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Abstract

Although reproductive strategies can be influenced by a variety of intrinsic and extrinsic factors,
life history theory provides a rigorous framework for explaining variation in reproductive effort.
The terminal investment hypothesis proposes that a decreased expectation of future reproduction
(as might arise from a mortality threat) should precipitate increased investment in current
reproduction. Terminal investment has been widely studied, and a variety of intrinsic and extrinsic
cues that elicit such a response have been identified across an array of taxa. Although terminal
investment is often treated as a static strategy, the level at which a cue of decreased future
reproduction is sufficient to trigger increased current reproductive effort (i.e., the terminal
investment threshold) may depend on context, including the internal state of the organism or its
current external environment, independent of the cue that triggers a shift in reproductive
investment. Here, we review empirical studies that address the terminal investment hypothesis,
exploring both the intrinsic and extrinsic factors that mediate its expression. Based on these
studies, we propose a novel framework within which to view the strategy of terminal investment,
incorporating factors that influence an individual’s residual reproductive value beyond a terminal
investment trigger — the dynamic terminal investment threshold.
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Introduction

Investment in life history traits (i.e., growth, survival, and reproduction) can be constrained
by limited resource availability (Calow 1979; Stearns 1992; Zera and Harshman 2001; Roff
and Fairbairn 2007), genetic covariance and antagonistic pleiotropy between traits (Stearns
1989), or changes in the direction or strength of selection at different stages of life history
(Schluter et al. 1991). These constraints may drive trade-offs (i.e. negative phenotypic or
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genetic associations) both between life history traits and within traits over time (Clutton-
Brock et al. 1982; Reznick 1985; van Noordwijk and de Jong 1986; Stearns 1989; Roff
1992; Stearns 1992), such that investment cannot be simultaneously optimized for all traits
at all times throughout an individual’s lifetime. Selection acts within the bounds of these
trade-offs to optimize investment strategies that maximize fitness within a particular context.

An especially salient trade-off is between reproductive effort and somatic defense (i.e.,
immunity) (Reznick 1985; Lochmiller and Deerenberg 2000; Zera and Harshman 2001; Zuk
and Stoehr 2002; Lawniczak et al. 2007; Durso and French 2017). Investments in these traits
can enhance fitness through their effects on reproduction and survival, but such investments
inevitably entail evolutionary, maintenance, and deployment costs, which leads to an
allocation trade-off between them (Schwenke et al. 2016). Evolutionary trade-offs arise from
linkage or pleiotropy of the genes involved, and results in negative genetic covariance
between traits. Negative genetic correlations have been demonstrated between reproductive
effort and resistance to infection (e.g., Cotter et al. 2004; Simmons and Roberts 2005;
Graham et al. 2010). Experimental evolution, with selection for either increased reproductive
effort or resistance to infection, has resulted in coinciding decreases in resistance to infection
and reproductive effort, respectively (e.g., Boots and Begon 1993; Zwaan et al. 1995; Luong
and Polak 2007). Additionally, trade-offs can occur due to the immediate nutritional and
metabolic costs of maintaining and utilizing these traits and their physiological linkage
(Sheldon and Verhulst 1996; Lochmiller and Deerenberg 2000; Sadd and Schmid-Hempel
2009; Schwenke et al. 2016); allocating resources towards defense against infection
necessarily diverts resources away from reproductive effort and vice versa.

Given the evidence for trade-offs between reproduction and defense, the conventional view
has been that individuals faced with a threat to self-integrity and longevity should change
their life history investment pattern, shifting investment away from reproduction and towards
defense and repair, thus ensuring their continued survival (Norris et al. 1994; Gustafsson et
al. 1994; Svensson et al. 1998; Adamo et al. 2001; Jacot et al. 2004; Ahtiainen et al. 2005;
Stahlschmidt et al. 2013). However, an alternative strategy is for individuals to increase
investment in current reproduction when cued to a decreased likelihood of survival, at a cost
of decreased somatic maintenance and future reproduction. Although this might at first seem
counter-intuitive, evolutionary theory predicts that when an individual’s expectation of
future offspring (residual reproductive value) decreases upon its perception of increased
mortality risk, investment in current reproduction should increase (Williams 1966). Within
the context of life history theory, this has been termed the terminal investment hypothesis
(Clutton-Brock 1984), with some authors also referring to the strategy as fecundity
compensation (Parker et al. 2011). Terminal investment encompasses a broader range of
potential changes in reproductive effort, and thus, we adopt this more general term in
subsequent discussion.

The terminal investment hypothesis has received considerable attention since it was first
proposed, but in a number of cases, the evidence is equivocal. At least part of this ambiguity
may be due the framework within which the strategy of terminal investment has been
addressed. The goal of this review is to: 1) synthesize the findings from previous empirical
studies exploring the terminal investment hypothesis, and 2) propose an extended conceptual
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framework for a more nuanced interpretation of these findings. We propose that the strategy
of terminal investment will exhibit a threshold in its expression, with this threshold being
dynamic and dependent on an organism’s internal state and extrinsic factors that together
influence its expectation for future progeny (i.e., residual reproductive value).

The terminal investment hypothesis in review

Trade-offs concerning investment in life history traits, including reproduction and defense,
are likely contingent on an individual’s residual reproductive value. For example, if the
chances of producing future offspring are high, individuals should invest in their current
progeny at sub-maximal levels to optimize the trade-off between current and future
reproduction. Conversely, if the chances of producing future offspring are low, individuals
should increase investment in their current progeny (Williams 1966; Hirshfield and Tinkle
1975; Clutton-Brock 1984). Therefore, current reproductive effort and residual reproductive
value are expected to exhibit negative covariance (Williams 1966; Hirshfield and Tinkle
1975; Pianka and Parker 1975). When a threat to future reproduction is raised consistently
for all individuals globally, fixed strategies may evolve in populations, such as semelparity
instead of iteroparity (Young 1990). However, in an environment where individuals face a
spatial and temporal mosaic of varied levels of a threat to future reproduction, plastic
strategies, such as terminal investment, will be advantageous.

The terminal investment hypothesis proposes that individuals facing a significant survival
threat, and hence decreased residual reproductive value as a consequence of a truncated
lifespan, should divert time, energy, and resources away from other life history traits (e.g.,
growth, maintenance or defense, and future reproduction) and towards current reproduction
as a way of maximizing lifetime reproductive output (Williams 1966). The trade-off between
current and future reproduction dictates that such an acceleration of reproductive effort
would be suboptimal within the context of a normal, undisrupted reproductive lifespan.
Empirical studies have found support for terminal investment in numerous species in
response to a real or simulated survival threat, with increases detected in various components
of reproductive effort, including attractiveness of plastic epigamic traits in males, offspring
production, and parental care (Tables 1-3).

Integral to the terminal investment hypothesis are the cues of reduced residual reproductive
value, which can be considered terminal investment #riggers that an individual must be able
to perceive to adaptively alter their reproductive investment. The type, timing, intensity, and
predictability of these triggers are likely paramount to an individual’s ability to implement a
terminal investment strategy. Both intrinsic factors (e.g. age and nutrition-dependent
condition) and extrinsic factors (e.g. contemporary food shortage, perceived predation risk,
and infectious disease) can affect mortality rate, and consequently, residual reproductive
value.

I. Intrinsic State

Both the probability of survival and the quantity and quality of offspring should be
determined, at least in part, by an individual’s internal state, potentially in interaction with
current environmental conditions. In many organisms, likelihood of survival decreases the
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older an individual becomes (Type | survivorship), as does residual reproductive value
(Pianka and Parker 1975). In addition, it is not surprising that the condition of an individual,
as influenced by prior resource intake, will often affect reproductive investment (e.g.,
Wagner and Hoback 1999; Ohlsson et al. 2002; Warner et al. 2007; Fricke et al. 2008). This
should be particularly pertinent in the case of capital breeders (\Varpe et al. 2009),
individuals that acquire their resources in advance, and then rely on stored energy reserves
during reproduction (Drent and Daan 1980; Jénsson 1997). This dependency of reproduction
on intrinsic state suggests that altered reproductive effort based on a perception of internal
state could represent a form of terminal investment. Focusing primarily on age and nutrition-
dependent condition, we highlight evidence from studies that explore alterations in
reproductive effort brought about by intrinsic influences on residual reproductive value.

Age as an intrinsic cue for terminal investment—Age-related reproductive
investment has been studied extensively (e.g., Gadgil and Bossert 1970; Hirshfield and
Tinkle 1975; Pianka and Parker 1975; Pugesek 1983). Generally, reproductive effort is
predicted to increase toward the end of the lifespan in species in which residual reproductive
value decreases with age. This increase is hypothesized to arise from: i) decreased survival
of low-performing reproducers, leading to overrepresentation of high-performing
reproducers as cohorts age (Curio 1983; Forslund and Part 1995; Mauck et al. 2004); ii) age-
related improvements in reproductive performance, as often accrues with increased breeding
experience (Curio 1983); and iii) optimization of reproductive effort as individuals age, as
predicted by life history theory (Williams 1966; Stearns 1992; Forslund and Pért 1995). The
last of these invokes a cost of reproduction. Based on the assumption that reproduction is
costly (e.g., by decreasing future reproduction or survival) (Calow 1979; Reznick 1985;
Alonso-Alvarez et al. 2004; Harshman and Zera 2007), this hypothesis predicts that young
individuals, of high reproductive value or high future reproductive potential (Fisher 1930),
should allocate less to current reproduction to ensure future reproductive opportunities,
whereas older individuals, of low reproductive value, should allocate more to current
reproduction. Within this framework of age-dependent terminal investment (Clutton-Brock
1984), selection favors older individuals that assume greater costs of reproduction, because
future opportunities may be unavailable (Williams 1966). Overall, empirical evidence for the
age-related reproductive patterns that are predicted by the cost of reproduction hypothesis is
mixed (Table 1), but support for age-dependent terminal investment has been found in both
sexes in various mammals, reptiles, and insects (Table 1; supplementary table S1). For
example, queens of the ant Cardiocondyla obscurior have been shown to increase their rate
of egg production with age, even months after mating (Heinze and Schrempf 2012).

An important obstacle to assessing age-dependent terminal investment is that it is difficult to
disentangle a strategy of terminal investment from either of the other aforementioned
hypotheses (i.e., differential survival of low- or high-performing reproducers or age-related
improvements in reproductive performance). The inability to perform empirical
manipulations on fixed intrinsic parameters, such as age, means that positive relationships
with reproductive effort cannot be conclusively attributed to an adaptive terminal investment
strategy. For instance, while much of the early evidence for the terminal investment
hypothesis comes from assessments of reproductive effort of large ungulates (e.g., Clutton-
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Brock et al. 1982; Maher and Byers 1987; Ericsson et al. 2001), several parameters that
correlate with reproductive success (e.g., social dominance and experience) often increase
with age (e.g., Coltman et al. 2002). On the other hand, if a reduction in reproductive
success is observed with increasing age, this could simply be a consequence of somatic
deterioration (i.e. senescence) rather than adaptive changes in reproductive effort (e.g.,
Loison et al. 1999; Weladji et al. 2002). Consequently, it is difficult to determine if changes
in reproductive success as an individual ages are a result of increased reproductive effort
consistent with a terminal investment strategy, or due to some other age-related behavioral or
physiological manifestation (Pugesek 1981; Clutton-Brock et al. 1982). Tarwater and Arcese
(2017) recently argued that future studies should consider both chronological age and time
to death (independent of age) in assessments of age-related changes in reproductive effort.
By separating these two factors, they observed both senescence (among old females) and
terminal investment (among young females only) in song sparrows (Melospiza melodia).
Interestingly, reproductive effort was highest for females in their last year of life only if they
were 1 or 2 years old, even though this species can live beyond 5 years of age (Tarwater and
Arcese 2017).

Nutrition-dependent condition as a cue for changes in reproductive effort—
Variation in food availability is an important aspect of environmental heterogeneity.
Allocation of limited resources lies at the heart of life history trade-offs (Stearns 1992; Roff
2002), with empirical manipulation of quantity and quality of nutrition being shown to
influence trade-offs across an array of taxa (Hill and Kaplan 1999; Brown and Shine 2002;
Lardner and Loman 2003; Hunt et al. 2004; Kolluru and Grether 2005; Karell et al. 2007;
Cotter et al. 2011). As energetically costly reproductive traits are constrained by the
availability of adequate nutrition, most studies demonstrate that food limitation leads to
decreased reproductive effort (Table 2; supplementary table S2). For example, cockroaches
(Nauphoeta cinerea) reared on a low-quality diet regimen as juveniles exhibited a fixed
phenotype as adults (i.e., one that could not be recovered with a change in diet), in which
reproductive lifespan was significantly shorter than adults fed a high-quality diet as juveniles
(Barrett et al. 2009). There is also evidence to suggest that low nutrition-dependent condition
can also lead to terminal investment. In katydids (Simmons and Gwynne 1991), tree crickets
(Brown 1997), and humped-winged grigs (Judge et al. 2011), all insect species in which
males provide females with nuptial food gifts at mating, females held on a low-quality diet
were more quick to remate than those held on a high-quality diet. Although the increased
mating activity of females could represent a kind of “foraging effort” to offset nutrient
limitation (direct benefit), it is equally consistent with a strategy of terminal investment due
to the numerous genetic (indirect) benefits of polyandry (e.g., Fedorka and Mousseau 2002;
Ivy and Sakaluk 2005). Additional evidence suggests that diet may also influence an
individual’s propensity to terminally invest in response to other extrinsic cues of reduced
residual reproductive value (see “Interactions indicative of a dynamic terminal investment
threshold” below).

Il. Extrinsic Factors

While much initial theoretical and empirical work focused on the influence of intrinsic
factors on residual reproductive value and, by extension, the likelihood of terminal
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investment, there has subsequently been a shift in focus to the extrinsic factors that elicit
terminal investment. Residual reproductive value should be determined, in part, by the
external environment, with the potential for perceived changes in extrinsic cues leading to
the adaptive alteration of reproductive effort, including terminal investment. Extrinsic factors
can positively or negatively affect residual reproductive value, and do so either through a
direct influence on reproduction (e.g. castration, mate availability) or indirectly through an
altered probability of survival. Extrinsic factors that have been examined in this latter respect
include variation in predation risk (Korpimaki et al. 1994), and physical injury, including
post-mating damage (Morrow et al. 2003). However, most of the attention in this area has
centered on exposure to and infection by parasites and pathogens (Table 2).

Parasite and pathogen infection as a trigger of life history changes—The
realization that parasites and pathogens could play major roles in the evolutionary ecology of
organisms (Hamilton 1980; Hamilton and Zuk 1982) precipitated their inclusion as
important drivers of life history strategies. At an ecological level, parasite infection is
presumed to have negative impacts on reproductive output and survival, with these fitness-
related consequences culminating in selection on hosts to either prevent or curtail infection,
or to mitigate any consequences of infection. For example, hosts can reduce the loss of
fitness from infection by upregulating their immune system. While the benefits of increased
immune investment in response to infection are obvious, the costs of upregulation often
result in restriction of resources that could be invested in reproduction. As highlighted more
broadly earlier, it is commonly predicted that infected individuals should exhibit decreased
reproductive effort due to a reallocation of resources towards defense (i.e. immunity).
However, increasing evidence suggests that some infected organisms instead increase their
investment in reproduction. While seemingly counter-intuitive, these results can be
explained within a life history framework via the terminal investment hypothesis.

Minchella and Loverde (1981) were among the first to discover parasite-induced increases in
reproductive effort in hosts, finding that snails (Biomphalaria glabrata) infected with
castrating trematodes (Schistosoma mansoni) exhibit transient increases in fecundity prior to
complete cessation of egg production due to the parasite-induced castration. This transient
increase resulted in fecundity compensation (or, terminal investment), thus decreasing the
negative effects of a shortened reproductive lifespan associated with parasite infection in this
system. Subsequently, many studies have explored infection-related changes in reproductive
effort following both natural and artificial inoculation (Table 2; supplementary table S2).

Numerous studies report increases in reproductive effort following infection (Table 2),
which is congruent with the predictions of the terminal investment hypothesis, yet overall a
variety of outcomes have been found, sometimes even within the same study. For example,
female deer mice (Peromyscus maniculatus) parasitized with the trematode parasite,
Schistosomatium douthitti increase the expression of some reproductive traits (time to first
reproduction and total litter mass), but not others (the time between consecutive litters,
probability of litter cannibalism, litter size, litter sex ratio) (Schwanz 2008b; supplementary
table S2). These results are intriguing with regard to the specifics of life history investment,
but they make interpretation of overall life history strategies problematic, and unraveling
contributions of individual traits would require multi-generational fitness measures.
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However, the trait-specific alterations of investment do provide some insight into potential
constraints on the plasticity of reproductive traits following infection. An understanding of
trait plasticity, in addition to the context within which a cue of reduced residual reproductive
value is perceived, may help clarify equivocal findings (see “Dynamic terminal investment
threshold” below).

Although most studies focus on responses in host traits, live pathogens and parasites used in
the aforementioned studies cannot be regarded as passive bystanders. Shifts in host life
history may be beneficial for parasite fitness, and therefore host responses may be a
consequence of parasite manipulation (Minchella 1985; Sheldon and Verhulst 1996). Thus, it
is important when interpreting findings to account for the fact that life history consequences
of infection may be the result of selection on hosts, selection on parasites, or even non-
adaptive side effects (Hurd 2001). Interestingly, however, several studies have found that
individuals exposed to parasites (both with and without a subsequent infection), shift
investment towards current reproduction, consistent with predictions from the terminal
investment hypothesis (e.g., Minchella 1985).

Non-pathogenic immune stimulation to test for infection-associated host life
history shifts—To disentangle strategic shifts in life history by hosts from shifts due to
parasite manipulation, many studies have employed measures to elicit an immune response
in focal individuals without the confounding effects of pathogen proliferation and
manipulation. The triggering of an immune response acts to simulate an infection that may
signal reduced residual reproductive value to the host. Studies have utilized non-pathogenic
immune-elicitors such as lipopolysaccharides (LPS), antigens, vaccines, sterile implants, and
inactivated pathogens to act as a cue of pathogen or parasite infection, and then subsequently
measured responses in various aspects of host reproductive effort (Table 2; supplementary
table S2). Using this approach, any responses observed can clearly be attributed to changes
in investment by the focal individual, rather than the result of parasite manipulation or the
pathology of a real infection. Although several studies have documented outcomes that are
consistent with a tradeoff between investment in immune defense and reproduction, many
others have documented increases in various components of reproductive effort in
individuals following an experimental immune challenge, which is consistent with the
predictions of the terminal investment hypothesis (Table 2; supplementary table S2). For
example, male mealworm beetles ( 7enebrio molitor) implanted with a nylon filament exhibit
increased attractiveness of their sex pheromones, which are important for acquiring mates
(Sadd et al. 2006).

Interestingly, some studies have investigated the influence of multiple infection-associated
cues, which allows for a comparative analysis of how different stimuli are perceived as cues
of reduced residual reproductive value, or that lead to differential responses. For example,
Adamo (1999) assessed the effects of infection on oviposition in female crickets (Acheta
domesticus), incorporating both live infections of the gram-negative bacteria Serratia
marcescens and the larvae of a parasitoid tachinid fly, Ormia ochracea, and inactive non-
pathogenic immune-eliciting substitutes for each of the infections. Female crickets increased
the number of eggs laid in response to both live S. marcescens and non-pathogenic LPS
derived from S. marcescens. However, females did not alter their oviposition schedule when
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challenged with either live O. ochracea or its non-pathogenic substitute, Sephadex beads.
These results suggest that changes in life history strategies, including those involving
terminal investment, may be dependent on specific infection scenarios. Differential
responses may be adaptive and related to how different infections change residual
reproductive value, or may instead be subject to physiological constraints, such that only
infections that trigger certain immune pathways act as terminal investment triggers.

With respect to the use of simulated infections to assess life history responses, an important
methodological consideration is the incorporation of appropriate controls. Although sham
controls are critical for identifying exact causal effects in any experiment, the inclusion of
unmanipulated controls may be equally important, depending on the protocol of simulated
infection used. However, studies often do not incorporate both unmanipulated and sham
control treatments (supplementary table S2). The importance of both controls can be seen in
the illustrative example of using an injection to deliver a non-pathogenic elicitor into the
haemocoel of an insect, and subsequently measuring reproductive investment. A sham
control injection of the vehicle alone is necessary to attribute any changes to the introduced
elicitor. However, it is well known that cuticle wounding in insects leads to an immune
response (Brey et al. 1993; Wigby et al. 2008), and thus, it is plausible that a sham control
alone could result in an observable shift in reproductive effort (for example, see Altincicek et
al. 2008). In this case, absence of an unmanipulated control that provides a baseline of
reproductive effort could result in the conclusion that a particular organism does not exhibit
terminal investment, when, in fact, it does.

Ill. The terminal investment threshold

The discussion above suggests that a strategy of terminal investment may be dependent on
the form and intensity of the cue imposed. Historically, terminal investment has been
approached as a static strategy, in which investigators have sought to determine if terminal
investment does, or does not, occur in response to a specific cue believed to signal decreased
residual reproductive value (i.e., a terminal investment trigger). Often the intensity of cues
utilized is purposefully high, in an attempt to ensure that any potential response is triggered.
Interestingly, more recent studies have incorporated a gradation in the intensity of these
cues, which has shown that when individuals terminally invest, they often do so only at high
cue intensities. For example, Hendry et al. (2016) found that asexual reproduction in pea
aphids (Acyrthosiphon pisum) is affected by infection by the bacterium, Pseudomonas
syringae, in a dose-dependent manner. Aphids exposed to low doses exhibited reduced
reproduction relative to controls, presumably investing in defense against the pathogen (cost
of immunity hypothesis), whereas those exposed to higher concentrations of bacteria
exhibited the highest levels of reproduction (terminal investment). In this instance,
individuals exposed to the highest dose of A2 syringae, however, had the lowest reproduction,
which is likely a consequence of the high live infection load leading to pathogenesis as this
dose leads to high aphid mortality (Hendry et al. 2016). These results suggest that the
intensity of the terminal investment trigger can be viewed as a threshold, one that reflects the
relationship between the trigger and an individual’s perceived residual reproductive value,
which we refer to as the terminal investment threshold (Figure 1). Using the example of a
pathogen infection, it may pay to invest in mitigation or clearance of the infection at low
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levels of infection, thus leading to a decrease in reproductive effort as a result of the cost of
increased immunity. As the level of infection increases, the threat to longevity and future
reproduction, both of which contribute to residual reproductive value, also increases. When
the cue intensity reaches a tipping point at which investment in resistance against the
infection is futile, infected individuals are predicted to fully switch to a terminal investment
strategy. The concept of a terminal investment threshold allows for a more quantitative
assessment of terminal investment under a spectrum of cues that signal reduced residual
reproductive value. Although such a threshold is illustrated here with respect to pathogen
infection, it is relevant to a diversity of other cues associated with future reproductive
potential. The exact threshold is presumed to have been optimized by selection, and is
expected to differ between organisms and among the different cues that signal reduced
residual reproductive value, thus potentially contributing to the equivocal findings across
studies investigating terminal investment.

The dynamic terminal investment threshold

In addition to species-specific evolutionary or physiological constraints on life history
plasticity, failure to uncover terminal investment in particular organisms could occur because
the terminal investment threshold has not been exceeded. Furthermore, in the framework of a
terminal investment threshold, it is highly likely that the tipping point is not static, but rather
context dependent, leading to a dynamic terminal investment threshold.

It has been largely overlooked that the strategy of terminal investment, and the terminal
investment threshold, may depend on the internal state of the organism or external
environmental factors that are independent of the focal cue of reduced residual reproductive
value (e.g. infection). Specifically, any extrinsic or intrinsic factor that influences baseline
residual reproductive value beyond the threat posed by a potential terminal investment
trigger may alter the severity of residual reproductive value reduction cued by a particular
threat level and determine whether an individual adopts a terminal investment strategy
(Figure 1). Indeed, many life history models have explored dynamic aspects of resource
allocation (Perrin and Sibly 1993; Noonburg et al. 1998; Heino and Kaitala 1999),
suggesting that trade-offs, and corresponding investment strategies, need not be static (Zera
and Harshman 2001). Here, we discuss evidence from previous studies in support of our
proposed framework of a dynamic terminal investment threshold, and describe the specific
factors that may influence it.

Interactions indicative of a dynamic terminal investment threshold

The relationship between individual age and residual reproductive value, with prospects of
future reproductive opportunities diminishing as individuals move closer to the end of their
lifespan (Williams 1966; Pianka and Parker 1975), makes age a highly relevant intrinsic
factor upon which a dynamic terminal investment threshold to another threat cue might be
contingent. More simply, age may determine the intensity of a second trigger that is required
to elicit terminal investment. Due to the difference in residual reproductive value between
young and old individuals, the intensity of a terminal investment trigger should be lower for
older individuals (i.e., a lower terminal investment threshold than for younger individuals).
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Indeed, evidence of an age-dependent terminal investment threshold, as demonstrated by
statistically significant interaction effects of age and treatment on reproductive effort, has
been shown in previous studies (Table 3; supplementary table S3), even if these have not
been explicitly situated within the framework of a dynamic terminal investment threshold.
For example, Velando et al. (2006) demonstrated that the reproductive success of male blue-
footed boobies (Sula nebouxii) declines with age. However, immune-challenged older males
exhibited a 98% increase in reproductive output compared with old control males, whereas
the reproductive success of immune-challenged younger males decreased relative to young
control males. This significant interaction between age and another cue of reduced residual
reproductive value (immune challenge) on the outcome of reproductive effort is indicative of
a dynamic threshold in the propensity to terminally invest. Other studies have found similar
significant interactions with age in birds, fish, and insects (Table 3). In some cases, extrinsic
threat cues may not interact with age. For example, female burying beetles (Nicrophorus
vespilloides) treated with inactivated bacteria (Micrococcus lysodeikticus) produced heavier
broods compared with control females, but this effect was observed regardless of female age
(Cotter et al. 2010). However, further work using a spectrum of infection cues, including
lower doses, would be required to determine whether the apparent absence of age-dependent
terminal investment in this species is real, or is due instead to a relevant, but variable,
infection cue threshold being exceeded in all age groups.

While age likely represents a widespread intrinsic factor underlying a dynamic terminal
investment threshold, numerous other factors are likely to fine-tune the thresholds for focal
triggers. For example, genetic differences in life histories and reproductive effort may also
play an important role in determining an individual’s propensity to terminally invest.
Although this has not yet been tested explicitly, several studies have incorporated different
clonal lines in the examination of reproductive effort following experimental manipulation
of extrinsic mortality cues (e.g., the concentration of alarm cues) influencing residual
reproductive value in both pea aphids (Acyrthosiphon pisum) and water fleas (Daphnia
magna) (Table 3). These studies have revealed considerable variation in the response to these
cues between lines and across treatments, demonstrating that a genotype-by-environment
interaction may play a particularly important role in determining the terminal investment
threshold. Superimposed on this genetic variation, the presence or absence of symbionts may
also influence the terminal investment threshold, as these can modify the host’s life history
phenotype by causing numerous physiological, morphological, and even behavioral changes
(e.g., Leonardo and Mondor 2006). Symbionts in aphids have been shown to significantly
influence how hosts alter reproductive investment following a decrease in residual
reproductive value (Barribeau et al. 2010). Interactions involving numerous other individual-
level traits (e.g., body size, mating history, confidence of paternity) abound (Table 3;
supplementary table S3).

In addition to intrinsic factors such as age and genotype, environmental factors that
influence residual reproductive value may act as supplementary determinants of the
propensity to terminally invest following exposure to a focal terminal investment trigger
(Table 3). For example, when in isolation, captive zebra finches ( Taeniopygia guttata)
injected with LPS engaged in classic ‘sickness behavior’ (e.g., lethargy, loss of appetite)
relative to vehicle-injected controls, ostensibly to enhance survival in the face of an immune
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challenge; however, there was no effect of LPS injection on activity or time spent resting
when in a group setting and in the presence of potential mates, despite similar underlying
physiological responses to LPS in the two social settings (Lopes et al. 2012). Thus, multiple
intrinsic and extrinsic factors, including the social environment and mate availability, can
clearly interact to shape the propensity of individuals to increase mating activity in the face
of a mortality cue.

At a coarse level, seasonal effects likely constitute an especially important extrinsic factor
because they comprise both abiotic (e.g., photoperiod, temperature, precipitation) and biotic
(food and/or mate availability, predator abundance) environmental factors that can influence
reproduction. Indeed, many species exhibit seasonal variation in reproductive output, often
to increase survival to a later, more favorable, season for breeding (Baker 1938; Cockrem
1995). It follows, then, that season may influence an individual’s terminal investment
threshold, especially in seasonal breeders. A significant interaction between season and
reduced residual reproductive value (specifically age) has been demonstrated for several
reproductive traits (including reproductive allotment to clutch, clutch size, and offspring dry
mass) in Western mosquitofish (Gambusia affini) (Billman and Belk 2014; Table 3;
supplementary table 3). Specifically, younger fish decreased reproductive investment over
the season, whereas older fish increased investment, suggesting that younger individuals
adopt a strategy of reproductive restraint, whereas older individuals exhibit terminal
investment (Billman and Belk 2014; (Billman and Belk 2014; Table 3; supplementary table
3). However, such a pattern may also be explained by experience, if older breeders are better
at coping with poor environmental conditions or the reproduction-survival trade-off. Thus,
disentangling the myriad factors influencing between-individual differences in reproductive
effort requires an experimental approach.

Future avenues for investigating terminal investment

Although the current empirical evidence in support of a dynamic terminal investment
threshold is compelling (Table 3; supplementary table S3), it is still fairly limited in scope.
To better understand why evidence for terminal investment is often equivocal, or even
conflicting, both among and within studies, future research should pay particular attention to
the form and intensity of the focal cue of reduced residual reproductive value (i.e., the
terminal investment trigger), other intrinsic and extrinsic factors that might further affect
residual reproductive value, and the specific reproductive traits of interest that are measured.
One pattern that seems to be emerging is that increases in reproductive effort are frequently
observed in some traits, but not in others (supplementary tables S1-S3). One possible
explanation for this is that traits may differ in their flexibility to respond to reduced residual
reproductive value. Consequently, it is important to consider the plasticity of the
reproductive traits of interest when seeking to document terminal investment. Similarly, this
review highlights the importance of considering both the form and intensity of cues that
signal reduced residual reproductive value. Therefore, further investigation into the
propensity of certain cues to alter reproductive effort may prove illuminating. For instance,
studies that incorporate both active and inactivated pathogens (Adamo 1999), different
strains of pathogens (Sanz et al. 2001), or different cues altogether (Barribeau et al. 2010),
can provide valuable information about how, and under what circumstances, individuals
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differentially respond. It is important to note that there may also be taxonomic constraints to
the expression of terminal investment. For example, mammals or other groups with
prolonged parental care may be the least likely to exhibit terminal investment (e.g., high risk
of vertical transmission of pathogens during gestation and lactation, prolonged periods of
offspring production and parental care necessitating parental survival beyond offspring
production). Our incomplete understanding of these constraints may explain the lack of clear
examples of terminal investment in within some groups.

Theoretical modeling of the evolution of plastic life history strategies can aid in the
discovery of the conditions under which terminal investment will be favored by selection.
Only recently have studies attempted to theoretically define these conditions (Gandon et al.
2002; Bonds 2006; Javoi$§ 2013, Leventhal et al. 2014; Luu and Tate 2017). For example,
Luu and Tate (2017) examined the competing strategies of somatic maintenance and
terminal investment using a model in which investments in these traded off differentially
with other life history traits. They determined that the trade-off between reproduction and
maintenance drives directional selection for either terminal investment or maintenance,
depending on the cost of reproduction to an individual’s survival, and that diversifying
selection leading to coexistence of divergent strategies is favored under particular conditions
(i.e., when virulence of the pathogen invoking a response is low and the cost of reproduction
by the host is high) (Luu and Tate 2017). This study highlights further the context-dependent
nature of both the evolution and expression of terminal investment. For example, the
bifurcation of strategies shown under certain parameter values could lead to genotype-
dependent terminal investment, as mentioned earlier. Additional theoretical approaches are
needed to expand predictions related to thresholds of terminal investment triggers and
dynamic terminal investment thresholds.

A major gap in the literature is the almost complete absence of testing for terminal
investment outside of animal taxa. There is no obvious a priorihypothesis for why terminal
investment should be taxonomically constrained, and thus broader taxonomic coverage
might provide additional novel and valuable insights, along with systems that might be more
amenable to further study. The potential for this is demonstrated by work on Pseudomonas
fluorescens (SBW25), which was found to exhibit transient increases in population growth
rate induced by lytic DNA phage (SBW25®2) binding, consistent with predictions of the
terminal investment hypothesis, (Poisot et al. 2013). However, this was accompanied by
decreased size of daughter bacterial cells, which may reflect constraints on terminal
investment due to a trade-off between number and quality of progeny. This is the only study
of which we are aware that investigates these inducible responses following reduced residual
reproductive value in bacteria, although results from studies like these could have potentially
important consequences for applied fields such as medicine and epidemiology. Indeed,
recent work has demonstrated that parasites can adopt a terminal investment response to
environmental stressors, including pharmacological treatments or host immune responses.
For example, malaria parasites (Plasmodium spp) divert resources from within-host
replication to the production of transmission stages (gametocytes) in response to high doses
of antimalarial drugs (reviewed in Carter et al. 2013). Multicellular parasites have also been
shown to increase immediate fecundity in harsh environments (e.g., nematodes in response
to a sudden rise of pro-inflammatory cytokines of the host; Guivier et al. 2017).
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Although age-related shifts in reproductive investment have been well studied in plants (e.g.,
Thomas 2011), seldom have tests of terminal investment been applied to these systems,
despite their tractability and amenability to experimental manipulation. Root herbivory in
mustard (Sinapis arvensis), for example, led to an increase in the number of visits per flower
by pollinators (Poveda et al. 2003), analogous to changes in sexual attractiveness seen in
animals facing a mortality cue (e.g., Sadd et al. 2006), whereas above-ground herbivory and
a combination of above- and below-ground herbivory reduced reproductive output (Poveda
et al. 2003). Thus, plant systems may provide a compelling arena in which controlled
experiments can disentangle the numerous extrinsic and intrinsic influences on the terminal
investment threshold.

A major obstacle in moving the field forward is the lack of knowledge concerning the
mechanisms that precipitate terminal investment. Although potential mechanisms have been
proposed for some systems (e.g., Bowers et al. 2015), this void needs to be filled, and likely
requires greater integration of molecular and physiological approaches in studies of life
history evolution. Advances may also be made by investigating other traits aside from
reproduction that are influenced by strategic shifts in allocation toward competing life
history demands. Although evidence for terminal investment comes chiefly from changes in
reproductive effort, the terminal investment hypothesis predicts that increased reproductive
effort following reduced residual reproductive value also comes at a cost to investment in
other life history traits, including growth and survival. Mechanistic studies (i.e., those that
assess the allocation of resources following decreases in RRV) could also be particularly
important for uncovering potential cryptic terminal investment. For example, under some
conditions (e.g., particularly advanced infection) it may be impossible for individuals to
increase reproductive investment relative to uninfected individuals (e.g., due to a loss of
homeostasis); however, their relative decrease in fecundity may be less compared with
individuals who do not terminally invest.

Conclusions

The strategy of terminal investment has received widespread support, and has been
documented across an array of taxa and evoked by a variety of cues that signal reduced
residual reproductive value. However, equivocal, and sometimes conflicting, results also
abound, and the various outcomes observed across studies may reflect, in part, the traits that
are measured, how the responses affect individual fitness, differences in methodology, and
system-specific constraints on plasticity. However, much of this ambiguity can be resolved
within the conceptual framework of a dynamic terminal investment threshold, which
considers both the internal state of the individual and extrinsic factors that determine the
optimal response to a mortality cue, situating this important life history decision within a
more realistic backdrop of environmental heterogeneity. The further characterization of the
dynamic terminal investment threshold is greatly in need of empirical studies that include
multiple factors influencing residual reproductive value along a graduated spectrum of cues
that facilitate the detection of the interactions indicative of a dynamic threshold.
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Fig 1.

Prgdictions based on intrinsic residual reproductive value (RRV) from the dynamic terminal
investment threshold model. At low threat levels, individuals invest intermediately in
reproduction to balance the reproduction-immunity trade-off. As a threat increases,
investment in immunity increases to combat the threat. Thus, costs of immunity necessitate a
decreased reproductive investment. At high threat levels, past where resistance is ineffective
(terminal investment threshold, vertical dashed line), a terminal investment strategy of
increased reproductive investment is predicted. Intrinsic RRV is expected to influence this
threshold, with the threshold dropping as intrinsic RRV decreases.
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