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Abstract

Cnidarians (e.g. sea anemones, jellyfish), develop from the outer ectodermal, and the inner 

endodermal germ layer, while bilaterians (e.g. vertebrates, flies) additionally exhibit mesoderm as 

intermediate germ layer. Currently, cnidarian endoderm (i.e. ‘mesendoderm’) is considered 

homologous to both bilaterian endoderm and mesoderm. Here, we test this hypothesis by studying 

the fate of germ layer, the localisation of gut cell types, and the expression of numerous 

‘endodermal’ and ‘mesodermal’ transcription factor orthologs in the anthozoan sea anemone 

Nematostella vectensis. Surprisingly, we find that the developing pharyngeal ectoderm and its 

derivatives display a transcription factor expression profile (foxA, hhex, islet, soxB1, hlxB9, 

tbx2/3, nkx6, nkx2.2) and cell type combination (exocrine and insulinergic) reminiscent of the 

developing bilaterian midgut, and in particular vertebrate pancreatic tissue. Endodermal 

derivatives, instead, display cell functions and transcription factor profiles similar to bilaterian 

mesoderm derivatives (e.g. somatic gonad, heart). Thus, our data supports an alternative model of 

germ layer homologies where cnidarian pharyngeal ectoderm corresponds to bilaterian endoderm, 

and the cnidarian endoderm is homologous to bilaterian mesoderm.

Introduction

Bilaterian endoderm generally develops into the midgut (and vertebrate foregut), including 

exocrine glands that secrete digestive enzymes (e.g. pancreas) or absorb nutrients (e.g. insect 

caecae)1. In some bilaterians (e.g. vertebrates), the endoderm develops also into foregut and 
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hindgut, while in others, fore- and hindgut are of ectodermal origin (e.g. in insects)2. 

Mesoderm primarily forms the tissues in-between ecto- and endodermal derivatives, such as 

coelom, musculature, somatic gonad, and the circulatory system. Cnidarian endo- and 

ectoderm are thought to develop into the inner gastrodermis, and the outer epidermis, 

respectively3. Endoderm has recently been determined as the germ layer expressing the 

phylogenetically oldest genes4, and its homology between cnidarians and bilaterians is 

considered evident for over a century due to their capacity to form the ‘primitive gut’5–8. 

Despite lacking mesoderm, cnidarian gastrodermis displays exocrine and absorptive 

functions typical of bilaterian endodermal, but also harbours functions typical of bilaterian 

mesodermal derivatives (muscular, somatic gonad)3,9,10. Studies in N. vectensis, based on a 

relatively low gene number, have revealed a predominantly endodermal expression of 

bilaterian ‘mesodermal’ gene orthologs11–14 (Supplementary Table 1). This indicated a 

homology of the cnidarian endoderm to both the bilaterian endoderm and mesoderm (Fig.1a, 

‘traditional homology’), a model further supported by the presence of bicompetent 

endomesodermal precursor cells in some bilaterians7,15. So far, however, a rigorous 

comparison of the transcription factor expression and cell type profiles between bilaterian 

and cnidarian endoderm is missing. Additionally, the developmental origin and fate of 

endoderm in many cnidarians, such as hydrozoans, cubozoans and staurozoans is obscure. In 

these phyla, gastrulation occurs, with very few exceptions, by ingression or delamination 

and results in a cell-filled stereogastrula with the gastrocoel and gastrodermis forming 

secondarily during late larval development3,16,17. In contrast, almost all anthozoans, 

including N. vectensis, and scyphozoans, including Aurelia aurita, form their hollow, bi-

layered epithelial body structure during gastrulation by invagination of a clearly separate, 

epithelial endoderm (Fig.1b, red)16,18,19.

Results and discussion

As a fate map of anthozoan germ layers is missing, we transplanted transgenic, fluorescently 

labelled donor tissue to non-fluorescent host embryos of N. vectensis, and determined its 

fate in primary and juvenile polyps (Fig.2, Supplementary Fig. 1). We observed a clear 

ectodermal origin of the pharynx and the gastrodermal septal filaments (Fig.1b, c, yellow; 

Fig.2c-e”; Supplementary Fig. 1). The embryonic endoderm, instead, forms all other 

gastrodermal tissues excluding the septal filaments (Fig.1b, c, red; Fig.2f-g’; Supplementary 

Fig. 1). Similar morphological observations in octocorallian species (e.g. soft corals)20, 

belonging to the phylogenetic sister group of hexacorallians (which include N. vectensis), 

affirm our observations and support the presence of ectodermal septal filaments in the last 

common anthozoan ancestor. Notably, a major ectodermal contribution to the polyp 

gastrodermis has also been found in the scyphozoan Aurelia aurita, separated from 

anthozoans since the last common cnidarian ancestor21–23.

This unexpected result raised the question if exocrine gland cells, characteristic for bilaterian 

guts1, derive from endo- or ectodermal in N. vectensis. We addressed this by cloning and 

studying the expression of three trypsinogen (try) protease, three chitinase (chit), and two 

triacylglyceride-hydrolysing pancreatic lipase (pl) gene orthologs in N. vectensis (Fig. 3, 

Supplementary Figs. 2, 3, and Supplementary Tables 1, 2). We found specific expression of 

all genes in ectodermal, but never in endodermal gland cells within the larval and juvenile 
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pharynx and septal filaments (Fig. 3a-f,w,x, Supplementary Fig. 3a-u') that contain high 

protease activity as reported in other anthozoans24,25. The only gland cell type detected 

also in endodermal parts are mucin-expressing ‘mucous’ cells, found throughout all tissues 

(Supplementary Fig. 3ff-kk”).

In vertebrates26, cephalochordates27,28, flies29 and sea urchins30, insulinergic cells occur 

along with exocrine cells in the gut, but also in brain or mesodermal tissues, and regulate 

nutrient homeostasis and growth26 (Supplementary Table 1). As in bilaterian guts, all cloned 

and detectable Nv preproinsulin-like peptide genes (ilp) are expressed among exocrine gland 

cells of the pharynx and septal filaments (Fig. 3g-i, w, x, Supplementary Figs. 3v-ee’ & 

4a,b). While ilp2 and ilp3 expression is specific to these tissues, ilp1 is additionally 

expressed in small cells adjacent to elaV-positive neurons in the parietal muscle region 

(Supplementary Fig. 3x-x”’). Double in situ hybridisation analysis has revealed that 

ectoderm generates at least seven distinct exocrine or insulinergic gland cell types (Fig. 3x, 

Supplementary Fig. 5). Intriguing similarities between the cell type composition (exocrine, 

insulinergic) of the pharyngeal ectoderm and bilaterian endoderm derivatives (e.g. pancreas) 

led us to ask whether these tissues also share similar developmental transcription factor 

profiles. The transcription factor foxA/forkhead, a key endoderm specification gene in many 

bilaterians (Supplementary Tables 1, 2), conspicuously demarcates the larval pharyngeal 

ectoderm11,31, and the juvenile polyp pharynx and septal filaments which harbour exocrine 

and insulinergic cells in N. vectensis (Fig.1c, Fig. 3j,k,x-z; Supplementary Fig. 6a-f’). In 

young A. aurita medusae, insulinergic and exocrine cells are also restricted within the foxA-

positive mouth tube and gastral filaments (Fig.3aa-gg, Supplementary Fig. 7). We thus 

confirm that this combination of cell types within a foxA-expressing tissue exists also in a 

non-anthozoan cnidarian, corroborating that it is an ancestral feature of both cnidarians and 

bilaterians. The less widely investigated hex gene displays a conserved endodermal 

expression in vertebrates (incl. pancreas)32, cephalochordates33, sea urchins34, 

hemichordates35, and flies36 (Supplementary Table 1). Nematostella hex co-localises with 

foxA within the pharyngeal ectoderm during early larval development as directly shown for 

the vertebrate anterior endoderm37 and presumed for many other bilaterians based on 

similar expression domains (Fig. 3l,y, Supplementary Fig. 6g-l’ and Supplementary Table 1).

In order to further test the similarity between the larval pharyngeal ectoderm and the 

developing pancreas, we cloned and studied many conserved Nematostella orthologs of 

known pancreatic field specification and cell type differentiation genes (nkx2.2, tbx2/3, islet, 
nkx6, islet, hlxb9, soxB1, ptf1, nkx2.2A-E, hnf1)(Supplementary Tables 1, 2)38. We found 

that thirteen of the fifteen genes are indeed expressed in the larval pharyngeal ectoderm 

while ptf1 is expressed in single, non-pharyngeal ectodermal cells, and one of five nkx2.2 
paralogs is expressed only endodermally (Fig. 3m-v, y, z, Supplementary Fig. 6m-xx’). In 

juveniles, only foxA and nkx2.2E remain expressed in the pharynx or septal filaments 

(Supplementary Fig. 6f’,pp). Many of these transcription factors can also be found in the 

developing nervous system of bilaterians39, but their expression within a hex+, foxA+ 
region that includes insulinergic and exocrine cells is so far unique to the pancreas region. 

Our data thus reveal that the pharyngeal ectoderm, and not gastrodermal endoderm, shares 

both a common set of cell types and developmental transcription factors with bilaterian 
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endoderm. These findings are difficult to reconcile with the widely accepted ‘traditional’ 

germ layer homology hypothesis.

In addition to the secretion of digestive enzymes, the uptake, storage and metabolism of 

nutrients (lipids, carbohydrates, amino acids) constitute major functions of the bilaterian gut. 

These functions are also common in bilaterian mesodermal tissues such as vertebrate 

adipose and muscle tissues26 or insect fat body1. Yet, genes underlying these general 

metabolic functions are over-represented in the endoderm, and originated mostly during pre-

metazoan times4. Thus, they can be considered ancestral to all metazoan cells, and are not a 

unique feature of endoderm or gut tissues. In order to assess which cells of the gastrodermis 

in N. vectensis specialised in nutrient uptake and storage, we studied lipid droplet 

localisation and the in vivo uptake and retention of fluorescently labelled glucose and 

oligopeptides in juvenile polyps. We found that the somatic gonad and retractor muscle cells 

are predominant fat and glucose storage tissues (Fig. 4a, b, Supplementary Fig. 8a). A 

functional role for these tissues in glucose and lipid homeostasis is further supported by their 

expression of three lysosomal lipase genes, the potentially fatty acid-binding nuclear 

hormone receptor hnf440 and insulin receptor expression (Fig.4c-g, Supplementary Fig. 4c, 

8). A functional analogy can thus be drawn to bilaterian storage tissues of both endo- and 

mesodermal origin. In order to further characterize a possible ‘mesodermal’ transcription 

factor profile of endodermal derivatives, we systematically analysed in N. vectensis larvae 

and juvenile polyps the expression of 21 candidate transcription factors whose bilaterian 

orthologs are important in the development of visceral mesoderm (foxC, nkx3/bagpipe, 

six4/5), skeletal muscles (eyes absent/eya, six1/2, six4/5, dachshund, lbx/ladybird), cardiac 

muscle (nk4/nkx2.5/tinman, hand, gata4/5/6, tbx20, tbx4/5, tbx1/10, mef2), and vertebrate 

somites (paraxis/scleraxis, tbx15/18/22, twist, mox) (Fig. 4c, h-k, Supplementary Figs. 8-10 

and Supplementary Tables 1, 2). We find six4/5, nkx3/bagpipe and foxC expression 

consistently co-localising with the nutrient-storing somatic gonad region, indicating 

similarities to bilaterian visceral mesoderm (Fig. 1c, Fig. 4c, h-j, Supplementary Figs. 8r-y’ 

& 9e-j’ and Supplementary Table 1). Broad endodermal expression of ‘skeletal muscle’ 

genes (Supplementary Fig. 9a-u) implies that they do not function specifically during 

Nematostella muscle specification. Notably, orthologs of the key bilaterian myoblast 

specification genes myoD, mrf4, mrf5 or myogenin are absent in any non-bilaterian genome. 

eyes absent, six1/2, six4/5 and dachshund transcription factors, forming a conserved 

complex during bilaterian muscle and eye specification41,42, only partially co-localise to 

the endoderm of Nematostella (Supplementary Fig. 9a-r). Almost all (6 out of 7) conserved 

cardiogenic transcription factors (Supplementary Tables 1, 2) overlap with striated-type and 

smooth/non-muscle-type myosin heavy chain-expressing parietal and circular muscle cells 

(Fig. 4k, Supplementary Fig. 10)43, supporting a common evolutionary origin of these 

ancestrally smooth muscle cell types43,44. Finally, nearly all studied orthologs of chordate 

somite patterning genes localise within the pharyngeal endoderm, developing into pouches 

within the tentacles and between the pharynx and body wall ectoderm (Supplementary Fig. 

9v-gg and Supplementary Table 1).

Our data thus corroborates and considerably extends previously described similarities 

between the anthozoan endoderm and the bilaterian mesoderm. Altogether, it is in striking 

conflict with the ‘traditional’ homology of bilaterian and cnidarian endoderm. Instead, both 
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the cell type complement and the developmental transcription factor profile support a 

common ancestry of the pharyngeal ectoderm of cnidarians and the bilaterian endoderm 

(Fig. 1a). This alternative view is further supported by the presumptive ectodermal origin of 

a major part of the Aurelia polyp gastrodermis21,22, and the occurrence of an ectodermal, 

exocrine pharynx in ctenophores45,46 (Fig. 4l). The developmental origin of the fore- and 

hindgut regions from ecto- or endoderm is highly variable among bilaterians. We therefore 

asked if the N. vectensis pharyngeal ectoderm exhibits similarities also to ectodermal parts 

of the bilaterian gut, and whether it is more similar to oral or anal gut regions. With these 

aims, we re-investigated and compared orthologs of bilaterian foregut (goosecoid, 
brachyury, foxA), midgut (foxA, hex, islet, xlox) and hindgut marker genes (foxA, 

brachyury, xlox, cdx, evx) between N. vectensis and several bilaterian representative species 

(Supp. Fig. 11). We found that the transcription factor profile of the pharyngeal and septal 

filament ectoderm is found in the fore- and hindgut regions of different bilaterians, 

independently of the germ layer they originate from. We can thus conclude that the 

anthozoan pharyngeal ectoderm shows similarities to both endodermal and ectodermal parts 

of the bilaterian gut.

In addition, we find that almost all fore-, mid- or hindgut marker genes are expressed within 

the pharyngeal ectoderm of N. vectensis, independently of their oral (goosecoid, islet) or 

anal (xlox/cdx) restriction in bilaterians. This observation reflects also the dual functional 

role of the anthozoan pharynx in the uptake of food and expulsion of undigested remnants. It 

favours an evolutionary scenario where the pharynx is homologous to both anterior and 

posterior parts of the bilaterian gut (as proposed by the amphistomy scenario47), compared 

to scenarios where the pharynx is homologous to only the anterior or posterior regions.

Altogether, we propose that the evolution of the bilaterian gut could have easily occurred by 

fusing or extending the internalised pharyngeal ectoderm to form a blindended sac, as 

suggested earlier by E.B. Wilson20, or a through-gut as in most Bilateria (Fig.4l). As a 

consequence, the original ‘endoderm’ would have become positioned in-between ectoderm 

and the exocrine tissue to form muscles and gonads as typically found for mesoderm in 

bilaterians. Based on our work, we propose that mesoderm is not a bilaterian-specific 

feature, but that the embryonic tissues corresponding to the bilaterian endoderm and 

mesoderm existed and were separate prior to the bilateriancnidarian ancestor (Fig. 4l).

Methods

Animal culture and collection

Nematostella vectensis was cultured and gametogenesis induced as described previously48. 

While larvae for fixation were raised at 21°C, all juveniles were raised at 25°C. Primary 

polyps were fed for three days with mashed brine shrimps, followed by 3-4 weeks with live 

brine shrimps five times per week in a 12cm Petri dish until reaching the juvenile stage, here 

defined by the visible formation of the second pair of mesenteries, at which point the 

animals are about 5-10mm long.
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ef-1α::mOrange transgenic line

An 1862bp fragment, including the 1st and partly the 2nd exon of the elongation factor-1α 
gene was cloned in frame to an mOrange-CAAX fluorophore, and cloned into a I-Sce I 

meganuclease sites-containing transgenesis vector using PacI and AscI restriction sites49. 

Oligos used for cloning were: CCTTAATTAACACGAACCGCAGTGCATAGG (forward, 

includes PacI site) and GAGGCGCGCCGGTGGTTGGTTGGTTTAACACTCA (reverse, 

includes AscI site) and amplified the fragment with following coordinates: 

scaffold_278:291,430-293,291. The concentration of the vector in the injection mix was 

80ng/μl. Positive founder animals were crossed to wild-type animals and screened for 

positive offspring. Inverse PCR mapping50 was performed to map the integration site using 

MboI restriction digest and nested oligos designed on the SV40 polyadenylation sequence of 

the transgenesis vector. Concatemerization of the insert cannot be excluded. The mapping 

showed transgenic integration occurred at a single locus in the intron of the WTAP1 gene 

(NVE7551) between exon 4 and 5 (upstream of position 1,469,249 on scaffold_19). 

Heterozygous F2 embryos from transgenic F1 females were used for transplantation.

Fate mapping by transplantation of fluorescent transgenic tissue

For ectodermal fate mapping, donor and host embryos were cultured at 18° to spherical 

blastula stage (approx. 18hpf). ef1a(-1.8)::mOrange-CAAX donor embryos (named 

ef1α::mem-Orange throughout the manuscript) were cut into small pieces. Non-transgenic 

host blastula had small tissue removed and replaced by similar sized ef1a(-1.8)::mOrange-

CAAX tissue. Resulting embryos were cultured until early/mid-gastrula stage and embryos 

with blastopore-lip and no endodermal cells were selected (‘pure ectoderm’) 

(Supplementary Fig. 1). Selection was performed with a Nikon Eclipse TS100 compound 

microscope equipped 20x and 40x lenses and an mOrange filter set. Selected embryos were 

cultured at 26°C to primary polyp stages and scored for mOrange fluorescence with a Nikon 

Eclipse TS100 compound microscope using 20x and 40x lenses. A subset of embryos were 

cultured for approximately three months and scored for fluorescence in juveniles.

For endodermal fate mapping, donor embryos were cultured at 26°C, while host embryos 

were left at 18°C. At approximately 20hpf donor embryos were at late gastrula stage and 

host embryos were at spherical blastula stage. Endoderm was removed from the donor 

embryos and inserted into the blastocoel of the host embryos (Supplementary Fig.1). 

Embryos were cultured at 26°C and scored for fluorescence with a Nikon Eclipse TS100 

compound microscope using 20x and 40x lenses. A subset of transplanted polyps was cryo-

sectioned, immuno-stained against mOrange (Living-colors monoclonal anti-mCherry 

antibody, Clontech), F-actin (Alexa Fluor-488 phalloidin, Life Technologies) and nuclear 

DNA (DAPI, Life technologies). Blastulae and gastrulae were imaged after F-actin and 

nuclear DNA staining, but without immunostaining. Images were acquired using a Leica 

SP5 confocal microscope with a 63x glycerol immersion lens.

Phylogenetic analysis

All protein multiple sequence alignments performed using MUSCLE v.3.851. Sequence 

stripping was done with GBlocks52 using the least conservative parameters (Min. Num. of 

Seq. for Flank Pos.: lowest possible; Min. Block Length: 2; Mx. Number of contiguous non-
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conserved position: 12, Gaps settings: No gaps: Insulin-like peptide, Insulin receptor, 

Chitinase trees. All Gaps included: Pancreatic lipase tree). Stripped alignments were tested 

for the best fitting maximum likelihood parameters using Prottest v3.4 and excluding HIV 

and mitochondrial substitution matrices53. Neighbour-joining trees were calculated using 

the built-in algorithm of ClustalX (using correction for multiple substitutions)54. Maximum 

likelihood trees were calculated using PhyML v.3.1 for MacOS55 using a BioNJ input tree, 

optimised tree topology, 4 substitution rate categories, SPR topological moves and 100 non-

parametric bootstrap replicates. Model of amino acid substitutions and additional parameters 

used: Chitinase: LG +G, Pancreatic lipase tree: WAG +I +G; Insulin-like peptide: LG +I +G, 

Insulin receptor: LG +G. Accession numbers of genes used for analysis are found in 

Supplementary Table 3.

Identification of gene orthologs

N. vectensis genes were identified using BLAST or TBLASTN of the publicly available 

genome56, an EST library57, or more recent transcriptome datasets58. A. aurita genes were 

identified in a deeply sequenced transcriptome dataset59. Previously unidentified insulin-
like peptide genes were found using PHI-BLAST (search patterns ‘x-C-C-x(3,5)-C-x(7,10)-

C’ or ‘x-C-C-x(3,4)-C-x(8,9)-C’ recognising conserved cystein motifs) on translated 

genomic and transcriptomic datasets. Other gene and protein sequences were identified by 

using BLAST as described previously43.

Protein domain structure analysis

Protein domain structures were analysed as previously described43. Signal peptides of 

Preproinsulin-like peptides were predicted with SignalP 4.160, while potential cleavage sites 

were predicted using the ProP 1.061 and NeuroPred62 online tools.

Gene cloning

Novel transcripts were amplified from cDNA or identified from EST libraries. Fragments of 

N. vectensis hex, islet, soxB1, nkx6, hlxB9, tbx2/3, hnf4, foxC, nkx3, six4/5, six1/2-1, 
six1/2-2, eyes absent, dachshund, lbx, ptf1, hnf1, tbx15/18/22, paraxis, twist, moxC, gata, 
hand1, hand2, tbx1/10.1, tbx1/10.2, tbx20.1, tbx20.3, nk4, nkx2.2A, -B, -C, -D, -E, tbx4/5, 
trypsinA, -B, -C, chitinaseA, -B, -C, pancreatic lipase1, -2, lysosomal lipase1, -2, -3, insulin 
like peptide-1, -2, -3, insulin receptor, mucin, and of A. aurita chitinase, trypin, lipase and 

insulin-like peptide were identified as EST fragment clones or newly cloned using PCR and 

primers designed for predicted genes based on the Nematostella vectensis genome assembly 

1.0 or transcriptomics data (see Supplementary Table 2 and 3 for accession numbers and 

oligo sequences).

Fixation and whole-mount in situ hybridisation

N.v. larvae fixation was performed as previously described11,63 with following 

modifications. Animals were fixed at gastrula and early planula stages (24 hours post 

fertilisation (h.p.f)), mid-planula stages (48 h.p.f.), late planula stages (96 h.p.f.), primary 

polyp (9 days post-fertilisation) and juvenile stages (approx. 4-5 weeks after fertilisation). 

Prior to fixation, primary polyps were relaxed by adding 1M MgCl2 after all polyps were 
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expanded, and pre-fixed by adding a few drops of 3,7% formaldehyde (FA)/Nematostella 
medium (NM, 16ppt sea salt solution). Juveniles were first relaxed prior to fixation for 

5-10min in sea water containing 0,1M MgCl2, followed by Lidocaine treatment (2,5mM 

final conc., Sigma-Aldrich) for maximum 1-2 minutes. Juveniles were fixed for 2h at 4°C 

followed by dissection into head, 2-4 body column and foot pieces in fixative, and finally 

fixed over night at 4°C, all in 3,7%FA/NM.

Larvae were fixed shortly for 1-2min in 2,5% glutaraldehyde(GA)/3,7% FA/NM (for 

gastrula and young planulae) or 0,25% GA/3,7% FA/NM (all mid-planulae until primary 

polyps) followed by a 1h fixation in 3,7%FA/NM at 4°C. For enhancing weakly staining 

probes, animals of all stages were incubated in 0,5%DMSO/NM for 24h before fixation, 

0,5% DMSO was added to all fixing solutions, and NM was replaced by PBS, pH9.5.

A. aurita ephyrae were relaxed for 5 min. in 2% Urethane/1%DMSO/Sea water 37ppt (SW), 

and fixed in 3,7% FA/SW over night at 4°C. All animals were washed a few times with PBS/

0,1%Tween and 100% MeOH, and stored in MeOH at -20°C. WMISH on N.v. larvae and 

juveniles, and on A. aurita were based on a previously established protocol63 with the 

following basic parameters and changes. For fluorescent and chromogenic stainings of weak 

probes on juveniles, a 5 minutes long bleaching step in 0,5%H2O2/5%Formamide/0,5xSSC 

in H2O was introduced after rehydration64. Proteinase K digestion times were 20 minutes in 

10μg/ml for all N.v. larval stages, 30 minutes in 80μg/ml for juveniles, and 20 minutes in 

1μg/ml for A.a. ephyrae. N.v. larval stages were blocked for 2h and then hybridised for 3 

days in hybridisation mix consisting of 50% formamide, 5 × SSC pH4.5, 1% SDS, 0.1% 

Tween 20, 100 μg/ml heparin, and 5 mg/ml Torula yeast RNA for. Background staining in 

N.v. juveniles and A.a. ephyra could be drastically reduced by adding 5% Dextrane Sulfate 

(M.W. >500,000) and 3% Blocking Reagent (Roche) to the hybridisation mix during 

blocking and hybridisation of the probe, and by allowing blocking to proceed over night. 

The probe concentration was 0.25-0.5ng/μl for ephyra, 0.5-1.5ng/μl for N.v. larvae, and 

0.5-1.5 ng/μl for juveniles with chromogenic stainings, and 1.0-2.5 ng/μl for fluorescent 

stainings. Stringent washes varied between 0.05xSSC (strong genes in larvae) and 0.2xSSC 

(weak genes, ephyrae, fluorescent WMISH). Antibody concentrations used were: α-Dig-AP 

(1:2000), α-Dig-POD (1:100), α-Fluo-POD (1:50) (all Roche). For staining the fluorescent 

WMISH, we used optimisations of previously established protocols for zebrafish65. After 

the SSC-based hybridisation washes, animals were washed with 0.1M Tris-HCl 

pH7.5/0.15M NaCl/0.1% Tween20 (TNT). All tyramide dyes were produced after 

previously established protocols64,66. The buffer for tyramide staining consisted of 0.1M 

boric acid pH8.5/0.2% Triton X-100/4-iodophenylboronic acid 20μg/ml/2% dextrane sulfate 

(M.W. >500,000), and tyramide-DyLight549 or tyramide-DyLight488 at a final 

concentration of 10μg/ml. In some cases, iodophenylboronic acid was replaced by 4-

iodophenol at a concentration of 450μg/ml without a notable difference in the result. The 

tissues were first washed twice in 0.1M boric acid (pH8.5), then infiltrated in staining buffer 

for 10 minutes, and the staining reaction started by adding H2O2 to a final concentration of 

0.003%. The staining reaction was performed for 30-45 minutes. After extensive washings 

with TNT, the signal strength was checked under a fluorescent stereomicroscope, and the 

staining reaction repeated for up to three times for very weakly staining genes.
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While all larvae were infiltrated and stored in 86% Glycerol, all juveniles were infiltrated 

with infiltration medium (containing 2.5mg/ml DABCO and 1 μg/ml DAPI for fluorescent 

samples) for further cryosectioning.

Cryotome sectioning

After infiltration, samples were mounted in 80% OCT medium, oriented and frozen on a 

metal block cooled with liquid N2. Sectioning was performed at -25°C in a Leica Cryostat 

CS3050S at 12μm and the section mounted on polylysine-coated glass slides. After drying, 

rinsing with 1xPBS, pH7.0, sections were post-fixed for 15 minutes in 3.7%FA/1xPBS 

pH7.0, rinsed again in 1xPBS, and mounted in glycerol (chromogenic) or VectaShield 

(Vector Laboratories).

Lipid, glucose and oligopeptide uptake and storage

Lipid droplets were stained with Oil Red O by adapting previously established protocols for 

zebrafish and C. elegans67,68. Shortly, juvenile polyps were fixed one day after the last 

feeding in 3,7%formaldehyde (Merck) in Nematostella medium, washed in PBS, followed 

by a 60%Isopropanol wash for 15-30 minutes, and transfer to Oil Red O solution (sterile 

filtered, saturated 0,3% solution in 60% Isopropanol). Following an over night incubation, 

animals were washed 3 times in PBS containing 0,01% TritonX-100 for 1-2 hours, stained 

with Alexa488-Phalloidin and DAPI nuclear staining, and processed for cryo-sectioning.

Glucose uptake and storage was monitored with (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-

yl)Amino)-2-Deoxyglucose) (2-NBDG, LifeTech), used previously to reliably monitor 

glucose uptake and storage into cells69,70, while oligopeptide uptake and storage was 

monitored using Casein-Carboxytetramethylrhodamine (TAMRA)(LifeTech). 2-NBDG was 

diluted to 2mM, and Casein-TAMRA diluted to 50μg/ml in 0,1M MgCl2 / Nematostella 
medium, and injected together through the mouth opening into juvenile polyps previously 

relaxed in approx. 0,1M MgCl2/Nematostella medium. Animals were washed extensively 

after 50-60min with Nematostella medium, and fixed for 1 hour at room temperature about 

19 hours after injection in 4%PFA/PBS/Tween20 0,1%. Animals were cut in pieces with a 

scalpel and mounted in glycerol for imaging.

Transmitted light and confocal imaging

Images of chromogenic stains were taken on a Nikon 80i or a Nikon Eclipse E300 using 

10x, 20x, or oil immersion 63x objectives. Images of fluorescent stainings were taken at a 

Leica SP5 confocal microscope using standard PMT detectors and a 63x glycerol immersion 

lens. Transmitted light images were corrected for levels and colour balance and cropped 

using Photoshop CC. Fluorescent stacks were processed and the levels corrected using Fiji, 

and cropped using Photoshop CC. The image of the Oil Red O staining was acquired using 

transmitted light PMT. Subsequently, the lookup table was inverted, and a red lookup table 

was selected for the final image.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. An ectodermal origin of the gut-like tissue of N. vectensis supports an alternative 
homology between cnidarian and bilaterian germ layers
(a) Schematics of the traditional and alternative homology of germ layers between 

cnidarians and bilaterians. Bilateria are represented by a schematized larval stage with 

through-gut. (b) Schematic fate map of the germ layers in N. vectensis as described in this 

paper. (c) Developmental origin and distribution of tissue functions mapped on a schematic 

cross-section of a juvenile mesentery of N. vectensis. Functions described in this paper are 

in italic and bold. bw: body wall; circ. m.: circular muscle; com mes: complete mesentery; 
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ecto: ectoderm; endo: endoderm; incom mes: incomplete mesentery; par. m.: parietal 

muscle; ph: pharynx; retr. m.: retractor muscle; sep fil: septal filament.
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Figure 2. Fate mapping reveals an ectodermal origin of the pharynx and septal filaments
Schematized transplantation experiment and fate map (a, b), single confocal images (c, d, e-

e”, f, g) and schematics (c’, d’, f’, g’) of cryo-sectioned animals containing transplanted 

tissue (c-g’). Samples are exemplary primary polyps (c-d’, f-g’) or a juvenile polyp (e-e”) 

with pure ectodermal (c-e”) or pure endodermal (f-g”) integration of transplanted, mem-

Orange-positive donor tissue. A detailed description of the transplantation techniques and 

results is provided in Supplementary Figure 1. Colours in confocal pictures: yellow: mem-

Orange staining; magenta: F-actin staining; blue: nuclear staining (DAPI). bw: body wall; 

ec: ectoderm; en: endoderm; mes: mesentery; ph: pharynx; sep fil: septal filament; som gon: 

somatic gonad. Scale bars in c, d, f, g: 20μm; in e: 200μm; in e’, e”: 25μm.
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Figure 3. Expression of exocrine digestive enzymes, and ‘endodermal’ or ‘pancreatic’ 
transcription factor orthologs in N. vectensis
Whole mount in situ hybridisation in N. vectensis (a-v) and schematic summaries of 

expression patterns (w-z). (a-j) Cryo-sections of juvenile septal filaments (‘sep fil’). (k-v) 

Optical sections of mid-planula larvae (‘mp’, k-r, 2 days p.f.) or late planula larvae (‘lp’, s-v, 

4 days p.f.). All planula larvae are viewed laterally, and oriented with the mouth opening 

pointing towards the bottom.
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Figure 4. Storage of lipids, glucose and amino acids, and the expression of ‘mesodermal’ 
transcription factors in juvenile somatic gonad and muscle tissues
(a) Stack of confocal images showing storage of 2-NBD-Glucose (magenta) and proteolysed 

Casein-TAMRA remnants (yellow, arrow) one day after delivery. Nuclear stain (blue): 

DAPI. (b) Single confocal image combining Oil Red O staining (red, falsely coloured 

transmitted light), F-actin staining (green, phalloidin) and nuclear staining (blue, DAPI). (c, 

k) Schematic summaries of gene expression patterns in the mesentery (c) or the parietal and 

ring muscle tissue (k). (d-j) Cross-sections of juvenile mesenteries stained by in situ 
hybridisation. Septal filaments always point to the left. (l) Germ layer homologies between 
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ctenophores, cnidarians and bilaterians, and reconstruction of a hypothetical ancestor based 

on the alternative hypothesis proposed in Fig. 1a. Cells in the pharyngeal ectoderm and 

bilaterian midgut represent digestive exocrine cells. Colours as in Fig. 1a. Scale bars in (a, 

b): 50μm. ‘retr m’: retractor muscle; ‘sep fil’: Septal filament; ‘som gon’: somatic gonad.
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