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Abstract

In typical development, word learning goes from slow and laborious to fast and seemingly 

effortless. Typically developing 2-year-olds seem to intuit the whole range of things in a category 

from hearing a single instance named – they have word-learning biases. This is not the case for 

children with relatively small vocabularies (late talkers). We present a computational model that 

accounts for the emergence of word-learning biases in children at both ends of the vocabulary 

spectrum based solely on vocabulary structure. The results of Experiment 1 show that late talkers’ 

and early talkers’ noun vocabularies have different structures, and that neural networks trained on 

the vocabularies of individual late talkers acquire different word-learning biases than those trained 

on early talker vocabularies. These models make novel predictions about the word learning biases 

in these two populations. Experiment 2 tests these predictions on late- and early-talking toddlers in 

a novel noun generalization task.
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There is extraordinary variability in the vocabularies of very young children. A two-year-old 

in the lower 10th percentile may produce around 10 words whereas a two-year-old in the top 

10th percentile will produce well over 300 (Fenson, Dale, Reznick, Thal, Bates, Hartung, 

Pethick, & Reilly, 1993). In general, the course of word learning proceeds from slow, 

effortful learning of nouns, and of the range of things to which each noun refers, to quick, 

efficient noun learning. Indeed, typically developing 2-year-olds are so skilled at learning 

new nouns that they seem to intuit the whole range of things in a named category from a 

single naming experience – 2-year-olds demonstrate word learning biases. According to 

Linda Smith and colleagues’ Attentional Learning Account, children acquire these word 

learning biases as second-order generalizations over learned first-order noun categories, 

speeding up the task of learning new nouns (Smith, Jones, Landau, Gershkoff-Stowe & 

Samuelson, 2002). This shift from slow-to-fast does not necessarily occur for children below 

the 20th percentile on productive vocabulary, who are defined as late talkers. Why do some 

children learn words quickly and early and others learn words slowly, maybe even showing 
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effects that persist beyond childhood? (Rescorla, 2009) This paper looks at two possible 

contributing, and interrelated, factors: noun vocabulary composition and word learning 

biases.

Vocabulary Composition and Word Learning Biases

Children usually say their first word at around 12 months. Lexical learning at first is slow. 

However, the pace with which children add new words to their receptive and productive 

vocabulary increases over time such that by 24 to 30 months, they add words at a rate of 5 to 

9 new words a day (e.g., Ganger & Brent, 2004). The evidence suggests that typically 

developing young children are skilled noun learners, at least in part, because they know 

about the different sorts of properties that are relevant in different domains. For example, 

when presented with a single never-before-seen thing and told its name (e.g., “This is a 

wug”), children systematically generalize that name to new instances in ways that accord 

with adult intuitions of category structure. Specifically, researchers using this novel noun 

generalization task (NNG) have consistently reported a shape bias for solid objects and a 

material bias for non-solid substances. That is, given a solid thing with multiple parts and 

constructed shape, children extend its name broadly to all things that match it in shape. 

Given a non-solid substance, children extend its name by surface properties, especially 

material. (e.g., Jones, Smith & Landau, 1991; Soja, Carey, & Spelke, 1991).

The relationship between vocabulary composition and word learning biases has been 

typically characterized in one of two ways: On the rationalist side, word learning biases are 

understood as abstract knowledge that guides, facilitates, and indeed allows word learning 

(e.g., Soja et al, 1991; Gelman & Bloom, 2000). On the empiricist side, the words that a 

child learns give rise to, create, and in fact constitute generalized knowledge about word 

learning leading to the observed biased behavior (e.g., Smith, 2000; Colunga & Smith, 2005, 

Samuelson, 2008). We would like to bypass the debate on whether word-learning biases are 

the egg to the vocabulary chicken or the other way around and focus instead on the 

interrelationship between these two factors.

In typical development, vocabulary structure and word learning biases are tightly coupled. 

First, the tendency to attend to shape in the specific context of naming solid objects emerges 

as children learn nouns, and becomes particularly robust around the time children have 

between 50 to 150 nouns in their productive vocabulary (Gershkoff-Stowe & Smith, 2004). 

Second, the developmental sequence and relative strength of these word learning biases 

reflects the statistical structure of early noun vocabularies in different languages (Samuelson 

& Smith, 1999; Colunga & Smith, 2005). In fact, individual differences in vocabulary 

composition predict individual differences in word learning biases (Perry & Samuelson, 

2011). Third, changing 17-month-olds’ vocabulary composition by intensively teaching 

them names for shape-based categories yields an early shape bias, a bias to generalize names 

for artifacts by shape. At the same time, this trained early shape bias accelerates learning of 

object names outside of the lab, causing a dramatic increase in vocabulary size compared to 

control groups (Smith, Jones, Landau, Gershkoff-Stowe & Samuelson, 2002).
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In addition to the behavioral work summarized above, computational modeling work has 

supported the idea of a relationship between vocabulary composition and word learning 

biases. Colunga & Smith (2005) trained a recurrent neural network on a vocabulary 

approximating the structure of the average 30-month-old noun vocabulary, in terms of the 

proportion of words that referred to solid things alike in shape (e.g., ball), material (e.g., 

cheese), and both shape and material (e.g., penny). After learning the nouns in the average 

child’s vocabulary, the networks were tested on an analog of the NNG task, using novel 

input patterns. The networks’ internal representations showed word learning biases akin to 

those of 30-month-old children. This model also made novel predictions regarding the effect 

of shape complexity and solidity, and accounted for effects of different syntactic frames, 

across languages, and more (Colunga & Smith, 2005; Colunga, Smith & Gasser, 2009). The 

modeling work presented here is an extension of these models beyond the average child, to 

model the relationship between vocabulary composition and word learning biases in children 

of different language abilities.

Late Talkers and Word Learning Biases

Altogether, the findings reviewed above suggest a developmental feedback loop between 

learning nouns, developing biases to attend to the relevant properties for objects and 

substances, and the learning of more nouns. In typical development, the nouns a child knows 

and what the child knows about learning nouns in general go hand in hand. This relationship 

is such that, in fact, learning names for categories of things organized by shape speeds up 

noun learning for typically developing children. However, this may not be the case for all 

children.

Late talkers are children who show a vocabulary delay in the absence of any sensory, 

cognitive or neurological deficit. It is well known that late talkers are not a homogenous 

group in terms of their developmental outcomes: some catch up, and some will experience 

persistent social and learning difficulties (Rescorla, 2002). A few late talkers will be 

diagnosed with Specific Language Impairment, for some the source of the delay may be 

processing speed (Fernald & Marchman, 2012), and for others the source of the delay may 

be environmental (Rescorla, Roberts, & Dahlsgaard, 1997; Thomas & Knowland, 2014). 

Importantly, although there is developmental continuity in vocabulary measures at the group 

level, the outcome for individual children cannot be accurately predicted on the basis of 

vocabulary production or comprehension (Thal, Bates, Goodman, & Jahn-Samillo, 1997; 

Desmarais, Meyer, Bairati & Rouleau, 2008). This paper presents a computational model 

that accounts for the relationship between vocabulary structure and word learning biases in 

children at different ends of the language spectrum.

Interestingly, unlike typically developing children, late talkers do not show systematic word 

learning bias. For example, 2- and 3-year-old late talkers extend the name of a novel solid 

object to other objects that match it in shape to a lesser extent than an age-matched typically 

developing control group (Jones, 2003). Similarly, pre-school children with specific 

language impairment (SLI) show no shape bias compared to age- and SES-matched typically 

developing controls (Collisson, Grela, Spaulding, Rueckl, & Magnuson, 2015). In fact, in 
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one study, almost half of the late talkers systematically extended the novel name of a solid 

object to others matching in texture rather than shape (Jones, 2003).

The decoupling of vocabulary acquisition and word-learning biases may mean that late 

talkers are not just limited in their production of object names (the measure that defines 

them as late talkers) but also deficient in the processes that underlie the acquisition of new 

words, their word learning biases. If this were the case, one would expect the noun 

vocabularies of late-talkers to have a different structure than the noun vocabularies of 

typically developing children. Indeed, there is evidence that this is the case. For example, 

Beckage, Smith, & Hills (2011) showed that vocabularies of typically developing children 

show characteristics of small world structure, whereas vocabularies of late talkers show this 

pattern to a lesser extent.

In sum, the evidence suggests that learning names for things teaches children how to learn 

new nouns – how different kinds of properties are relevant for different kinds of things – and 

that in turn these word learning biases facilitate young children’s noun learning. To the 

extent that this interrelation holds true for children in opposite ends of the language 

spectrum – late talkers and early talkers – one might be able to leverage this developmental 

loop to predict outcome. The first step, however, is to show that 1) late talkers and early 

talkers know different sorts of nouns and that 2) these differences in vocabulary structure are 

related to corresponding differences in word learning biases. Thus, in Experiment 1 we 

examine the noun vocabulary composition of 18- to 30-month-old late- and early-talking 

children and show that neural network models trained on the vocabularies of individual late 

talkers learn different biases than those trained on individual early talker vocabularies. 

Experiment 2 tests the novel predictions made by these simulations about world learning 

biases in a novel noun generalization task with late- vs. early-talking toddlers.

Experiment 1

We first look at the relationship between vocabulary structure and word learning biases 

using vocabularies from age-matched late and early talkers and neural network simulations 

based on these vocabularies. Specifically, as a proxy for their vocabulary, we used the 

MacArthur-Bates Communicative Developmental Inventory toddler version (MCDI). The 

MCDI is a 680-word checklist that asks parents to indicate which words their child says. 

Although it is imperfect as a measurement instrument (Fenson, Dale, Reznick, Bates, Thal, 

& Pethick, 1994) it appears to be reliable and systematically related to children’s 

performances in a variety of laboratory measures of word learning, including especially their 

word-learning biases in the Novel Noun Generalization task (e.g., Landau, et al, 1988, Perry 

& Samuelson, 2011).

We characterize the words in the children’s vocabularies depending on whether they refer to 

solid or non-solid things that are alike in shape, material, or both. This is a grouping that has 

been shown to be informative both in behavioral and computational studies (e.g., Samuelson 

& Smith, 1999; Colunga & Smith, 2005; Perry & Samuelson, 2011). We then train 

individual neural networks on the noun vocabulary structure of each individual late-talking 

and early-talking child. If there are differences in vocabulary structure, and these differences 
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can, to some extent, explain the differences in language ability, we would expect training on 

late talker vocabularies to yield different word learning biases than training on early talker 

vocabularies. More specifically, we would expect training on early talker vocabularies to 

result in word learning biases that would facilitate the learning of a vocabulary structured 

like the MCDI – highlighting shape similarities for solids and material similarities for non-

solids. In contrast, we would expect networks trained on late talkers’ vocabularies to 

generalize more variable word learning biases, and perhaps even biases that would be 

unhelpful in learning early vocabularies.

Method

Participants—The vocabularies of 15 late talkers and of 15 early talkers were selected out 

of a pool of 148 MCDI forms completed by parents for children between 18-30 months of 

age. The criterion for inclusion was that there exist a vocabulary form from a child matching 

in age to within 5 days in both the late talker and the early talker groups. Late talkers scored 

at or below the 25th percentile; early talkers were at or above the 75th percentile according to 

the MCDI norms.

Age, percentiles, and vocabulary sizes for late and early talkers whose vocabularies were 

used in this study are summarized in Table 1. The ages for the two language groups ranged 

from 18.49 months to 28.26 months (M: 23.14/SD: 2.89 for late talkers and M: 23.15/SD: 

2.85 for early talkers). Vocabulary sizes for the late talker group ranged between 15 and 425 

words (M: 132.53/SD: 122.73); for the early talker group vocabulary size was between 158 

and 664 words (M: 457/SD: 125.67).

As in Colunga & Smith (2005), we characterized each child’s vocabulary by the proportion 

of words they knew for the categories of: 1) solid things alike in shape (e.g., spoon), 2) solid 

things alike in material (e.g., chalk), 3) solid things alike in both shape and material (e.g., 

penny), 4) non-solid things alike in shape (bubble), 5) non-solid things alike in material 

(e.g., milk), 6) non-solid things alike in both (e.g., jeans). Since children were drawn from a 

wide age range (about 10 months), and the two language groups – late and early talkers – 

were matched by age, they naturally differed in their vocabulary size. Looking at the 

proportion of words in children’s vocabularies for each of the word types allowed us to get a 

sense of the variability in vocabulary composition (as opposed to vocabulary size) in 

children at different percentiles in vocabulary development. Nouns in children’s 

vocabularies were classified as falling in each of the different word type categories 

according to adult judgments made for each of the nouns in the MCDI reported in 

Samuelson & Smith, 1999.

The Model

Our models use the LEABRA algorithm (Local, Error-driven and Associative, Biologically 

Realistic Algorithm), which combines Hebbian and error-driven learning (O’Reilly, 2001). 

The Hebbian, self-organizing learning uses longer time-scale statistics about the 

environment and is useful for extracting generalities. However, Hebbian learning can have a 

hard time handling more complex patterns that include special cases and exceptions; these 

are more efficiently learned with supervised methods. LEABRA incorporates error-driven 
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learning by using the differences between expectations and outcomes to adjust weights. The 

general function used in the Leabra algorithm is shown in Equation 1.

f xcal xy, θp =
xy − θp   xy < θpθd

−
xy 1 − θd

θd
  else

(1)

Where x is the sending activity, y is the receiving activity and θd and θp are floating 

thresholds which regulate how the weights change over the course of learning. The weight 

function of the network is the sum of that of the error-driven learning and that of the 

Hebbian learning.

The error-driven weight changes are updated based on the short-term average connection 

activity (<xy>s) and the medium-time scale average connection activity (<xy>m).

Δwerror = f xcal < xy >s , < xy >m =   f xcal xsys,  xmym (2)

Where <xy>m represents the emerging expectation about a current situation and <xy>s 

reflects the actual outcome and therefore the result of the received error information. In the 

simulator, there is a plus and minus phase in training. The minus phase comes first and 

represents the expectation of the network before it sees an outcome. Next, in the plus phase, 

the outcome is observed and influences activations.

The Hebbian weight changes are based on the short-term connection activity (xys) and long-

term average activity of the receiving unit (<y>l).

ΔwHebbian = f xcal xys, x < y >l =   f xcal xys,  xyl (3)

Based on <y>l, the threshold for weight change is adjusted, making the weight more likely 

to change in the direction given by xys. This creates the structure of generalization for the 

Hebbian learning mechanism. This algorithm is equivalent to contrastive Hebbian learning 

used in previous work (Movellan, 1990). For more details on network dynamics, see 

O’Reilly, Munakata, Frank, and Hazy (2012).

Architecture—The architecture is adapted from Colunga & Smith, 2005 as shown in Fig. 

1. Words are represented discretely (as 24 localist single units) on the Word Layer. Referents 

are represented as distributed patterns over several dimensions on the Perceptual Layer. For 

example, the shape and material of an object (say the roundness of a particular ball and its 

rubbery material) are represented by an activation pattern along 12-unit shape and material 

layers. Solidity and non-solidity are represented discretely; one unit stands for solid and 

another for non-solid. Finally, there is a 25-unit hidden layer that is fully connected to all the 
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other layers and recurrently to itself. Units in the Word Layer are connected to each other 

with negative weights; all other weights are initialized with random values between 0 and 1.

Training—Because we are interested in the consequences of different vocabulary structures 

regardless of their size, all networks were trained to learn 24 nouns, proportionally 

structured like their corresponding child’s vocabulary. Thus, late- and early-talker networks 

had the same architecture, the same vocabulary size, the same learning and updating rules. 

In fact, the only differences among networks were the differences in vocabulary composition 

– the proportion of their vocabulary that referred to solid or non-solid things, alike in shape, 

material or both.

The networks are trained with categories presenting the same correlational structure as each 

individual child’s noun vocabulary. A training set consisting of 24 “words” was prepared for 

each child. For each type of word, a proportional number of training patterns was generated. 

For example, to represent a particular solid-shape word (e.g., a word like “ball”, which was 

judged to refer to things similar in shape but different in material), a 12-bit binary vector was 

randomly generated to be input in the shape layer. Similarly, to represent a particular solid-

material word, a 12-bit binary vector was randomly generated to be input in the material 

layer. The irrelevant dimension was left unspecified, to be instantiated during run time. Note 

that this means a solid-both training pattern would involve no variability, as it would always 

present the same shape and material predetermined patterns. Patterns for non-solids were 

generated in a similar fashion, except that shapes were drawn from a more restricted part of 

the space: 4 out of the 12 shape units were always clamped to the same pattern. This 

represented the smaller range of shapes non-solids can take, compared to solids, and a 

prediction of this assumption was tested in previous work (Colunga & Smith, 2005).

On each training trial, a word was paired with a referent. That is, the corresponding, pre-

determined 12-bit pattern was presented in the relevant dimension, paired with its 

corresponding word unit, solidity unit, and a randomly generated pattern on the irrelevant 

dimension. For example, Fig. 1 shows 3 training trials for a solid-shape word. On each 

epoch, we do this for each of the 24 nouns in the child’s training set. Networks were trained 

in this way until they reached asymptotic (and near perfect) performance. This part of the 

simulation is intended to put into the networks the lexical knowledge that the individual 

child would bring to the laboratory NNG task. Five networks were run for each child, with 

randomized initial weights. Learning rate was set at 0.01, and weights were updated after 

every epoch.

Note that all networks had the same vocabulary size (24 words), and vocabulary differences 

were only represented as the differences in proportions of each word type. That is, there was 

no attempt to represent in the model other likely relevant information, such as age or 

vocabulary size. This was done with the goal of isolating the contribution of vocabulary 

structure to word learning biases in the models, however, it is important to point out that the 

findings reported here do not encompass a thorough exploration of the space.

Testing—The testing set was kept constant for all networks and consisted of 10 novel solid 

exemplars and 10 non-solid novel exemplars; each exemplar had four instances matching in 
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shape and differing in material, and four instances matching in material and differing in 

shape, for a total of 160 testing patterns. We used the network’s hidden layer activations for 

each of these patterns to assess the network’s word learning biases.

The question at hand is, what sort of word learning bias will the networks learn given 

different vocabulary structures? We address this question in a virtual version of the NNG 

task (Colunga & Smith, 2005). A test trial of the virtual NNG task, then, can be construed as 

presenting the network with three novel test patterns (one at a time) on the perception layer – 

an exemplar, and two choice items, one matching the exemplar in shape only and one 

matching in material only. For each of these three inputs, we recorded the resulting pattern 

of activation on the hidden layer, the network’s internal representation. If the network 

emphasizes the shape of the item then the similarities of the internal representations for the 

exemplar and its shape matching choice should be greater than the similarity of the internal 

representations for the exemplar and the material matching choice. If, however, the internal 

representations highlight the material of the items, then the similarity of the internal 

representations for the exemplar and the shape matching choice should be less than the 

corresponding similarity of the exemplar and the material matching choice. We used Luce’s 

choice rule to calculate probability of choice using these similarity measures to predict 

performance in the novel noun generalization task.

Results

Vocabulary Structure—Table 2 shows the means, standard deviation, and ranges for late 

talker and early talkers on raw counts, as proportion of total noun vocabulary, and as within-

category proportions (e.g., what is the mean proportion of solid shape words late talkers 

know) for each of these five types of words: solid-shape, solid-material, solid-both, non-

solid-material, and non-solid-both (there were zero non-solid-shape nouns). Because the 

neural networks were trained on vocabularies proportionally approximate to those of 

individual children, we focus this analysis on the children’s proportion of nouns of each 

word type. Although there are some commonalities between the two groups, there is greater 

variability in the composition of the vocabularies of the late-talker group (std.dev = .07) than 

the early talker group (std.dev = .01) for both solids and non-solids (all Levene’s test for 

equality of variances, F>6.5, p<.02).

Children’s proportion of nouns were submitted to a 2(Language Group: early talkers, late 

talkers) × 2(Solidity: solid, non-solid) × 3(Dimension: shape, material, both) repeated 

measures analysis of variance (ANCOVA) with age in months as a covariate. The analysis 

yielded the expected main effects of solidity, F(1,27)=50.7, p<.0001, η2 = .65, and 

dimension, F(2,54)=8.416, p=.001, η2 = .24, indicating that, overall, there were more words 

for solids than for non-solids, and more words for shape-based categories than any other 

type. In addition, the expected interaction between solidity and dimension was significant, 

F(2,54)=12.37, p<.0001,η2 = .31. There were more shape-based words for solids, and fewer 

shape-based words for non-solids. There was a marginally significant 3-way interaction 

between solidity, dimension, and age, F(2,54)=3.18, p=.05, η2 = .11, as well as a marginally 

significant 3-way interaction between solidity, dimension and language group, F(2,54)=3.18, 

p=.055. Descriptively, compared to early talkers’ noun vocabularies, late talkers’ 
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vocabularies have relatively fewer words for solids organized by both shape and material 

(t(28)=2.06, p=.049, two-tailed). No other main effects or interactions approached 

significance.

An ANCOVA using MCDI percentile as a continuous covariate, instead of as a categorical 

between-subjects variable, revealed a similar pattern of results: a main effect of solidity, F(1, 

27) = 49.21, p<.001, η2 = .65; main effect of dimension, F(2, 54) = 9.44, p<.001, η2 = .26; a 

significant interaction between solidity and dimension, F(2, 54) = 13.784, p<.001, η2 = .34; 

and a significant 3-way interaction between solidity, dimension, and percentile, F(2, 54) = 

3.89, p=.026, η2 = .13. No other main effect or interactions were significant.

Simulations—The networks’ predictions for each of the fifteen vocabularies of early 

talkers and each of the fifteen vocabularies of late talkers are shown in Figs. 2 and 3 

respectively. In short, using a cut-off of at least two standard deviations above or below the 

50% chance level mark, all networks in the early talker group show a shape bias for solids, 

and 12/15 early talker networks show a material bias for non-solids as well. In contrast, 

12/15 late talker networks show a shape bias for solids and only 3/15 show a material bias 

for non-solids. Interestingly, 6/15 late-talker networks show a shape bias for non-solids, a 

novel prediction that has not been empirically tested so far. To further analyze the networks’ 

performance, networks were classified according to the observed generalization patterns: 

correct if they showed a shape bias for solids and a material bias for non-solids (12 out of 15 

early talker networks; 2 out of 15 late talker networks), half-right if they showed the 

appropriate shape bias for solids but no consistent bias for material1 (3 early talker 

networks; 7 late talker networks), or wrong, if they showed an incorrect overgeneralized 

shape biased to non-solids (no early talker networks; 6 late talker networks). A chi-square 

test showed these types of word learning biases were distributed differently in late talker and 

early talker networks, X2(2,15)=14.743, p=.0006 (Yates’ p=0.004).

Discussion

Previous work has shown that the vocabularies of late talkers and early talkers show 

differences when characterized by connectivity measures in a network (directed graph) 

representation (Beckage et al, 2011). Perry & Samuelson (2011) found that the number of 

names for solid, material-based categories predicts performance in the novel noun 

generalization task with solids in typically developing children. Here we look at the structure 

of children’s vocabularies in the only way available to our computational model – their 

proportion of words referring to solids or non-solids alike in shape, material, or both. In this 

measure, too, the vocabularies of late talkers and early talkers show differences in the 

structure. This is true even though the two groups were matched by age one-to-one. 

Specifically, late talkers have vocabularies with a relatively smaller proportion of words for 

solid things that are similar in both shape and material than early talkers. These are words 

like book, carrot, jeans, and basket. As a group, late talkers show more variability in their 

vocabulary structures than early talkers. This is perhaps not strange given that, on average, 

1One late talker network showed a robust material bias for non-solids but no bias for solids, and this network was counted as “half-
right.”
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the children in the late talker group have smaller vocabularies and thus many more ways of 

“selecting” the words they know out of the MCDI checklist. Put another way, as early talkers 

approximate mastery of the whole checklist, their vocabularies will tend to match the 

structure of the checklist. The crucial question, then, is whether these differences in 

vocabulary composition are differences that matter. Do the different nouns late- and early-

talkers know yield different word learning biases? The results of the simulations answer this 

question and suggest novel predictions.

The results of the simulations suggest that the differences in noun vocabulary composition 

between late- and early-talking children may be associated with differences in word learning 

biases. The word learning biases learned by these networks can be interpreted as predictions 

at the group level. First, the networks make a novel prediction about early talkers. A 

majority of the early talker networks show material biases for non-solids. Previous findings 

have shown that children at this age (18- to 30-month-olds) show a material bias for non-

solids only when offered extra supporting cues. For example, Soja (1992) showed older 2-

year-olds have a material bias when offered supporting syntactic and visual cues by using 

mass syntax and presenting the material in pieces. Similarly, Colunga & Smith (2005) 

showed that even children as young as 18-months demonstrated an early material bias for 

non-solids when the non-solids were presented in simple shapes, but not when they were 

shaped into complex constructed shapes. However, children in general do not show a robust 

material bias for non-solids until around age 3 (Samuelson & Smith, 1999). Thus, this is a 

novel prediction that warrants testing: the networks predict that unlike the general 

population, early talkers (or children with vocabularies structured like those of early talkers) 

will show a robust material bias for non-solids at a relatively young age.

The networks also make predictions about the patterns of novel noun generalizations one 

should expect to see in young late talkers, between 18 and 28 months of age. According to 

these predictions, as a group, late talkers should show a shape bias for solids, with about half 

of them overgeneralizing this shape bias to non-solids as well. At first glance, this result may 

appear to contradict previous findings in which late talkers do not show a shape bias for 

solids (Jones, 2003). However, the children in the Jones, 2003 study were nearly a year older 

than the children in this study (25-41 months of age, M=33.25). It is possible that the shape 

bias for solids predicted by these simulations will disappear over the next year or that some 

of these children will not be late talkers a year later; late talkers may show different 

“signatures” at different ages.

To date, late talker’s novel noun generalizations for solid objects and non-solid substances 

have not been tested at this age. Thus, this is the second novel prediction made by the 

models: Late talkers will tend to have a shape bias for solids, with about half of them 

overgeneralizing this shape bias to non-solids. Experiment 2 tests the model’s predictions for 

early- and late-talking toddlers. The networks constructed for each individual child do not 

yield sufficiently fine-grained predictions to discriminate performance at the level of 

individuals, a point we consider in greater detail in the general discussion, and therefore we 

behaviorally test the predicted difference between the two groups of children in Experiment 

2.
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Experiment 2

The goal of this study was to test the predictions made by the neural network models in 

Experiment 1, based on late- and early-taker vocabularies. In Experiment 2, then, we 

replicate Experiment 1 with a smaller group of late- and early-talker children – examining 

their vocabulary structure and running simulations based on their individual vocabularies – 

but critically, we also test the children in the lab in a novel noun generalization task with 

solid objects and non-solid substances. Although the children whose vocabularies were 

examined in Experiment 1 ranged in age from 18 to 30 months, the models were age-less 

and all had the same vocabulary size, differing only in vocabulary structure. In Experiment 2 

we chose to test children on the younger end of the age range, between 18 and 22 months, 

for two reasons. First, this is an age at which children do not typically show robust word 

learning biases yet, and we reasoned we might be able to notice individual differences. 

Second, as mentioned before, performance in the novel noun generalization task has been 

observed to change with age and vocabulary size, so limiting the age range is an attempt to 

deal with this potential confound. Any remaining small age differences were controlled for 

in the analyses.

Method

Participants—Nine late talkers (5 girls) and 8 early talkers (4 girls) between the ages of 18 

and 22 months (M:19.36/SD:0.32 for late talkers; M:19.3/SD:0.33 for early talkers) were 

selected out of 32 children recruited as part of a larger study. As in Experiment 1, the 

criterion for inclusion was scoring at or below the 25th percentile for late talkers and at or 

above the 75th percentile for early talkers. MCDI scores ranged from 5th to 20th percentile 

(M:11.2/SD: 2.79) for the late talkers and between 75th and 99th percentile for early talkers 

(M:91.94/ SD:3.19). Vocabulary sizes for the late talker group ranged between 9 and 82 

words (M:33/SD:8.77); for the early talker group vocabulary size ranged between 151 and 

526 words (M:376.3/SD:45.31).

Stimuli—The stimuli consisted of a warm up set, a solid set and a non-solid set. The warm 

up set had an exemplar, a red plastic ball, two other balls (a tennis ball and a green and blue 

rubber ball), a plastic spoon, a toy carrot, and a toy cat.

The solid set consisted of an exemplar, an orange fuzzy round container, and 5 test items: 

two items matching the exemplar in shape alone (iridescent green bumpy round container 

and golden glittery round container), two items matching the exemplar in material (fuzzy 

blue irregular ring and fuzzy orange hook-like shape, and one matching in color (orange 

mesh polyhedron). The non-solid set was similarly structured and consisted of an exemplar 

(purple craft sand mixed into facial cream in a rounded elongated x-like shape), two material 

matches (green sand + facial cream in an asymmetric s-like shape and red sand + facial 

cream in a lollypop-like shape), two shape matches (elongated x-like shapes made out of 

sawdust or purple shaving cream), and a color match (purple hair gel in an hourglass shape. 

All non-solids were presented on flat, square, plastic foam boards.

Procedure—The procedure was modeled after Gershkoff-Stowe & Smith (2004). In the 

warm-up phase, the experimenter presented all six toys to the child and allowed him or her 
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to look at them and handle and touch them for 30 seconds. Then the objects were removed 

and immediately placed back on the table outside of the child’s reach. The child was then 

shown the exemplar ball and told, “look at this ball.” Then they were asked to “get a ball” or 

get “another ball.” If the child failed to retrieve a ball, the child was asked one more time, 

and finally was told “here’s another ball,” handed the ball, and allowed to get it one more 

time on request. If the child got one of the non-ball distracter items, they were told, “that’s 

not a ball, that’s a ____”, then the distracter was replaced on the table, and the child was 

asked again, “is there another ball?”

The procedure during the test phase with the solid and non-solid novel sets was the same, 

except that no feedback was offered. Children were shown the exemplar and told, “Look at 

this dax” and then asked to “get a dax” or “get another dax” for the solid set or “get more 

dax” or “get some dax” in the non-solid set. Thus, solids were presented with count syntax 

supporting an object construal and non-solids were presented with mass syntax supporting a 

substance construal (Soja, 1992). Children were asked to get another (or more) until they 

indicated that there were no more, thus allowing children to accept or reject as few or as 

many items as they desired. The solid set was always presented before the non-solid set, and 

there was a 5-minute break and a change in testing rooms in between the two test sets to 

minimize carry-over effects.

Coding—To incorporate order information into children’s choices, and because all children 

made at least three choices for each test set, their choices were coded as follows: 3 points for 

the item that was 1st choice, 2 points for the 2nd choice, 1 point for the 3rd choice, and 0 

points for 4th or 5th choices.

Vocabularies and Neural Networks—Children’s vocabulary structures2 were assessed 

as in Experiment 1, by categorizing nouns depending on whether they refer to things that are 

solid or non-solid, and alike in shape, material or both. Then these vocabulary structures 

were used to generate training sets for neural networks. The architecture, training set 

construction, testing set, and all parameters were the same as in Experiment 1. Individual 

networks were constructed based on the vocabulary of each child, and as in Experiment 1, 

the results presented below are based on averages over 5 runs per child, initialized with 

random weights.

Results

Vocabulary Structure and Simulations—Before analyzing the results of the behavioral 

experiments, the vocabularies of the children participating in the behavioral experiment were 

submitted to the same analyses as in Experiment 1, and neural networks were built for each 

of the participating children, except for one late talker who had no nouns in their vocabulary.

The noun vocabulary structure of the participating children showed a similar pattern to those 

found in Experiment 1. A 2 solidity × 3 dimension × 2 language group mixed ANCOVA, 

with age as a covariate, revealed a significant solidity by dimension interaction, F(2, 26) = 

2One late talker child had no nouns, so no network was run for that child. Thus, only 8 late talker networks were run.
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9.97, p = .001, η2 = .43. There was also a significant three-way interaction between solidity, 

dimension, and age, F(2, 26) = 6.56, p = .005, η2 = .34, and a significant three-way 

interaction between solidity, dimension, and language group, F(2, 26) = 11.2, p < .001, η2 

= .46. As in Experiment 1, late talker vocabularies had a relatively small proportion of words 

for solids that were alike in both shape and material compared to their early talker 

counterparts, t(14) = 3.89, p = .005. Again, the variance was greater in the late talker 

(std.dev = .12) than in the early talker group (std.dev = .01), all F’s for Levene’s test for 

equality of variance >10, all p<.01.

Similarly, the simulations showed patterns comparable to the ones in Experiment 1. For the 

early talker networks, 6/8 showed shape and material biases, and the other two showed only 

a shape bias and no robust material bias. None of the early talker networks showed incorrect 

biases. For the late talker networks, all eight networks showed a shape bias for solids, but 

only one showed a material bias for non-solids. In addition, 4/8 late talker networks showed 

an overgeneralized shape bias for non-solids. As in Experiment 1, a chi-square test showed 

these types of word learning biases were distributed differently in late talker and early talker 

networks, X2(2,8)=7.77, p=.02 (Yates’ X2= 4.54, p=0.103).

Word learning biases in behavioral study—The simulations in Experiment 1 

predicted that early and late talkers would show different word learning biases, and predict 

specific patterns of novel noun generalizations for solids and non-solids for these two groups 

of children. First, children were classified based on their bias scores for solids and for non-

solids, correct if the score was positive or incorrect if the score was negative. Given this 

classification, 7/8 early talkers showed a shape bias for solids and a material bias for non-

solids (the other child showed a material bias for both solids and non-solids). In contrast, 

only 2/9 late talkers showed correct shape and material biases, 6/9 late talkers showed 

incorrect biases (5 showed a shape bias for non-solids, 1 showed a material bias for solids), 

and one showed no bias. A chi-square indicated that these types of biases were distributed 

differently in the two groups, X2(2,8)=7.32, p=.026 (Yates’ X2= 4.14, p=0.13).

Next, we look at the data of all children together and then evaluate the predictions for each 

language group. We submitted both groups of children’s scores for the shape and material 

test items for the solids and non-solid sets to a 2 (language group: early, late) × 2 (solidity: 

solid, non-solid) × 2 (dimension: shape, material) mixed ANOVA. Fig. 4 shows the average 

score for the items that matched the exemplar in shape or material for the solid and non-solid 

sets for both language groups. There was a main effect of dimension, F(1,29) = 4.77, p = .

045, η2 = .24; overall shape matches had higher scores than material matches. There was 

also a significant interaction between solidity and dimension, F(1,15) = 15.6, p=.001, η2 = .

51. Post-hoc tests showed that across both language groups, children were more likely to 

choose the shape over the material match for the solid set, t(16) = 4.03, p=.001, but not for 

the non-solid set, t(16) = -.613, n.s. The three-way interaction between language group, 

solidity, and dimension was marginally significant, F(1,15) = 4.33, p=.055, η2 = .22.

The z-score transform of these data were further submitted to a 2 (solidity: solid, non-solid) 

× 2 (dimension: shape, material) ANCOVA, using age and percentile as covariates. The 

results show a significant effect of dimension, F(1,14) = 6.42, p = .024, η2 = .31 and a 
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significant age by dimension interaction, F(1, 14) = 5.97, p = .028, η2 = .3. The critical 

three-way interaction between solidity, dimension, and percentile was also significant, F(1, 

14) = 5.33, p = .037, η2 = .28. No other main effects or interactions were significant.

The model’s predictions regarding each of the two language groups were further tested by 

analyzing the two groups separately. First, the prediction that early talkers would show a 

robust shape bias for solids and a robust material bias for non-solids was confirmed by a 2 

(solidity) × 2 (dimension) ANOVA revealing a two-way interaction between solidity and 

dimension, F(1,7) = 26.15, p = .001, η2 = .78. Furthermore, planned comparisons (all two-

tailed) showed that this interaction came from early talkers’ shape bias for solids (t(7)=3.06, 

p=.018) and material bias for non-solids (t(7)=−4.46, p=.003). Second, a similar analysis on 

late talkers’ scores revealed a main effect of dimension, F(1,8) = 5.5, p=.047, η2 = .41, and 

no other main effects or interactions. Planned comparisons showed that late talkers had a 

shape bias for solids, t(8) = 2.57, p=.033, but did not overgeneralize the shape bias to non-

solids as a group, t(8) = 1.1, n.s. However, 5 out of the 9 late talkers in the study showed a 

robust shape bias for non-solids (a difference score of more than 3), and none of the early 

talkers did.

Discussion

The analyses on the vocabulary structure and neural network simulations based on the 

smaller, and on average younger, group of children in Experiment 2, replicate the findings in 

Experiment 1. Compared to early talkers, late talker vocabularies showed greater variance 

and had a relatively small proportion of words referring to categories of solid things alike in 

both shape and material. The simulations based on individual children’s vocabularies made 

qualitatively the same prediction as the simulations in Experiment 1: most early talker 

networks showed both a shape bias for solids and a material bias for non-solids, whereas 

half late talker networks showed an overgeneralized shape bias for non-solids.

The results of Experiment 2 are in line with the predictions of the simulations in Experiment 

1. Early talkers show a shape bias for solids and a material bias for non-solids; late talkers 

show a shape bias for solids and a mixed pattern of generalizations for non-solids. It is 

important to note that these predictions work at the group level and not at the level of 

individuals. For example, although five late takers showed an overgeneralized shape bias for 

non-solids in both the behavioral tasks and in the network simulations, these were not the 

same children; only two children showed this bias in both the simulations based on their 

vocabularies and their performance in the behavioral task. The behavioral task, and probably 

the vocabulary measure as well, lack the finesse to make predictions at the individual level 

based on a single data point. However, as we will argue in the general discussion, looking at 

the relationship between vocabulary composition and word learning biases in the lab task 

over multiple sessions longitudinally may offer us the ability to make predictions about the 

trajectory or future growth of the individual.

The results of experiment 2 are in line with previous work noting a relationship between the 

number of nouns in a child’s vocabulary and their word learning biases, but they extend it in 

important ways. The finding that early talkers show robust word learning biases for both 

solids and non-solids at not even two years of age is new. Although one might have 
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predicted this pattern of results a priori from the idea that early talkers might excel across 

tasks, the prediction came from the models. Harder to predict without the networks, 

however, is the pattern found for the late talkers. In fact, at first glance it seems to contradict 

what we know about late talkers; that 2- to 3-year-old late talkers lack a shape bias while 

their same-aged peers already have a well established bias. However, the prediction from the 

networks, and our findings on the patterns of word learning biases in very young late talkers, 

before the age of 2, may help us understand something new about the processes underlying 

word learning in general.

Gershkoff-Stowe and Smith (2004) followed eight children as they learned their first 100 

nouns, looking at their word learning biases for solids and their vocabulary growth every 

three weeks. Their results show that as children’s noun vocabulary increases, so does their 

attention to shape. They set the emergence of the shape bias at around the time children 

acquire 50 nouns. The results from Experiment 2 suggest that this relationship may be 

different for late talkers. None of the late talkers in Experiment 2 reached the 50-noun mark 

(though a couple were on the cusp), and yet they overall showed a robust preference for 

shape for the solid set in our task. Curiously, although attention to shape increased with 

vocabulary size in Gershkoff-Stowe’s study, their lower vocabulary group did show a 

preference of shape over material. This suggests an intriguing possibility. These models do 

not make a distinction between naming and non-naming contexts. It is possible that the 

shape preference for solids here is not a true shape bias, but rather an overgeneralized 

heightened attention to shape. The fact that about half of the late talkers showed an 

overgeneralized shape bias for non-solids suggests that this may be the case. This sort of 

non-discriminating shape bias extended to solids and non-solids has been observed as an 

early stage in the development of biases in children between 2 and 4 years of age 

(Samuelson, Horst, Schutte, & Dobbertin, 2008). Similarly, in a 9-week training study, Perry 

and colleagues (2010) taught either high similarity or low similarity shape-based categories 

to young children, and only those children who had been taught categories based on more 

variable exemplars showed a discriminating shape bias. Children who were taught solid-

shape words instantiated by highly similar exemplars tended to overgeneralize the shape bias 

to non-solids as well. Interestingly, in a follow-up a month later, the children in the low 

similarity condition, who showed the discriminating shape bias, had significantly larger 

noun vocabularies than the children in the high similarity condition (Perry, Samuelson, 

Malloy, & Schiffer, 2010).

General Discussion

The work presented here makes several contributions. First, the results of these studies add 

to the growing evidence that late talkers and typically developing children’s vocabularies 

differ in their structure. Specifically, we show that late talkers and early talkers know 

different sorts of nouns. This is a new finding, and critically, it suggests that the difference 

between late and early talkers – a classification given by counting the number of words 

produced by children – is not just quantitative, but also qualitative. Late and early talkers do 

not just know different numbers of words; they know different sorts of words. This is in line 

with recent work showing that the semantic networks formed from vocabularies of late 

talkers have different connectivity characteristics than the semantic networks of typically 
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developing children (Beckage, Hills, & Smith, 2011). Beckage and colleagues suggest that 

the source of the structural difference they find in the semantic networks of the two groups 

of children could be in the children’s language environment, or in the way children sample 

words from their environment. The present computational models show one way in which 

the vocabulary composition – word learning bias feedback loop might operate, changing the 

ease with which subsequent words are learned and further skewing the vocabularies. 

However, evaluating the models will require looking at developmental trajectories and 

longitudinal data from children, as discussed below (Sims, Schilling, & Colunga, 2013a).

The finding that these differences in vocabulary composition lead to qualitatively different 

word learning biases in a computational model – a computational model that has been 

previously shown to capture various aspects of novel noun learning – suggests a promising 

use for process-level computational models. Efforts to tease apart the contributions of 

different factors to developmental outcome in late talkers have come up with some 

characteristics that put children at higher risk, but the underlying mechanisms are not well 

understood. The need to identify subgroups within late-talking toddlers remains. Recent 

work by Thomas and Knowland (2014) uses a population modeling approach to study how 

different simulated learner characteristics (processing capacity limitations and low plasticity) 

and different simulated environments alter language development trajectories, with different 

initial conditions resulting in either persistent or resolving delays. The models presented 

here are a promising first step in leveraging computational models to aid in understanding 

why some late talkers catch up and others do not. The work presented here falls short of 

characterizing mechanistic differences between late and early talkers, and instead focuses on 

the snapshot relationship between vocabulary composition and word learning biases, without 

attending to the developmental trajectory. However, we have begun work to expand these 

models to account for longitudinal trajectories and the dynamics of emergence of the 

different biases (Sims, Schilling, & Colunga, 2012; 2013b) and how these may be different 

for persistent and resolving late talkers (Sims, Schilling, & Colunga, in press).

Furthermore, these models represent an important extension over previous word-learning 

modeling efforts in that they go beyond modeling the performance of the mythical average 

child to making predictions based on the performance of individual children, and of children 

who are both at the top and at the bottom of the vocabulary spectrum. In so doing, the 

simulations presented here make novel and testable predictions about these two groups of 

children. The simulations predict that, between 18 and 30 months of age, early talkers will 

show an early material bias and that late talkers will show an overgeneralized shape bias in 

the novel noun generalization task. The fact that these novel predictions were in line with the 

behavior in the lab of a small group of early and late talker toddlers further suggests that 

these models are capturing something fundamental about the way young children learn 

nouns.

Finally, this work adds to what we know about word learning biases in late talkers and early 

talkers. Even before they turn two, children who excel in vocabulary acquisition show very 

consistent word learning biases not typically observed until a year or so later. The late talker 

toddlers in the study, on the other hand, show a different pattern of novel noun 

generalizations, and one that is less consistent.
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The work presented here also has some limitations. First, the fact that we do not yet have 

outcome data for the children in these studies constrains what we can infer from these results 

and their potential use in early identification of at-risk children at the individual level – will 

the late talking children who show correct biases catch up? Or are the ones showing the 

overgeneralized shape bias the ones on the right track? Are these differences in vocabulary 

and in word learning biases predictive of outcome? Second, all of these networks are 

identical except for the vocabulary structure on which they are trained. Although this 

constraint makes these simulations the strongest possible demonstration of the relationship 

between vocabulary composition and word learning biases, allowing for pre-existing 

individual differences beyond words known in these models may increase their power, and 

come closer to presenting an account of what late talkers may be lacking (Thomas & 

Knowland, 2014). Finally, there is more to language, and even more to word learning, than 

learning nouns. Thus, these models capture only a sliver of language learning and may miss 

crucial differences between children with different linguistic endowment.

In spite of these limitations, the models presented here constitute an innovative approach to 

predicting and characterizing typical and atypical vocabulary acquisition in young children. 

The relationship between vocabulary composition and word learning biases modeled here – 

the words you know determine the way you learn new words, which constrains and 

facilitates the words you will know next, and so on – opens a new way of thinking about 

computational models, to capture not only averages and not only individuals, but individual 

trajectories. Thomas and colleagues have argued that using a trajectories approach can aid in 

understanding the underlying mechanism, especially in to characterizing atypical 

populations (Thomas, Annaz, Ansari, Scerif, Jarrold, & Karmiloff-Smith, 2009). If we can 

build computational models that can successfully capture this self-constructing 

developmental loop, we may be able to leverage these models to aid in the process of 

diagnosis and individualized interventions design.
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Figure 1. 
Network architecture and example training patterns used in Experiment 1.

Colunga and Sims Page 20

Cogn Sci. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Predicted proportions of shape choices for solids and nonsolids for each of the late talker 

networks.
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Figure 3. 
Predicted proportion of shape choices for solids and nonsolids for each of the early talker 

networks.
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Figure 4. 
Scores for shape and material matches for solids and nonsolids for early- and late-talking 

children in Experiment 2.
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Table 1

Age, percentiles, and vocabulary sizes for late and early talkers whose vocabularies were examined in 

Experiment 1.

Age Percentile Words Nouns

Late Talkers M: 23.14/SD: 2.89 M: 13.33/SD: 8.59 M: 132.53/SD: 122.73 M: 48.47/SD: 44.22

(18.49-28.26) (5-25) (15-425) (2-132)

Early Talkers M: 23.15/SD: 2.85 M: 81.33/SD: 6.4 M: 457/SD: 125.67 M: 172.53/SD: 42.58

(18.49-28.23) (75-95) (158-664) (62-216)
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