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Abstract

Purpose—To assess the potential ocular toxicity of a combined BRAF inhibition (BRAFi) + 

MEK inhibition (MEKi) + hydroxychloroquine (HCQ) regime used to treat metastatic BRAF 

mutant melanoma.

Methods—Patients with stage IV metastatic melanoma and BRAF V600E mutations (n = 11, 

31–68 years of age) were included. Treatment was with oral dabrafenib, 150 mg bid, trametinib, 2 

mg/day, and HCQ, 400 mg to 600 mg bid. An ophthalmic examination, spectral domain optical 

coherence tomography, near-infrared and short-wavelength fundus autofluorescence, and static 

perimetry were performed at baseline, 1 month, and q/6 months after treatment.

Results—There were no clinically significant ocular events; there was no ocular inflammation. 

The only medication-related change was a separation of the photoreceptor outer segment tip from 

the apical retinal pigment epithelium that could be traced from the fovea to the perifoveal retina 

noted in 9/11 (82%) of the patients. There were no changes in retinal pigment epithelium 

melanization or lipofuscin content by near-infrared fundus autofluorescence and short-wavelength 
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fundus autofluorescence, respectively. There were no inner retinal or outer nuclear layer changes. 

Visual acuities and sensitivities were unchanged.

Conclusion—BRAFi (trametinib) + MEKi (dabrafenib) + HCQ causes very frequent, subclinical 

separation of the photoreceptor outer segment from the apical retinal pigment epithelium without 

inner retinal changes or signs of inflammation. The changes suggest interference with the 

maintenance of the outer retinal barrier and/or phagocytic/pump functions of the retinal pigment 

epithelium by effective MEK inhibition.
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Metastatic cutaneous melanoma is a disease with a historically poor prognosis.1–4 

Approximately half of patients with metastatic melanoma have mutations in BRAF, a gene 

that encodes a serine–threonine protein kinase that regulates cell proliferation, 

differentiation, and apoptosis pathways through activation of a mitogen-activated 

extracellular signal-regulated kinase (MEK).1,2,4–9 Initial success of BRAF inhibition for 

advanced BRAF V600 mutant cutaneous melanoma was soon overshadowed by resistance.
10–12 Combined MEK + BRAF inhibition was subsequently introduced to try to overcome 

treatment resistance, which resulted in significantly improved survival, although the 

anticancer efficacy is still hampered by heterogeneous mechanisms of resistance, such as 

autophagy.1,2,4,13–17

Ocular side effects associated with MEK and BRAF inhibition, alone or in combination, are 

particularly concerning, as they can drastically impact the quality of life of patients 

benefitted by these life-prolonging treatments.18–20 As a class, MEK inhibitors (MEKi) have 

been linked to a number of ocular adverse events, such as neurosensory serous detachments, 

cystoid macular edema, retinal vein occlusions, retinal hemorrhages, and panuveitis.21–28 

BRAF-inhibition (BRAFi), however, has shown predominance for abnormalities of the 

anterior segment including anterior uveitis, conjunctivitis, dry eye syndrome, episcleritis, 

blepharitis, and keratitis, with infrequent reports of posterior segment involvement as retinal 

vein occlusions.29–32 The increasing incidence of cutaneous melanoma and the prolonged 

life expectancy of patients as a result of the success of the new anticancer treatments may 

lead to an increased recognition of MEK-inhibitor associated retinopathies (MEKAR) as 

well as of retinal paraneoplastic syndromes.21–28,30–43 Hydroxychloroquine (HCQ), an 

autophagy inhibitor, has been used to potentiate the anticancer efficacy of MEKi + BRAFi in 

the treatment of metastatic mutant cutaneous melanomas.13,44–46 Adding HCQ, a potentially 

retinotoxic medication, however, poses additional concerns, especially at a time when the 

mechanisms mediating retinotoxicity associated with MEK and BRAF inhibition remain 

incompletely understood.43,47–49

In this study, we prospectively monitored and analyzed in detail the retinal structure and 

function of the first 11 patients enrolled in an ongoing Phase I/II clinical trial that tested a 

combination of BRAFi + MEKi + HCQ as treatment for advanced metastatic mutant 
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melanoma. The goal was to assess the ocular safety profile of this new treatment 

combination and increase our understanding of the pathophysiology of the retinal changes 

associated with MEK + BRAF inhibition.

Methods

Patients with histopathologically confirmed stage IV metastatic melanoma and BRAFV600E 
mutations were enrolled in an open-label, Phase I/II clinical trial (ClinicalTrials.gov 

Identifier: NCT02257424). Treatment was with oral dabrafenib, 150 mg twice daily, 

trametinib, 2 mg daily, and HCQ, 400 mg to 600 mg twice daily. Anticancer therapies were 

allowed with the exception of other BRAF or MEK inhibitors. Patients were required to 

have discontinued active immunotherapy or chemotherapy at least 4 weeks before entering 

the study. First enrolled patient dosing took place on December 5, 2014, and recruitment 

continues. BRAFi/MEKi/HCQ medications were withheld in two patients after the 1 month 

visit because of systemic side effects (Table 1). The methodology described in this 

manuscript is limited to that needed for the longitudinal/prospective ocular evaluations and 

analyses performed at the University of Pennsylvania, one of the sites of this 

multiinstitutional study. Ocular toxicity was assessed at baseline, 1 month, and then every 6 

months with a complete ophthalmic examination, central visual field sensitivity 

measurements and multimodal retinal imaging. Informed consent was obtained after 

explanation of the nature of the study; procedures complied with the Declaration of Helsinki 

and were approved by the institutional review board.

Visual acuity was measured with early treatment diabetic retinopathy study charts, color 

vision with the Farnsworth-Munsell dichotomous D15 test and visual sensitivities with light-

adapted automatic perimetry using a conventional 10-2 testing protocol (size III white 

stimuli, full-thresholding strategy) (HFA II-i; Carl Zeiss Meditec, Dublin, CA). Spectral 

domain (SD) optical coherence tomography (OCT) and en face short-wavelength (SW) and 

near-infrared (NIR) fundus autofluorescence (FAF) imaging was performed with a scanning 

laser ophthalmoscope/OCT system (Software Version 6.0; Spectralis OCT/HRA, Heidelberg 

Engineering, Carlsbad, CA) system. Spectral domain OCT scanning was performed with 9 

mm long horizontal sections crossing the anatomical fovea and with a 30° × 20° raster scan. 

Segmentation of SD-OCT images was performed with the built-in segmentation software of 

the OCT system supervised to ensure correct identification of the different laminar 

boundaries.50 Retinal thickness was defined as the distance between the signal transition at 

the vitreoretinal interface (from the internal limiting membrane) and the posterior boundary 

of the major signal corresponding to the basal retinal pigment epithelium (RPE)/Bruch 

membrane complex (RPE/BrM). The outer nuclear layer was the major intraretinal 

hyporreflective signal bracketed between the outer plexiform layer and the external limiting 

membrane (ELM). The inner retinal thickness was defined as the distance between the 

internal limiting membrane and the outer plexiform layer.50,51 Longitudinal reflectivity 

profiles (LRPs) were generated at locations of interest using custom programs (MatLab 7.5; 

MathWorks) and ImageJ imaging analysis software (http://imagej.nih.gov/ij/links.html).52 

Outer retinal sublaminae were defined as published.50,51,53 Longitudinal reflectivity profiles 

from a region extending 170 µm and centered at 0.5 mm and 1 mm of eccentricity nasal to 

the fovea were averaged.
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Results

Eleven patients, ages 31 to 68 years with stage IV metastatic BRAF V600E mutant stage IV 

metastatic cutaneous melanoma, were included in this study (Table 1). Inclusion and 

exclusion criteria are listed in Supplemental Digital Content 1 (see Table 1, http://

links.lww.com/IAE/A806). Ophthalmologic surveillance was required given the evidence of 

possible side effects existing at initiation of the study in 2014.33 With the exception of one 

patient who was being treated for open-angle glaucoma, all subjects had a normal eye 

examination, visual acuity, visual fields, and retinal appearance on SD-OCT and en face 

imaging at baseline. Although the effects of the use of MEKi + BRAFi on the retina were 

expected to show a rapid onset, the examinations were planned not to burden these fragile 

patients.32 The compromise was to perform a detailed visual examination at baseline, one 

month posttreatment, and then every 6 months as long as there were no signs of concern. 

Patients were instructed to report if they had any changes in vision or ocular discomfort.

Transient Central Retinal Abnormalities

A faint deep yellowish lesion at the foveal center in both eyes was noted on the sixth patient 

(P6) enrolled in the study. The lesion left a circular area of NIR-hypoautofluorescence; SW-

FAF was within normal limits (Figure 1A). At the fovea, there was elevation of the 

neurosensory retina with an intervening hyporreflective lesion between the ellipsoid zone 

(EZ) band and the RPE/BrM complex that may correspond to subretinal fluid (Figure 1B). 

Within this lesion, there was an amorphous hyperreflective signal. Interestingly, inspection 

of the parafoveal and perifoveal retina in this patient at this visit revealed that the 

interdigitation zone (IZ) between photoreceptor outer segment (POS) tip and the apical RPE 

appeared thicker and better defined above the RPE/BrM compared with baseline, which is 

better appreciated on magnified SD-OCT images (Figure 1C). The patient developed 

hyperpyrexia and general malaise and his BRAFi/MEKi/HCQ medications were withheld. 

An examination within 5 days of discontinuation, on his second posttreatment visit (V2) 

showed nearly total resolution of the structural changes and yellowish lesion, consistent with 

previously reported fast kinetics of this side effect.32

Central Retinal Structure and Function During Treatment With MEKi + BRAFi + HCQ

At the time of recognition of the change in P6, reports on MEKi-associated retinal serous 

detachments and cystoid macular edema were beginning to emerge, which prompted a 

careful examination of each patient enrolled in this study.35,54 All patients remained visually 

asymptomatic. Visual acuity, central visual fields, and ocular examinations were 

unremarkable in all patients until the last available follow-up visit (Table 1). Two patients 

(P1 and P6) died of complications from their metastatic cancer and completed partial follow-

up ophthalmic evaluations. Visual acuities and central field sensitivities by automated light-

adapted static perimetry were not significantly different from baseline (P < 0.05). Color 

vision also remained normal 6 months after initiation of treatment in seven patients (P1, P2, 

P4, P6, P7, P8, and P10) tested. Close inspection of magnified SD-OCT cross-sections at the 

Visit 1 (V1) ~30 days posttreatment initiation compared with baseline disclosed a spectrum 

of changes that resembled milder forms of the abnormalities described in P6 (Figure 2A). 

The abnormalities, unlike those now recognized as MEKAR, could easily scape the trained 
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eye.32 Although the changes were most obvious at the foveal center, there was similar 

dissection between the IZ and RPE/BrM signal in the parafovea with the emergence of a 

well-defined IZ signal. The outer retinal lamination was otherwise undisturbed. Except for 

P6 where subretinal fluid was evident at the fovea, there was no evidence of obvious 

subretinal fluid or cystoid changes in any of the patients.

To localize the origin of the changes, LRPs from a location in the nasal parafovea were 

generated in each of the patients (Figure 2B). At baseline, the series of highly reflective 

bands that correspond to the ELM and signals distal to the ELM produce several peaks in the 

magnified LRPs (Figure 2B). Two inner peaks (1-ELM and 2-EZ) are clearly separated 

between well-defined troughs, whereas the other two peaks corresponding to the IZ and 

RPE/BrM appear as two peaks with an intervening shallow trough. At V1, the ELM and EZ 

signals are distanced from the RPE/BrM with the emergence of a clear trough between the 

IZ and RPE/BrM signal. In some patients, the LRPs waveform showed four clear peaks 

separated by three unmistakable troughs (Figures 2, P6, P5, P2, and P8). Interestingly, at 6 

months, the LRP waveform reverted to baseline in some patients (e.g., Figures 2B, P6 and 

P5). Although the IZ band appears thickened in Figure 2A in most patients, the LRP 

segment that corresponds to the IZ signal appears to be unchanged in shape. There were no 

signs of ocular inflammation, pigment epithelial detachments, grossly distorted POSs, or 

obvious signs of subretinal accumulation of material. There were no reports of vision loss, 

ocular discomfort, or of visits to outside ophthalmologists because of ocular concerns in 

between the scheduled examinations.

Topography and Primary Site of the Outer Retinal Abnormalities

To determine the topographical distribution of the structural changes across the central 

retina, maps of the thickness of the EZ-to-RPE/BrM distance were generated for all patients 

at V1 and compared with baseline (Figure 3). Topography maps at baseline in the patients 

did not differ from normal subjects with slightly greater thicknesses inside 1.2 mm of the 

foveal center (normal mean ± 2 SD = 45 ± 3 µm, n = 73) and thinner values at locations >1.2 

mm from the foveal center with little variation in thickness (39 ± 2 µm) with increasing 

distance from the foveal center. At V1, nearly all patients (except P1) showed increased EZ-

to-RPE/BrM thickness at the fovea, with thickening extending mostly in the horizontal 

direction into the parafoveal and perifoveal retina. In some (P5, P6, and P8), there was some 

thickening extending into the superonasal quadrant. We next examined if there were any 

structural changes at the level of the RPE. For this, we used SW- and NIR-FAF which 

reflects the lipofuscin, melanin, and melanolipofuscin content within the RPE cells. There 

were no obvious changes on SW-FAF (see Figure 1, Supplemental Digital Content 2, http://

links.lww.com/IAE/A808). Near-infrared FAF showed central hypoautofluorescence 

coinciding with the increased thickness of the EZ-to-RPE/BrM distance near the foveal 

center, which may reflect greater absorption of the infrared excitation light by the structural 

change occurring superficial to the RPE. The parafoveal–perifoveal retina showed a normal 

NIR-FAF appearance (see Figure 2, Supplemental Digital Content 3, http://

links.lww.com/IAE/A809). These data suggest changes posttreatment were not limited to the 

foveal center, became less obvious over time, did not affect RPE melanization and likely did 
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not result in major dropout of POSs that would have resulted in changes in the lipofuscin 

content of the RPE detectable by SW-FAF.

The otherwise evenly laminated outer retina in the parafoveal region of patients 

demonstrating that the greatest changes in thickness were used to define the site of the 

primary abnormality. Longitudinal reflectivity profiles from the parafoveal location at V1 

(Figure 4A, gray traces) were superimposed on LRPs from the same location obtained at 

baseline, before treatment initiation (Figure 4A, black traces). The first hyperreflective band 

superficial to the RPE’s main peak has been attributed to the interdigitation of these two 

structures lending the OCT signal its conventional name of “IZ band.”55 The waveforms 

perfectly overlapped from the ELM to the IZ peak. A clear trough (Figure 4A, asterisks) 

deeper to the IZ signal clearly separated the IZ signal from a distanced RPE/BrM peak. The 

distance between the EZ and the IZ remained unchanged. The findings suggested that the 

parafoveal POS was unchanged and only distanced from the apical RPE, and demonstrated 

that the IZ band’s signal is dominated by the POS tip and not by its interdigitation with the 

apical RPE.

We next tested the significance of the changes by focusing on comparisons of the foveal 

center and parafoveal (1.7 mm) locations in all patients compared with baseline using 

precise segmentations with the help of the LRPs generated at these locations. The thickness 

or distance between the EZ and the RPE/BrM interface as well as the distance between the 

EZ and the IZ were measured in all patients at the foveal center and in the parafoveal retina 

and plotted as a function of time after initiation of treatment (Figure 4, B and C). The EZ-to-

RPE parameter represented the overall change in thickness, the EZ–IZ monitors a possible 

change in the POS length. At baseline, the EZ-to-RPE/BrM distance was within normal 

limits in all patients for both retinal locations. At V1, the EZ-to-RPE/BrM thickness became 

abnormally thick in 4/11 patients at the fovea and in 1/11 at the parafoveal location. The 

EZ–IZ distance was within normal limits in all patients and at both locations except for two 

patients (P5 and P8) who showed abnormal thickening at the foveal center. With continuous 

treatment, all values returned to normal limits at the V2 (180 days posttreatment). Although 

values could be within normal limits, there was a clear trend toward thicker values at V1 

posttreatment. The change in thickness was then plotted as the difference between the 

posttreatment value and baseline measurements for each parameter and compared with the 

limits of the variation of the measurements as established in at least two independent SD-

OCT scanning sessions in this cohort of patients at baseline and in normal subjects (Figure 

4C). The graphs showed increased in EZ-to-RPE thickness compared with baseline for 9/11 

patients at the foveal location and in 4/11 for the parafoveal retina with a return to baseline 

values at V2 in all but one patient (P4). The EZ-to-IZ distance was increased at the fovea in 

4/11 patients but remained unchanged for all patients in the parafoveal retina. There were no 

significant changes in inner retinal thickness for any patient or retinal location.

Discussion

The treatment of cancer, in particular metastatic melanoma, is rapidly evolving with the 

recent introduction of molecularly targeted and immunomodulatory therapies.4,5 The 

ultimate success of such therapies depends on striking a balance between these life-
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prolonging therapies and potentially serious adverse events that can force dose modification 

or interruption of treatments and impact the patient’s quality of life. BRAF and MEK 

inhibition have been associated with potentially sight-threatening retinal side effects.
18–32,56–59 In this study, HCQ, a known retinotoxic medication, was added to a combined 

treatment with dabrafenib (BRAFi) and trametinib (MEKi) in an effort to overcome 

treatment resistance.13,44–46,60 We conceived a protocol of ophthalmic monitoring that 

borrowed from the recommendations for the standard of care of patients with chronic 

exposure to HCQ and other retinotoxic agents.49,61 The goal was to provide a preliminary 

glimpse at the ocular safety profile of this new treatment combination and to evaluate the 

short-term risks of potentially sight-threatening complications that could impact the conduct 

of this trial. We found that BRAFi + MEKi + HCQ-associated retinal changes, mostly 

consisting of transient subclinical separation of the POS from the apical RPE across the 

macula, occurred at a similar frequency, and followed a similar timecourse of that reported 

in MEKAR, suggesting a common underlying mechanism.24,32,33,47 The results are also 

consistent with the low rate of clinically significant retinal toxicity reported by the largest 

studies of combined dabrafenib + trametinib therapy to date.35,54,62,63 There were no 

changes in vision and no evidence of ocular inflammation in any of the patients, contrasting 

with cases of symptomatic central serous chorioretinopathy reported in association with 

MEK inhibition and ocular inflammation after BRAF inhibition.1,27,31,33,62 We speculate 

that this specific combination (dabrafenib + trametinib + HCQ) may be associated with less 

frequent ocular side effects than other MEKi + BRAFi combinations.27,32,33 It is also 

possible that certain patients may be particularly prone to develop more severe abnormalities 

and that we, by chance, did not enroll such patients, an obvious limitation of this small 

study.34 Longitudinal observations in larger groups of patients treated with this specific 

regime, evaluated in a similar manner and compared with appropriate controls are needed to 

confirm the prevalence and significance of these early observations.

The mechanisms by which MAPK/MEK inhibitors produce serous retinopathy remain to be 

elucidated.24,43,47–49 Separation of the tip of the POS from the apical RPE across the 

macula, with minor elongation of an otherwise normal appearing POSs observed in our 

study points to the RPE as the primary retinal target of the effects of the medications. We 

found no evidence of inner retinal thickening, which may be expected to occur if the inner 

retinal barrier became incompetent.64 The changes instead suggest interference with the 

maintenance of the outer retinal barrier and/or phagocytic/pump function of the RPE. 

Involvement of aquaporin (AQP1) channels in RPE cells after MAPK-inhibition has been 

invoked as a possible mechanism of subretinal fluid accumulation.47 However, recent in 

vitro experiments suggest that MEK-inhibition would cause upregulation of AQP1 channels 

and thus prevent, rather than cause, subretinal fluid accumulation.65 Lengthening of the POS 

at the fovea in some patients suggests interference with the phagocytic and/or pump function 

of the RPE or POS renewal, as postulated for patients with drug-induced retinopathies, 

central serous chorioretinopathy, and forms of retinal degenerations.44,66–72 However, the 

confirmation of a normal POS structure and length in the perifoveal retina that showed the 

separation between the POS and the RPE is somewhat against this hypothesis. The 

subretinal material observed in P6 may represent unphagocytized POS because of a 

defective apposition of the apical RPE and the tip of the POS because of interposed fluid, 
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rather than a primary phagocytic defect.73,74 The predilection for the foveal region may be 

explained by increased functional load on foveal RPE cells imposed by higher 

photoreceptor-to-RPE cell ratios near the foveal center.74 Abnormal maintenance of the 

outer retinal barrier and/or pump function of the RPE remain the most likely explanations.64 

Last, there is some evidence in support that antiretinal, anti-RPE, or antibestrophin 

antibodies triggered by MAP kinase inhibition may be responsible for melanoma-associated 

retinopathy with serous detachments as well as in acute exudative polymorphous vitelliform 

maculopathy, conditions that can share a similar, although not identical structural outcome.
42,65,75 Animal experiments complemented by in vitro studies of the function of the RPE in 

relationship to the POS in the presence of each individual drug or combinations are needed 

to test these hypotheses.

The origin of the different outer retinal signals on SD-OCT has been subject to scrutiny 

because of the importance that the underlying structures have for vision.53,76 The signal 

attributed to the IZ corresponds to the contact cylinder of the POS, but there has been 

speculation as to whether this signal originates from light scattering from within the tip of 

the POS or by interaction with surrounding outer segments or melanin within the apical 

RPE.53,77,78 The emergence on longitudinal follow-up of a deeply hyporreflective signal 

between the parafoveal IZ band and the apical RPE with an otherwise intact retinal 

lamination in our patients presented a unique opportunity to reexamine the signal origin of 

the SD-OCT bands in the outer retina, particularly the IZ.52,53,55,77,79–86 The signal peak 

that corresponds to the IZ clearly separated from the RPE peak by a deep trough, adding 

support to the notion that the IZ band is dominated by signals originating from the POS tip.
53,77,78 We could not discriminate between rod- versus cone-originated outer segment 

signals with the resolution of the system used in this work, and this may be a subject of 

further enquiry. The findings have implications beyond the academic exercise of signal 

origin analyses. By unambiguously placing the IZ signal at the POS tip, loss of the IZ signal 

in early stages of several retinal degenerations may be specifically linked to a POS 

abnormality and not be attributed to changes in the RPE, such as defects in RPE 

melanization, as may occur, for example, in albinism, choroideremia, and Bietti fundus 

dystrophy.50,87,88

Normality of the RPE melanin and lipofuscin content in our patients as assessed with NIR- 

and SW-FAF, respectively, coupled with a normal photoreceptor structure and vision, 

supports no acute HCQ toxicity.49 The magnitude and nature of the retinal changes observed 

in this study may be considered a transient modification of the retinal physiology rather than 

a bona fide adverse event with permanent sequelae. This preliminary analysis supports the 

retinal safety of this new treatment combination, but it may be still prudent to perform 

baseline and periodic evaluations, which may follow, at least initially, the standard of care 

recommendations for HCQ monitoring, a well known, although evolving model to assess 

medication-related retinotoxicity.49 Although no obvious relationship has been found 

between the occurrence of clinically significant central serous chorioretinopathy and overall 

cancer survival, further studies are warranted to explore the utility of SD-OCT imaging and 

quantitation as an in vivo microscopic biomarker of effective MEK/BRAF inhibition.47
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A. En face retinal imaging of the RPE melanin content using NIR-FAF, and lipofuscin 

content with SW-FAF in a patient with the most prominent abnormalities. Images were 

obtained at baseline (BSL) and at a visit (V1), when retinal changes were first noted. Arrow 

in NIR-FAF V1 points to the foveal center. B. Six millimeter long horizontal SD-OCT cross-

sections through the fovea in the patient at BSL, V1, and 6 days (V2) after discontinuation 

of the study medications because of systemic side effects. Nuclear layers are labeled (outer 

nuclear layer [ONL]; inner nuclear layer [INL]; ganglion cell layer [GCL]). Outer 

photoreceptor/RPE laminae are numbered to the side of the BSL image: 1, ELM; 2, EZ; 3, 

IZ; and 4, RPE/BrM. C. Magnified images corresponding to regions delimited by white 

squares in (B) show details of the outer photoreceptor and RPE/BrM structure.
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Fig. 2. 
A. Spectral domain OCT cross-sections from the fovea to 1.4 mm in the nasal retina in 8 of 

the patients at baseline (BSL), Visit 1 (V1, 30 days posttreatment initiation), and Visit 2 (V2, 

180 days posttreatment, 6 days after treatment discontinuation for P6). Patients are ordered 

from top to bottom by the magnitude of the structural abnormalities. Only the right eye 

shown for clarity. B. Longitudinal reflectivity profiles obtained from the region area (0.9 mm 

in the nasal retina) boxed in (A). Longitudinal reflectivity profiles are normalized to the 

RPE/BrM signal amplitude. Dashed lines connecting RPE/BrM peaks provide a reference; 

arrows visually connect the location of the IZ signal from baseline to Visit 1 (V1).
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Fig. 3. 
Topography of the outer retinal changes after MEK/BRAF inhibition. Shown are 30° × 25° 

topography maps of the distance (or thickness) between the internal limiting membrane and 

the RPE/BrM layer defined by SD-OCT in 8 of the patients at their baseline (BSL) visits 

compared with a visit (V1) ~30 days after initiation of the clinical trial medications. Only 

the right eye shown for clarity. Thickness values (in µm) are mapped to a color scale (bottom 

right). Superimposed is an early treatment diabetic retinopathy study grid centered at the 

foveola. Concentric circles of increasing radii divide the central macula in subfields: Central 

(500 µm radius), inner parafoveal (1,500 µm), and outer perifoveal (3,000 µm).
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Fig. 4. 
Timecourse of the structural changes. A. Longitudinal reflectivity profiles of the outer retinal 

sublaminae obtained from the nasal parafovea pretreatment (Pre-TX) are overlaid on LRP 

from visit 1 (gray traces), ~30 days after medication onset of representative patients. Arrows 

point to the IZ signal peak as an independent component separated by a trough (asterisk) 

from the RPE. The traces overlap perfectly in the segment between the EZ and the IZ 

supporting no changes in POS length. B. Timecourse of the foveal and parafoveal (1.5 mm 

of eccentricity) changes in thickness for the EZ-to-RPE/BrM and EZ-to-IZ layer distances. 

The latter relates to the length of the POS. Dashed lines are normal mean ± 2 SD (n = 68, 
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ages 8–61 years). C. Timecourse of the foveal and parafoveal (1.5 mm of eccentricity in the 

nasal retina) thickness expressed as a difference between the value on a given study date and 

measurements pretreatment. Dashed lines define mean ± 2 SD of the intervisit variability of 

the parameter determined at baseline visits and in normal subjects.

Nti et al. Page 18

Retina. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nti et al. Page 19

Ta
b

le
 1

C
lin

ic
al

 C
ha

ra
ct

er
is

tic
 o

f 
Pa

tie
nt

s

St
ud

y 
ID

A
ge

 a
t

E
nr

ol
lm

en
t

V
is

ua
l A

cu
it

y*
B

as
el

in
e

V
is

ua
l A

cu
it

y*

F
ol

lo
w

-u
p‡

R
ef

ra
ct

io
n†

F
ov

ea
l S

en
si

ti
vi

ty
B

as
el

in
e 

(d
B

)
F

ov
ea

l S
en

si
ti

vi
ty

F
ol

lo
w

-u
p 

(d
B

)‡
M

ea
n 

D
ef

ec
t

B
as

el
in

e 
(d

B
)

M
ea

n 
D

ef
ec

t 
F

ol
lo

w
-

up
 (

dB
)‡

R
E

L
E

R
E

L
E

R
E

L
E

R
E

L
E

R
E

L
E

R
E

L
E

R
E

L
E

P1
30

20
/2

0
20

/2
0

20
/2

0
20

/2
0

Pl
an

o
Pl

an
o

34
34

38
38

−
1.

70
−

1.
44

+
1.

20
+

1.
02

P2
57

20
/2

0
20

/2
0

20
/2

0
20

/2
0

−
0.

25
+

0.
12

36
36

na
na

+
1.

40
+

0.
91

+
1.

61
+

1.
13

P3
52

20
/2

0
20

/2
0

20
/2

0
20

/2
0

+
0.

50
+

0.
50

na
na

na
na

−
0.

08
−

0.
59

−
3.

75
−

3.
54

P4
61

20
/2

0
20

/2
0

20
/2

0
20

/2
0

−
6.

25
−

6.
75

29
31

na
na

na
na

+
2.

16
+

1.
48

P5
60

20
/2

0
20

/2
0

20
/2

0
20

/2
0

+
1.

00
+

1.
00

37
37

32
34

+
1.

57
+

1.
37

+
0.

06
+

0.
10

P6
59

20
/2

0
20

/2
0

20
/2

0
20

/2
0

−
1.

00
Pl

an
o

na
na

34
32

+
1.

47
+

0.
84

+
1.

59
+

1.
31

P7
53

20
/2

0
20

/2
0

20
/2

0
20

/2
0

−
0.

25
Pl

an
o

33
33

35
34

−
1.

34
−

2.
32

−
1.

34
−

1.
68

P8
69

20
/2

0
20

/2
0

20
/2

0
20

/2
0

+
0.

25
+

0.
75

na
na

32
36

−
0.

04
+

0.
29

+
0.

88
+

0.
85

P9
65

20
/4

0
20

/2
0

20
/2

5
20

/2
0

+
2.

00
+

2.
00

na
na

31
33

−
0.

93
−

0.
71

−
2.

78
−

1.
57

P1
0§

68
20

/2
0

20
/2

5
20

/2
0

20
/2

5
+

1.
75

+
2.

00
35

28
38

30
−

3.
77

−
23

.5
9

+
0.

50
−

17
.0

7

P1
1

51
20

/2
0

20
/2

0
20

/2
0

20
/2

0
−

0.
25

+
0.

12
33

34
na

na
−

0.
52

−
0.

04
na

na

* B
es

t-
co

rr
ec

te
d 

vi
su

al
 a

cu
ity

.

† Sp
he

ri
ca

l e
qu

iv
al

en
t.

‡ Fo
llo

w
-u

ps
 a

re
 a

t t
he

 6
-m

on
th

 v
is

it 
(r

an
ge

 1
50

–1
88

 d
ay

s)
 e

xc
ep

t P
6 

w
hi

ch
 w

as
 a

t t
he

 1
-m

on
th

 v
is

it,
 b

ef
or

e 
tr

ea
tm

en
t d

is
co

nt
in

ua
tio

n.
 N

or
m

al
 m

ea
n 

fo
ve

al
 s

en
si

tiv
ity

 ±
 2

 S
D

 =
 3

8 
±

 6
 d

B
.

§ P1
0 

ca
rr

ie
s 

a 
di

ag
no

si
s 

of
 o

pe
n-

an
gl

e 
gl

au
co

m
a 

w
ith

 a
 d

en
se

 a
rc

ua
te

 v
is

ua
l f

ie
ld

 d
ef

ec
t, 

bo
th

 e
ye

s.

L
E

, l
ef

t e
ye

; n
a,

 n
ot

 a
va

ila
bl

e/
no

t p
er

fo
rm

ed
; R

E
, r

ig
ht

 e
ye

.

Retina. Author manuscript; available in PMC 2019 March 01.


	Abstract
	Methods
	Results
	Transient Central Retinal Abnormalities
	Central Retinal Structure and Function During Treatment With MEKi + BRAFi + HCQ
	Topography and Primary Site of the Outer Retinal Abnormalities

	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1

