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Frustrated magnetic systems exhibit extraordinary physical properties, but

quantification of their magnetic correlations poses a serious challenge to

experiment and theory. Current insight into frustrated magnetic correlations

relies on modelling techniques such as reverse Monte-Carlo methods, which

require knowledge about the exact ordered atomic structure. Here, we present a

method for direct reconstruction of magnetic correlations in frustrated magnets

by three-dimensional difference pair distribution function analysis of neutron

total scattering data. The methodology is applied to the disordered frustrated

magnet bixbyite, (Mn1�xFex)2O3, which reveals nearest-neighbor antiferromag-

netic correlations for the metal sites up to a range of approximately 15 Å.

Importantly, this technique allows for magnetic correlations to be determined

directly from the experimental data without any assumption about the atomic

structure.

1. Introduction

A perfect crystal is a three-dimensional object with complete

long-range atomic order. Crystals containing magnetic atoms

give rise to macroscopic magnetic properties, and indeed

magnetic materials are essential to the function of modern

society, being used extensively for information storage, elec-

tricity generation and in motors. Most of these materials have

both long-range magnetic and atomic ordering, and their

magnetic structures are quite well understood. However,

advanced technologies will require more complex and even

exotic magnetic phenomena, where atomically ordered

materials do not possess long-range magnetic ordering. These

disordered or frustrated magnetic materials include spin-

glasses (Lee et al., 1996, 2002; Paddison et al., 2016), spin-

liquids (Banerjee et al., 2016, 2017), spin ice (Fennell et al.,

2009; Morris et al., 2009), superconductors (Glasbrenner et al.,

2015; Tranquada et al., 1996) and multiferroics (Jang et al.,

2017; Kalinin, 2017; Zhou et al., 2007). Such materials only

contain local short-range correlations in their magnetic

structures; this makes it impossible to apply conventional

experimental methods such as neutron diffraction, which is

commonly used for studying long-range magnetism. Conse-

quently, the progress on understanding and designing disor-

dered spin systems has been hindered by the lack of adequate

characterization of the local magnetic structure.

Magnetic disorder gives rise to fascinating phenomena, but

in fact many crystals do not even contain three-dimensional
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atomic order. Atomic disorder in itself leads to a range of

exciting properties, for example, atomic disorder strongly

disrupts heat conduction in crystals. This has been used in

numerous applications including the design of high perfor-

mance thermoelectrics (Tan et al., 2016).

Studies of atomic disorder represent a frontier of structural

science and the recent introduction of the three-dimensional

difference pair distribution function, 3D-�PDF, obtained

from X-ray scattering on single crystals, has been a huge

advance (Weber & Simonov, 2012). The 3D-�PDF method

gives a three-dimensional view of only the disorder by elim-

inating contributions from the average ordered structure,

which can be determined from conventional crystallographic

methods. Unlike the frequently used one-dimensional PDF

technique (Billinge & Egami, 2003), the 3D-�PDF method

separates interactions at equal distances but different spatial

directions; it also makes observation of weak disorder possible

in systems with a superimposed average order. The 3D-�PDF

thus provides information that cannot be obtained from other

experimental techniques.

Similar to the analysis of structural disorder from

diffuse X-ray scattering, diffuse magnetic neutron scat-

tering can be used to gain insight into spin–spin correla-

tions in magnetically disordered materials. Traditionally,

this method has mainly relied on inspection of the

wavevector and the temperature dependence of the scat-

tering. Such an approach provides only a limited under-

standing of the disorder as reciprocal space analysis makes

the interpretation of results challenging in terms of a real

space physical model. Recently, more advanced methods

have been developed, where modeling of the scattering

pattern is done by reverse Monte-Carlo simulations for

both powder and single-crystal data (Paddison et al., 2013,

2016). In these methods, a model crystal is built and its

structure is refined to obtain a good match between the

calculated scattering pattern and the experimental data.

Another recent approach has been the application of

magnetic pair distribution function (mPDF) analysis for

powder neutron scattering (Frandsen et al., 2014; Frandsen

& Billinge, 2015). Such analysis gives a one-dimensional

representation of the pairwise magnetic interactions, both

ordered and disordered. There are, however, at least two

shortcomings of this one-dimensional technique. One being

systems with an average magnetic order, but where there are

local deviations. For such systems, the average order will

dominate the mPDF and the disorder will be difficult to

observe. Another case being systems where different pairwise

interactions have similar distances leading to peak overlap in

one-dimensional data. In such cases, it will be highly chal-

lenging to uniquely establish the magnetic structure. Here, we

derive an expression for a three-dimensional magnetic

difference pair distribution function (3D-m�PDF). This

function provides a model-independent three-dimensional

reconstruction of magnetic disorder in real space. Since it does

not rely on a priori information about the atomic structure,

it allows studies of magnetism in both atomically and

magnetically disordered materials, and indeed the

combination of these may lead to the discovery of

extraordinary new physical phenomena.

2. The three-dimensional magnetic difference pair
distribution function

The 3D-�PDF used for X-ray scattering is defined as the

inverse Fourier transform of the scattered diffuse intensity,

which is equal to the autocorrelation of the difference

between the total electron density and the average periodic

electron density, �� rð Þ ¼ �totalðrÞ � �periodic rð Þ (Weber &

Simonov, 2012):

3D-�PDF ¼ F�1 Idiffuse

� �
¼ h��� ��i; ð1Þ

where h. . .i is the experiment time-average and � is the cross-

correlation operator. Thus, the X-ray scattering 3D-�PDF

only contains information about the atomic disorder, making

it a powerful tool for establishing the local structure of

disordered materials. The autocorrelation of the difference

density will have positive peaks for vectors separating more

electron density than in the average periodic structure and

negative peaks for vectors separating less electron density

than the average periodic structure.

Similar to the X-ray scattering 3D-�PDF, we define a

3D-m�PDF as the inverse Fourier transform of the unpolar-

ized magnetic diffuse neutron scattering cross-section

3D-m�PDF ¼ F�1 d�Diffuse

d�

� �
: ð2Þ

As the interaction potential for magnetic neutron scattering is

a vector field and not a scalar field as for X-ray scattering, it is

no longer simply the autocorrelation of a scalar density. We

start our derivation by partitioning the magnetization density

into an average periodic contribution and the deviations from

it

M rð Þ ¼ MperiodicðrÞ þ �MðrÞ: ð3Þ

Note that in the case where there is no periodic magnetization

density, M rð Þ ¼ �MðrÞ. We wish to express the 3D-m�PDF in

terms of this difference magnetization density. In the

supporting information, we show that, starting from standard

equations (Lovesey, 1984), the 3D-m�PDF can be written as:

3D-m�PDF ¼
r2

0

4�2
B

h�M � �M �
1

�4
�M � ����ð Þ � �M � ����ð Þi;

ð4Þ

where we have defined the vector-field cross-correlation

operator as a combination of element-wise cross correlation

and a dot product:

f � g ¼
def

f 1 � g1 þ f 2 � g2 þ f 3 � g3; ð5Þ

where fi and gi are the vector components of f and g. Similarly,

we have defined the vector-field convolution operator � from

the scalar field convolution, �. The smearing function that

modifies the magnetization density in the second term is given

by:
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���� rð Þ ¼

r

rj j4
; rj j 6¼ 0

0; rj j ¼ 0

8<
: : ð6Þ

The first term in equation (4) is the vector autocorrelation

of the difference magnetization density. Positive peaks in this

function occur when the vector r separates more magnetiza-

tion density pointing in the same direction than in the average

periodic structure. Likewise, a negative peak occurs for

vectors separating less magnetization density pointing in the

same direction than in the average periodic structure. This can

occur if either the magnetization direction is the same as the

average, but less density is separated by the vector locally, or

the density separated by r is oppositely aligned compared with

the average structure. An important simplification occurs

when there is no periodic magnetic structure (e.g. in frustrated

magnets). In this case, a positive peak in the first term means

that the magnetization density separated by r tends to be

along the same direction, and a negative peak means the

magnetization density separated by the vector is oppositely

aligned.

The second term in equation (4) is less straightforward. The

term originates from the fact that the scattering experiment

only sees the magnetization density perpendicular to the

scattering vector. A corresponding term was found by

Frandsen et al. for the one-dimensional magnetic PDF

(Frandsen et al., 2014). In this term, the magnetization density

is vector convoluted with the smearing function ���� rð Þ before

the autocorrelation is taken. To get a better understanding of

the effect of this second term, the 3D-m�PDF for a number of

simple systems is evaluated.

3. Simulations

We first simulate the 3D-m�PDF for a system with two

localized magnetic moments, modeled by Gaussian densities,

in cases where they are ferro- and antiferromagnetically

coupled and aligned along different directions. Figs. 1(a), (b)

and (c) show the 3D-m�PDF for two moments aligned

ferromagnetically. For these, as for all other 3D-m�PDF

maps, a positive peak is observed at the origin as all magne-

tization density is aligned with itself. Additional positive peaks

are found at the separation vector between the two moments.

This shows that the moments are aligned in the same direction.

The difference between (a) and (b) is the tilt of the moments

relative to the separation axis. A smearing is observed in the

direction of the moments, coming from the second term in

equation (4). In Fig. 1(c) the cubic symmetry average is shown

for m3 symmetry, and here, the direction

dependent features of the moments are

no longer seen because the positive and

negative smearing features cancel. In

Fig. 1(d), the 3D-m�PDF for two anti-

ferromagnetically aligned moments is

shown; the negative peaks are found at

the separation vector, showing the

opposite alignment of moments.

The 3D-m�PDF method is expected

to be especially useful for systems with

frustrated magnetism, which occurs

when the magnetic moments in a struc-

ture are prohibited from having all

preferences for correlations fulfilled. A

simple example of this is three moments

in a triangle with antiferromagnetic

coupling, as shown in Fig. 1(e). For such

a system, it is only possible to satisfy two

of the three interaction preferences.

Similarly, the antiferromagnetic trian-

gular Ising net will adapt a disordered

ground state, as it is not possible for all

moments to be neighboring moments of

opposite direction, shown by Wannier

(1950). An example of one such ground

state is illustrated in Fig. 1( f). In Fig.

1(g) we show the corresponding 3D-

m�PDF. The vectors for the nearest

neighbor interactions show negative

peaks, indicating the preference for

antiferromagnetic alignment. Similarly,

the next-nearest neighbor vectors show
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Figure 1
Simulations of the 3D-m�PDF for simple systems. (a) Ferromagnetic alignment along the
separating axis. A positive peak is always present at the origin as all magnetization density is
aligned with itself. Positive peaks are also found at the separation vector, showing moments are
aligned in same direction. (b) Ferromagnetic alignment tilted with respect to the separating axis.
The 3D-m�PDF is smeared in the direction of the moments. (c) Ferromagnetic alignment
symmetry averaged for cubic symmetry. (d) Antiferromagnetically aligned moments. Negative
peaks are found at the separation vector showing the opposite directions. (e) Antiferromagnetically
coupled spins on a triangle. ( f ) A disordered ground state of the antiferromagnetic triangular Ising
net (Wannier, 1950). Moments pointing into the plane are shown as blue and moments going out of
the plane are yellow. It is calculated by starting with a random distribution of spin up/down, then
repeatedly selecting a random spin and flipping it if it has more neighbors of the same type than
opposite. (g) The 3D-m�PDF for the antiferromagnetic triangular Ising net.



positive peaks, suggesting that

these spins tend to align in the same

direction. From the features of the

3D-m�PDF, information about the

relative orientation of magnetic

moments can thus be observed

directly. The interpretation of the

peaks is the same as for the first

term in equation (4), keeping in

mind that features are smeared out

as a result of the second term.

4. Experimental determination
of the 3D-mDPDF

To demonstrate the strength of our

new method, we study the magnetic

disorder in the naturally occurring

mineral bixbyite, (Mn3+,Fe3+)2O3,

which has the �-Mn2O3 crystal

structure (cubic, Ia3, a = 9.41 Å)

(Pauling & Shappell, 1930). This

crystal structure has triangular and

hexagonal arrangements of near-

neighbor metal sites M1 and M2, as

seen in Fig. 2(b), suggesting the

possibility of magnetic frustration.

The naturally occurring crystal

used for this study is of the

composition Fe1.1Mn0.9O3, deter-

mined by both neutron diffraction

and ICP measurements (see

supporting information). The Fe

and Mn atoms are disordered over

the two metal sites in the structure.

From magnetization measurements, it is found that a transi-

tion occurs at T* = 32.5 K, as seen in the cusp of Fig. 2(c),

where temperature-dependent magnetization data are shown

for field-cooled (FC) and zero-field-cooled (ZFC) measure-

ments. The inset in Fig. 2(c) shows 1=� plotted as a function of

temperature and the red line shows the region where a Curie–

Weiss law is obeyed. The data clearly reveal a negative Weiss

temperature, indicating that antiferromagnetic interactions

are dominant in the paramagnetic phase at high temperatures.

To understand the low-temperature magnetic phase, single-

crystal neutron scattering data were collected. The nuclear

structure is identical at all temperatures in the range 7–300 K,

and there is no sign of long-range magnetic ordering. To verify

the lack of long-range magnetic ordering, we have measured

time, temperature and field-dependent DC magnetization, ac

magnetic susceptibility and specific heat capacity, as shown in

the supporting information. These measurements support the

treatment of bixbyite Fe1.1Mn0.9O3 as a phase without long-

range magnetic order, and T* is found to be associated with a

spin-glass transition.

As there is no long-range magnetic order on the metal sites

in the low-temperature phase of bixbyite, the resulting 3D-

m�PDF will be straightforward to interpret. Because

Mperiodic rð Þ ¼ 0 then M rð Þ ¼ �MðrÞ, so the resulting 3D-

m�PDF will contain information about the whole magneti-

zation density. Furthermore, as the system has cubic symmetry,

the spurious effect arising from the second term in equation

(4) will cancel, as shown by simulations in Fig. 1(c). Positive

and negative features in the 3D-m�PDF can then be directly

interpreted in terms of magnetic moments preferring parallel

and antiparallel alignment, respectively.

To produce an experimental 3D-m�PDF, the magnetic

diffuse neutron scattering has to be known. We have measured

the elastic unpolarized neutron scattering at 7 and 300 K,

where one temperature is above the transition (i.e. the para-

magnetic regime) and the other is below the transition (i.e. in

the disordered spin-glass regime). These data were collected

at the CORELLI spectrometer at the Spallation Neutron

Source at Oak Ridge National Laboratory (Rosenkranz &

Osborn, 2008). CORELLI’s design enables elastical discrimi-

nation of the total scattering, i.e. the phonon and thermal

diffuse scattering are removed. From the two data sets the full

elastic reciprocal space-scattering intensities are reconstructed

using the Laue symmetry of the crystal. The reconstructed
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Figure 2
Structure and magnetization of bixbyite. (a) Polyhedral model of bixbyite, where the M1 octahedra are
shaded blue and the M2 polyhedra are green. The red spheres are oxygen atoms each tetrahedrally
coordinated by M. The octahedra share corners and edges to make a three-dimensional framework. (b)
M-only atoms of bixbyite showing the near-neighbors of the M1 sites (blue) surrounded by the M2 sites
(green). Nearly perfect hexagons of M1(M2)6 result and share corners to make a three-dimensional cubic
network. (c) Field-cooled (FC) and zero-field- cooled (ZFC) magnetization data for bixbyite. The inset
shows the 1/� behavior, the red line indicating the Curie–Weiss fit.

Figure 3
Reciprocal space neutron scattering for bixbyite. All figures are of the HK0 plane. (a) Total elastic
scattering at 7 K. (b) Total elastic scattering at 300 K. (c) Isolated magnetic diffuse scattering.



HK0 plane at the two temperatures can be seen in Figs. 3(a)

and (b). Since the nuclear structure is identical at 7 and 300 K,

the data from the paramagnetic regime can be subtracted from

the low-temperature data to remove all scattering contribu-

tions other than magnetic scattering. This includes nuclear

scattering, both Bragg and diffuse, as well as background

scattering. After the subtraction, residual errors are present at

the position of the very sharp Bragg peaks. To remove these, a

punch-and-fill method is employed, where a small volume

around each reflection is removed and filled with a smooth

function to resemble the diffuse scattering in that region (see

the supporting information). In cases where there would be a

long-range magnetic ordering, the same punch-and-fill method

would be used to remove the magnetic Bragg scattering. The

high-angle data are also removed, as they mainly consist of

noise. The result of this process is the isolated magnetic diffuse

scattering in three-dimensional reciprocal space. Diffuse

magnetic scattering for the HK0 plane from this processing of

the bixbyite data can be seen in Fig. 3(c). A more detailed

description of the data reduction process can be found in the

supporting information.

The 3D-m�PDF is then simply obtained by Fourier trans-

formation. Two planes of the 3D-m�PDF for bixbyite are

shown in Figs. 4(b) and (c). As there is no long-range periodic

magnetic order, the peaks in the 3D-m�PDF can be directly

interpreted as the alignment preference between sites sepa-

rated by the corresponding vector. A few of the features in the

maps have been marked with numbers for which the corre-

sponding vectors in the crystal structure are shown in Fig. 4(a).

The nearest-neighbor vector (marked 1), which is for both site

pairs M1–M2 and M2–M2, has a negative peak in the 3D-

m�PDF, which identifies that nearest-neighbor metal sites

tend to have antiferromagnetic alignment. The 3D-m�PDF

for the vectors for the next-nearest neighbor pairs (marked 2)

is positive, showing a preference for alignment in the same

direction. As both of the metal sites in the structure contain

disordered mixtures of Fe and Mn, the local magnetic struc-

ture could be expected to be very complicated, depending on

local distributions of Fe and Mn on the two sites. However,

using the 3D-m�PDF technique we observe that on average,

the metal sites have an antiferromagnetic nearest-neighbor

correlation. These correlations can then be followed to longer

distances, showing alternating positive and negative peaks for

higher order neighbors. Overall, the 3D-m�PDF for bixbyite

clearly shows the disordered low-temperature state to be

dominated by an antiferromagnetic nearest-neighbor inter-

action. Peaks in the 3D-m�PDF fall off rapidly and disappear

after �15 Å, directly revealing the maximum distance of the

magnetic correlations, which is not greater than two unit cells.

The 3D-m�PDF results are expectedly self-consistent with

the field- and temperature-dependent magnetization

measurements, but, moreover, directly show the 3D atomic

pairwise correlations that exist in the frozen spin state, without

making any assumptions about the system.

5. Discussion

The 3D-m�PDF has two major advantages compared with the

1D-mPDF introduced by Frandsen et al. (Frandsen et al.,

2014). One is for systems with average long-range magnetic

order and local deviations. In this case, the 3D-m�PDF will

show the deviations from average structure directly, and the

average magnetic structure can then be found by separate

analysis of Bragg reflections. In such systems, the 1D-mPDF

superimposes the ordered and disordered parts of the struc-

ture, making it difficult to interpret the disorder which is often

a small deviation from the average structure. The second

advantage arises from the fact that the magnetic scattering

falls off rapidly in reciprocal space as the electrons responsible

for the magnetic moment are diffuse. This affects the broad-

ness of peaks in the PDF functions during Fourier transform.

For the 1D-mPDF, the peak broadness can easily lead to

overlap of neighboring peaks, once again making the inter-

pretation less straightforward. Peak overlap is also obtained

when multiple interactions have the same distance but

different spatial directions. In such cases, the 3D-m�PDF

retains the directional information, making it possible to

separate peaks close or equal in distance, but with different

directions. However the issue of the peak

broadness in the 1D-mPDF can be reduced

by normalizing the data with the average

magnetic scattering factor for the magnetic

scatterers in the sample. In addition to this,

refinement methods for the 1D-mPDF have

been established, making it possible to

regain the three-dimensional information

through modelling (Frandsen & Billinge,

2015). As the 1D-mPDF comes from

measurements of powders, it can be used to

study a broad range of samples, whereas the

3D-m�PDF requires large high-quality

single crystals.

In the bixbyite system we were able to

separate the magnetic diffuse scattering

from nuclear diffuse scattering and scat-

tering from the sample environment by
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Figure 4
The 3D-m�PDF for bixbyite. (a) Selected portion of the structure showing numbered vectors
between atoms. (b) 3D-m�PDF for the z = 0 plane. (c) 3D-m�PDF for the z = 2.30 Å plane.
The slight split of peak number 4 is an artefact, as the vector should have a component along
only one axis.



subtracting a high-temperature dataset of the same structure.

In cases where there is a structural transition between the

paramagnetic and frustrated magnetic states, this method

cannot be used. In cases where there is a structural change, but

the low-temperature structure is ordered (no nuclear diffuse

scattering), the magnetic diffuse scattering can be isolated by

subtracting the scattering from an empty sample environment

and using the punch-and-fill method on the Bragg peaks. In

cases where there is a structural transition to a disordered

structure, the magnetic diffuse scattering can be potentially

isolated by polarized neutron scattering. Here we used the

elastic discrimination of the CORELLI instrument to remove

phonon scattering from the data, as this contribution is

different at 300 and 7 K. The effect of only using the elastic

scattering on the 3D-m�PDF is that only the static magnetic

correlations are seen; this means that magnetic excitations

such as magnons are not seen. For bixbyite this is not a

problem, as the magnetic diffuse scattering is elastic (see

supporting information), but in cases where the dynamical

magnetic correlations are wanted, the energy-integrated signal

should be used for producing the 3D-m�PDF. This is further

discussed in the supporting information.

In conclusion, we have derived an expression for the 3D-

m�PDF, which directly reveals magnetic correlations for

systems with disordered magnetism. Since it is a direct-space

function, an intuitive interpretation is easily obtained which

provides a better understanding of magnetic disorder, even for

complex systems. Unlike previous studies of disordered

magnetic systems, this new method is completely model

independent. As the 3D-m�PDF is simply the Fourier trans-

form of the magnetic diffuse scattering, it provides a direct

space view of all information about the magnetic disorder

contained in the scattering data. In contrast to reverse Monte-

Carlo models previously used for interpretation of magnetic

diffuse neutron scattering, the 3D-m�PDF is not challenged

by false minima, although this can be mitigated by repeated

simulations with randomized starting conditions. More

importantly, the 3D-m�PDF approach does not require a

specific structural model, and this makes it possible to also

study magnetism in atomically disordered systems such as

bixbyite. The end members of bixbyite, Mn2O3 and �-Fe2O3,

are known to go through phase transitions to ordered

magnetic phases (Cockayne et al., 2013; Malina et al., 2015).

This suggests that the presence of atomic disorder allows

tuning of this complex magnetic system to create the magnetic

frustration described above.

6. Related literature

The following references are cited in the supporting infor-

mation: Balanda (2013); Binder & Young (1986); Kobas et al.

(2005); Mydosh (1993); Robitaille et al. (2013); Sheldrick

(2001; 2008); Ye et al. (2018).
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