
by 40–70% (Fig. 5E, Supplementary Table S2). It should
be noted that putative protein target Reep5 was enriched
only 1.5-fold by probe 1, but is listed because it had the
largest reduction after THC-pretreatment (69% – 6%).
The absence of complete inhibition by THC may be
due to a low affinity to these proteins, because an inhi-
bition between 40% and 70% indicates an IC50 in the mi-
cromolar range. However, as this was measured in

Table 2. Putative THC Protein Targets with Hits in the KEGG and/or OMIM Database

Gene
name KEGG pathway OMIM database

D8-THC
Reep5 Neuropathy,

spastic paraplegia
Gnb1 Ras signaling pathway, Chemokine signaling pathway, PI3K-Akt signaling pathway,

Circadian entrainment, Retrograde endocannabinoid signaling, Glutamatergic synapse,
Cholinergic synapse, Serotonergic synapse, GABAergic synapse, Dopaminergic synapse,
Phototransduction, Morphine addiction, Alcoholism, Pathways in cancer

Mental
retardation

Acute somatic
leukemia

D9-THC
Cox4i1 Oxidative phosphorylation, Metabolic pathways, Cardiac muscle contraction,

Nonalcoholic fatty liver disease, Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease

Inhibition data are the mean – SEM (N = 3, n = 3). Putative protein targets were analyzed using the KEGG and OMIM database and were
enriched *2 · or more after UV-irradiation.

OMIM, Online Mendelian Inheritance in Man.
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presence of 1 lM probe, the actual pKi of THC for these
proteins may be a bit higher.

Cox4i1 is involved in energy metabolism, whereas
Reep5, Mtch2, and Gnb1 are associated with protein
modification and transport, energy metabolism, apoptosis
and DNA maintenance, or signal transduction, respec-
tively (Table 1). Interestingly, these four putative protein
targets are associated with various neurological diseases as
reported in the KEGG and OMIM database (Table 2).42,43

Conclusions
The aim of this study was to identify unknown protein
targets of THC using photoaffinity labeling and chemical
proteomics. To this end, D8-THC-derived probe 1 was
synthesized in 14 steps with a total yield of 18%. Probe
1 had nanomolar affinity for both CBRs, but was not
able to undergo a covalent addition with the CBRs and
therefore unable to visualize the CBRs in an established
gel-based photoaffinity labeling assay. Different position-
ing of the photoreactive group in the probe, for example,
on the more rigid tricyclic core of the scaffold to enable a
stronger interaction between diazirine and amino acid
residues, might allow the covalent capturing of CBRs.

Photoaffinity labeling of the proteome of live Neu-
ro2A cells resulted in the identification of *150 target
proteins. Competition studies with THC significantly
reduced enrichment of four proteins by probe 1,
which suggests that THC has a limited interaction
profile in Neuro2A cells. Reep5, Mtch2, and Gnb1
were identified as putative protein targets of D8-
THC, whereas Cox4i1 was targeted by D9-THC.
These targets are mostly involved in protein handling,
energy metabolism, apoptosis or DNA maintenance,
which may suggest that long-term exposure of THC
may affect a variety of (epigenetic) functions of
brain cells. Of note, the affinity and functional activity
of THC on these four proteins need to be further val-
idated in orthogonal experiments using recombinant
expression systems, followed by experiments to iden-
tify a mechanistic link between these proteins and
physiological effects of THC.

Taken together, the identification of the putative
protein hits described is a first step toward a better un-
derstanding of the protein interaction profile of THC,
which could ultimately lead to the development of
novel therapeutics based on THC.
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Abbreviations Used
CBRs¼ cannabinoid receptors
DMF¼ dimethylformamide

DMSO¼ dimethylsulfoxide
FA¼ formic acid

GPCR¼G protein-coupled receptor
HRMS¼ high resolution mass spectrometry
LC/MS¼ liquid chromatography-mass spectrometry

MS¼multiple sclerosis
NMR¼ nuclear magnetic resonance

pAfBPP¼ photoaffinity-based protein profiling
PBS¼ phosphate buffered saline
PEI¼ polyethyleneimine

rt¼ room temperature
SDS¼ sodium dodecyl sulfate
SEM¼ Standard error of the mean
THC¼D9-Tetrahydrocannabinol
THF¼ tetrahydrofuran
TLC¼ thin layer chromatography
UV¼ ultraviolet
WT¼wild type
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