Skip to main content
. Author manuscript; available in PMC: 2019 Jul 6.
Published in final edited form as: Org Lett. 2018 Jun 11;20(13):3853–3857. doi: 10.1021/acs.orglett.8b01440

Table 1.

Optimization of the Reaction Conditionsa

graphic file with name nihms973475u3.jpg
entry acid / base oxidant atmosphere solvent yieldb
1 KHCO3 DMBQ air HFIP (59)
2 KHCO3 benzoquinone air HFIP (34)
3 KHCO3 dimethoxybenzoquinone air HFIP (7)
4 AcOH DMBQ air HFIP n.d.
5c KHCO3 DMBQ air HFIP (40)
6 K2HPO4 DMBQ air HFIP (42)
7 iPr2NEt DMBQ air HFIP (30)
8 KHCO3 DMBQ air tAmylOH (10)
9 KHCO3 DMBQ air DMF (5)
10 KHCO3 DMBQ air dioxane (10)
11d KHCO3 DMBQ air HFIP (12)
12e KHCO3 DMBQ air HFIP (14)
13f KHCO3 DMBQ air HFIP (23)
14 KHCO3 DMBQ N2 HFIP n.d.
15 KHCO3 DMBQ O2 HFIP 65
16 KHCO3 DMBQ (0.5 equiv) O2 HFIP 50
17 KHCO3 DMBQ (2.0 equiv) O2 HFIP 80
18 KHCO3 DMBQ (3.0 equiv) O2 HFIP 73
a

Reaction conditions: 1a (0.1 mmol), 2a (1.5 equiv), Pd(OAc)2 (10 mol %), oxidant (1.5 equiv), base (1 equiv), solvent (0.2 mL), 100 °C, 12–16 h.

b

Isolated yield. Values in parentheses represent yields determined by 1H NMR analysis of the crude reaction mixture using 1,3,5-triisopropylbenzene as internal standard.

c

KHCO3 (0.5 equiv).

d

120 °C.

e

80 °C.

f

4Å molecular sieves as additive.