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Abstract

Propensity score-based estimators are increasingly used for causal inference in observational 

studies. However, model selection for propensity score estimation in high-dimensional data has 

received little attention. In these settings, propensity score models have traditionally been selected 

based on the goodness-of-fit for the treatment mechanism itself, without consideration of the 

causal parameter of interest. Collaborative minimum loss-based estimation is a novel methodology 

for causal inference that takes into account information on the causal parameter of interest when 

selecting a propensity score model. This ‘‘collaborative learning’’ considers variable associations 

with both treatment and outcome when selecting a propensity score model in order to minimize a 

bias-variance tradeoff in the estimated treatment effect. In this study, we introduce a novel 

approach for collaborative model selection when using the LASSO estimator for propensity score 

estimation in high-dimensional covariate settings. To demonstrate the importance of selecting the 

propensity score model collaboratively, we designed quasi-experiments based on a real electronic 

healthcare database, where only the potential outcomes were manually generated, and the 

treatment and baseline covariates remained unchanged. Results showed that the collaborative 

minimum loss-based estimation algorithm outperformed other competing estimators for both point 

estimation and confidence interval coverage. In addition, the propensity score model selected by 

collaborative minimum loss-based estimation could be applied to other propensity score-based 

estimators, which also resulted in substantive improvement for both point estimation and 

confidence interval coverage. We illustrate the discussed concepts through an empirical example 

comparing the effects of non-selective nonsteroidal anti-inflammatory drugs with selective COX-2 

inhibitors on gastrointestinal complications in a population of Medicare beneficiaries.
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1 Introduction

1.1 Purpose

The propensity score (PS) is defined as the conditional probability of treatment assignment, 

given a set of pretreatment covariates.1,2 The PS, which we will denote as g0, is widely used 

to control for confounding bias in observational studies. In practice, the PS is usually 

unknown and PS-based estimators must rely on an estimate of the PS, which we will denote 

as gn.

Accurately modeling and assessing the validity of fitted PS models is crucial for all PS-

based methods. It is generally recommended that PS models be validated through measures 

of covariate balance across treatment groups after PS adjustment. In high-dimensional 

covariate settings, however, evaluating covariate balance on very large numbers of variables 

can be difficult. Using covariate balance to validate PS models in high-dimensional covariate 

settings is further complicated when applying machine learning algorithms and penalized 

regression methods to reduce the dimension of the covariate set, as it is not always clear on 

what variables balance should be evaluated. Cross-validated prediction diagnostics can 

greatly simplify validation of the PS model when applying machine learning algorithms for 

PS estimation in high-dimensional covariate settings.

Westreich et al.3 suggested that machine learning (ML) methods (e.g. support vector 

machines) could enhance the validity of propensity score estimation, and that “external” 

cross-validation (CV) can be used for model selection. Lee et al.4 further investigated PS 

weighted estimators when the PS was estimated by multiple ML algorithms, where the 

hyper-parameters of the ML algorithms were selected by minimizing the CV loss for 

treatment prediction. Estimation procedures that are based on external CV will result in 

estimated models that optimize the bias-variance tradeoff for treatment prediction (i.e. the 

true PS function), but they do not consider the ultimate goal of optimizing the bias-variance 

tradeoff for the treatment effect estimate. We conjecture that PS estimators that are selected 

by CV will tend to be under-fitted in order to reduce variability in the prediction of treatment 

assignment, and that the optimal estimator in reducing bias in the estimated treatment effect 

should be less smooth (or more flexible) compared to the estimator selected by external CV.

To address this limitation of external CV, we studied two recently proposed variations of the 

C-TMLE algorithm,5,6 and compared them to other widely used estimators using multiple 

simulation studies. We focused on strategies that combined the C-TMLE algorithms with 

LASSO regression, an l–1 regularized logistic regression,7 for PS estimation. Previous 

studies have shown that LASSO regression can perform well for variable selection when 

estimating high-dimensional PSs.8 However, selecting the optimal tuning parameters to 

optimize confounding control remains challenging. Combining variations of the C-TMLE 

algorithm with LASSO regression provides a robust data adaptive approach to PS model 

selection in high-dimensional covariate datasets, but remains untested. We used quasi-

experiments based on a real empirical dataset to evaluate the performance of combining 

variations of the C-TMLE algorithm with LASSO regression and demonstrate that external 

CV for model selection is insufficient.

Ju et al. Page 2

Stat Methods Med Res. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The article is organized as follows. In section 1.2, we introduce the structure of the observed 

data, the scientific question, the parameter of interest, the average treatment effect (ATE), 

and the necessary assumptions for making the parameter of interest identifiable. In section 2 

we briefly review some commonly used estimators of the ATE. In section 3, we review the 

targeted minimum-loss-based estimator. In section 4, we introduce two recently proposed C-

TMLE algorithms which extend the vanilla TMLE algorithm. In section 5 we describe the 

electronic healthcare database used in the simulations and empirical analyses. In section 6 

we describe how the simulated data are generated from the empirical dataset, and how 

results were analyzed from the simulation, including point estimation (subsection 6.3), 

confidence interval (subsection 6.4), and pair-wise comparisons (subsection 6.6) of 

estimators. In section 7 we apply the vanilla TMLE and novel C-TMLE algorithms to 

analyze the empirical dataset. Finally, in section 8, we discuss the results from the 

simulations and the scientific findings from the empirical data analysis.

1.2 Data structure, scientific question, and identification

Suppose we observe n independent and identically distributed (i.i.d.) observations, Oi = (Yi, 

Ai, Wi), i ∈ 1,…, n, from some unknown but fixed data generating distribution P0. Consider 

a simple setting, where Wi is a vector of some pre-treatment baseline covariates of the i-th 

observation, and Ai is a binary indicator taking on a value of 1 if observation i is in the 

treatment group and is 0 otherwise. Further, suppose that each observation has a 

counterfactual outcome pair, (Y i
(0), Y i

(1)), corresponding to the potential outcome if patient i 

is in the control group (Ai = 0) or the treatment group (Ai = 1). Thus, for each observation, 

we only observe one of the potential outcomes, Yi, which corresponds with either Y i
(0) or 

Y i
(0), depending on whether the individual received treatment or remained untreated. For 

simplicity, we refer to Q0(W) as the marginal distribution of W, go(W) as the conditional 

expectation of A|W, and Q0(A, W) as the conditional expectation of Y|A, W. We will let g0 

represent the PS, under the data generating distribution P0. In addition, we will let 𝔼0
represent the expectation under the unknown true data generating distribution P0. Consider 

the ATE as the parameter of interest

Ψ0 = 𝔼0 Y(1) − 𝔼0 Y(0)

This parameter of interest is identifiable under following assumptions Assumption 1. 
(Consistency)

Yi = Yi
(Ai) = Yi

(0) 1 − Ai + Yi
(1)Ai

Assumption 2. (Conditional Randomization)

Y0, Y(1) ╨ A W
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Assumption 2 has also been called strong ignorability, or unconfoundedness.9 Under 

assumptions 1 and 2, the conditional probability of Y=y given A = a, W = w can be written 

as

P Y = y A = a, W = w = P Y(a) = y W = w

Thus the conditional expectation of Y given A = a, W = w can be written as

𝔼 Y A = a, W = w = 𝔼 Y(a) W = w

and the parameter of interest, ATE, can be written as

Ψ0 = 𝔼 Y(1) − 𝔼 Y(0)

= 𝔼0 𝔼0 Y A = 1, W − 𝔼0 𝔼0 Y A = 0, W

Assumption 3. (Positivity)

0 < g0 W < 1

almost everywhere.

Assumption 3 is necessary for the identification. Otherwise, the model is not identifiable, as 

we can never observe one of the potential outcomes for the units with certain baseline 

covariates W.

2 Brief review of some common estimators

One of the well-studied estimators for the ATE in observational studies is the G-computation 

estimator (or outcome regression model), which estimates Q0 with Qn, and then estimates 

ATE by the following formula

Ψn
G − comp = 1

n ∑
i = 1

n
Qn A = 1, W = Wi − Qn A = 0, W = Wi

As long as the aforementioned assumptions hold, and the conditional response model 

estimator Qn for Q0 is consistent, the resulting estimator Ψn
G − comp is also consistent.

Another widely used estimator is the Inverse Probability of Treatment Weighting (IPW) 

estimator. It only relies on the estimator gn of g0

Ψn
IPW = 1

n ∑
i = 1

n AiYi
gn Wi

−
1 − Ai Yi

1 − gn Wi
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where gn is usually fitted by a supervised model (e.g. logistic regression), which regresses A 
on the pre-treatment confounders W. Similar to G-computation, the IPW estimator is 

consistent as long as all of the aforementioned assumptions hold, and the estimated PS, gn, is 

consistent. However, the IPW estimator can be highly unstable since extreme values of the 

estimated PS can lead to overly large and unstable weights for some units. This phenomenon 

is called the practical positivity violation. To overcome this issue, Hájek10 proposed a 

stabilized estimator

Ψn
Ha jek − IPW = ∑

i = 1

n AiYi/gn Wi

∑i = 1
n Ai/gn Wi

−
1 − Ai Yi/ 1 − gn Wi

∑i = 1
n 1 − Ai / 1 − gn Wi

where the denominator n is replaced by the weight normalization term Aign(Wi) and (1 − 

Ai)(1 − gn(Wi)). It is easy to show that this estimator is also consistent as long as gn is a 

consistent estimator.

All of the estimators mentioned above are not robust in the sense that misspecification of the 

first stage modeling (of conditional outcome, or the PS) could lead to biased estimation for 

the causal parameter of interest. This is the reason why double robust (DR) estimators are 

preferable. DR estimators usually rely on the estimation of both Q0 and g0. As long as one of 

them is estimated consistently, the resulting final estimator would be consistent. Weighted 

Regression (WR) is one of the commonly used DR-estimators11,12 In comparison to G-

computation, it estimates Q0 by minimizing the weighted empirical loss

Qn
WR = argmin

Q
∑

i = 1

n
ωi gn L Q Ai, Wi , Yi

where the weight is defined ωi(gn) = [Ai/gn(Wi) + (1 − Ai)/(1 − gn(Wi))], and L is the loss 

function. The estimator for the causal parameter is defined as

Ψn
WR = 1

n ∑
i = 1

n
Qn

WR A = 1, W = Wi − Qn
WR A = 0, W = Wi

The WR estimator is also called the weighted least squares (WSL) estimator, if the loss 

function is the squared error L(x, y) = (x − y)2.

Augmented IPW (A-IPW, or DR-IPW) is another DR-estimator which can be written as

Ψn
DR − IPW = 1

n ∑
i = 1

n
Hgn

Ai, W i Y i − Qn Ai, W i + Qn 1, W i − Qn 0, W i (1)

where
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Hgn
A, W = A

gn W − 1 − A
1 − gn W

is designed based on the target parameter, ATE. Ψn
DR − IPW also relies on both Qn and gn. It 

was first proposed by the authors in literature13,14 where it was called the ‘‘bias-corrected 

estimator’’. It corrects the bias from the initial estimate, Qn, with the weighted residual from 

the initial fit. Robins et al.15 proposed a class of estimators which contains 1, and Robins 

and Rotnitzky16 further showed that 1 is a locally semiparametric efficient estimator.

Similar to the IPW estimator, A-IPW is also influenced by extreme weights, as it uses 

inverse probability weighting. However, a Hajek style stabilization could mitigate concerns 

of overly influential weights

Ψn
HBC − IPW = ∑

i = 1

n A/gn(W)

∑i = 1
n A/gn W

−
1 − A / 1 − gn W

∑i = 1
n 1 − A / 1 − gn W

Y i − Qn Ai, W i + 1
nQn 1, W i − 1

nQn 0, W i

(2)

For simplicity, we will call the estimator in equation (2) the HBC (Hajek type bias-

correction) estimator. Although this estimator no longer enjoys some attractive theoretical 

properties (e.g. efficiency) of A-IPW, it is still DR, and it can potentially improve finite 

sample performance. It is also possible that these modifications could improve the 

robustness of the estimated treatment effects when both of the models are misspecified.11

3 Brief review of targeted minimum loss-based estimation

Targeted minimum loss-based estimation (TMLE) is a general template to estimate a user-

specified parameter of interest, given a user-specified loss function, and fluctuation sub-

model. In this study, we consider the ATE as our target parameter, the negative likelihood as 

the loss function, and the logistic fluctuation. Let Y represent a binary variable, or a 

continuous variable within the range (0, 1).a The TMLE estimator for the ATE can be 

written as

Ψn
TMLE = 1

n ∑
i = 1

n
Qn* 1, W i − Qn* 0, W i (3)

In equation (3), Qn* (which is within the range (0, 1)) is updated from an initial estimate, Qn, 

by a logistic fluctuation sub-model

a.Otherwise, we could simply normalize Y into (0, 1) and finally rescale the estimate Ψn
TMLE back.
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logit Qn* A, W = logit Qn A, W + ϵHgn
A, W (4)

The fluctuation parameter ϵ is estimated through maximum likelihood estimation, or 

equivalently, minimizing the negative log-likelihood loss

L( ∈ ) = ∑
i = 1

n
Yi(Qn*(Ai, Wi)) + (1 − Yi)(1 − Qn*(Ai, Wi))

If either the propensity model or outcome model is consistent, then the TMLE estimator is 

consistent. If both of them are consistent, then the TMLE estimator is also efficient. To 

consistently estimate Q0 and g0, we suggest using Super Learner, a data-adaptive ensemble 

method, for prediction modeling.17–22

In addition to double robustness and asymptotic efficiency, TMLE has the following 

advantages:

1. Equation (3) shows that TMLE is a plug-in estimator and, therefore, respects the 

global constraints of the model. For instance, suppose Y is binary. The ATE, 

therefore, should be between [−1, 1]. However, some competing estimators may 

produce estimates out of such bounds. Since TMLE maps the targeted estimate 

P* of P0 into the mapping Ψ, it respects knowledge of the model.

2. The targeting step in TMLE is a minimum loss estimation,b which offers a 

metric to evaluate the goodness-of-fit for gn and Qn, w.r.t. the parameter of 

interest Ψ0.

3. In the empirical/simulation studies by Porter et al.,23 TMLE is more robust than 

IPW and A-IPW to positivity, or near positivity, violations, where gn is too close 

to 0 or 1.

4 Brief review of collaborative TMLE

4.1 C-TMLE for variable selection

In the TMLE algorithm, the estimate of Q0 is updated by the fluctuation step, while the 

estimate of g0 is estimated externally and then held fixed. One extension of TMLE is to find 

a way to estimate g0 in a collaborative manner. Motivated by the second advantage of 

TMLE, collaborative TMLE was proposed to make this extension feasible.24 Here we first 

briefly review the general template for C-TMLE:

1. Compute the initial estimate Qn
0 of Q0.

b.It is maximum likelihood estimation (MLE) if the loss is negative log-likelihood.
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2. Compute a sequence of estimates gn,k and Qn, k*  for g0 and Q0 respectively, with k 

= 1,..., K. With k increasing, the empirical loss for both gn,k and Qn, k*  would 

decrease. In addition, we require gn,K to be asymptotically consistent for g0.

3. Build a sequence of TMLE candidate estimators, based on a given fluctuation 

model.

4. Use cross-validation for step 3 to select the Qn, k*  that minimizes the cross-

validated risk, and denote this TMLE estimator as the C-TMLE estimator.

This is a high-level template for the general C-TMLE algorithm. There are many variations 

of instantiations of this template. For example, the greedy C-TMLE was proposed by the 

authors in literature24,25 for variable selection in a discrete setting. The following are some 

details of greedy C-TMLE:

• In step 2, the greedy C-TMLE algorithm starts from an intercept model (which 

fits the PS with its mean), and then builds the sequence of gn,k by using a 

forward selection algorithm: during each iteration k, for each of the remaining 

covariates Wj, that have not been selected yet, we add it into the previous PS 

model gn,k−1, which yields a larger PS model gn, k
j  and H

gn, k
j . We then compute 

Qn, k
* , j by equation (4). For all j, we select the PS model that corresponds to the 

Qn, k
* , j with the smallest empirical loss. For simplicity we call this the forward 

selection step at the k-th iteration.

• For the initial estimate in equation (4), we start with Qn, 1 = Qn. For each iteration 

k, we first try Qn, k = Qn, k − 1. If all of the possible Qn, k
* , j mentioned above do not 

improve the empirical fit compared to Qn, k − 1, we update Qn, k = Qn, k − 1*  and 

rerun the forward selection step at the k-th iteration. Notice that as we use the 

last TMLE estimator as the candidate, all of the current candidate Qn, k
* , j are 

guaranteed to have a better empirical fit compared to their initial estimate Qn, k. 

Otherwise if there is at least one candidate that improves the empirical fit, we 

just move to the next forward selection step. In this manner, we make sure that 

the empirical loss for each candidate Qn, k*  is monotonically decreasing.

Ju et al.26 also proposed scalable versions of the discrete C-TMLE algorithm as new 

instantiations of the C-TMLE template. These scalable C-TMLE algorithms avoid the 

forward selection step by enforcing a user-specified ordering of the covariates. Ju et al.26 

showed that these scalable C-TMLE algorithms have all of the asymptotic theoretical 

properties of the greedy C-TMLE algorithm, but with much lower time complexity.

4.2 C-TMLE for model selection of LASSO

To the best of our knowledge, C-TMLE has primarily been applied for variable selection. 

However, it can easily be adapted to more general model selection problems. In our recent 
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work,5,6 two instantiations of the C-TMLE algorithm were proposed for a general model 

selection problem with a one-dimensional hyper-parameter. In this study, we consider an 

example where the PS model is estimated by LASSO

βn, λ = min
β ∈ ℝp

1
n ∑

i = 1

n
L Ai, logit βWi + λ β 1

gn, λ Wi = logit βn, λWi

where L is the negative log-likelihood for the Bernoulli distribution, as A is binary. We used 

C-TMLE to select the PS estimator, gn,λ, with the best penalty parameter λ. We applied two 

C-TMLE algorithms for model selection of LASSO. Here, we provide a brief outline for 

each of the algorithms. Details are provided in the supplemental appendices.

• C-TMLE1: First, we briefly introduce the C-TMLE1 algorithm. According to the 

C-TMLE template outlined above, C-TMLE1 first builds an initial estimate for 

Qn and a sequence of propensity score estimators, gn, λk
, for k ∈ 0,..., K, each 

with a penalty λk, where λk is monotonically decreasing. We recommend to set 

λ1 = λCV because the cross-validation usually selects an ‘‘under-fitted’’ (e.g. a 

LASSO estimator with a regularization parameter, λ, that is too large) PS 

estimator; thus, it is unnecessary to consider λ1 > λCV. Then, we just follow step 

3 in the template described previously, and build a sequence of estimators, Qn, λ* , 

each corresponding to gn,λ. We then select the best Qn, λctmle
*  by using cross-

validation, with its corresponding initial estimate Qn, λctmle
. Finally we fluctuate 

the selected initial estimate Qn, λctmle
 with each gn,λ for λK < λ < λctmle, 

yielding a new sequence Qn, λ* . We choose Qn* = Qn, λ* , which minimizes the 

empirical loss, as our final estimate. The final step guarantees that a critical 

equation

PnD+ Qn, λ* , gn, λ

= ∂
∂λ ∑

i = 1

n
Hgn, λ

Ai, W i Y i − Qn, λ* Ai, Y i = 0
(5)

is solved.5,6 This guarantees that the resulting C-TMLE estimator is 

asymptotically linear under regularity conditions even when Qn is not consistent. 

A detailed description of C-TMLE1 is provided in Appendix 1.

• C-TMLE0: the C-TMLE0 algorithm does not select the PS estimator 

collaboratively. Instead, it is exactly the same as the TMLE algorithm, except it 

updates the estimate by equation (6)
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logit Qn* A, W = logit Qn A, W + ϵ1Hgn, λk
A, W (6)

where

Hgn, λk
A, W =

∂Hgn, λ
A, W

∂λ
λ = λk

= 1 − A

1 − gn, λk
W

2
∂ 1 − gn, λ

∂λ

λ = λk

+ A

gn, λ W 2

∂gn, λk
∂λ

λ = λk

Note we still call it C-TMLE as it solves the critical equation (6). Solving the 

additional clever covariate Hgn, λk
 could be considered as an approximation of the 

collaborative selection in C-TMLE1.5,6 More details of C-TMLE0 can be found 

in Appendix.

Same as the discrete C-TMLE estimator in Gruber and van der Laan,25 standard 

errors for both of the new C-TMLEs are computed based on the variance of the 

influence curve (IC). With the point estimate, ψ , and its estimated standard error, 

se, we construct the Wald-type α-level confidence interval: 

ψ − z1 − α/2se, ψ + z1 − α/2se , where za is the α-percentile of the standard normal 

distribution. More details of IC and the IC based variance estimator can be found 

in the literature.25,27

The code for LASSO-C-TMLE algorithms (C-TMLE1 and C-TMLE0) can be 

found on the Comprehensive R Archive Network.28

5 Data source

In previous work by Ju et al.,20 Super Learner was applied to three electronic healthcare data 

sets for propensity score estimation. In two of the data sets (NOAC study and Vytorin 

study), the PS model showed strong nonlinearity patterns, where non-linear algorithms 

(gbm) outperformed main term LASSO (w.r.t. the predictive performance of the estimated 

PS) with the same covariate set. Thus the main term linear model may result in strong model 

misspecification for such a dataset. To better demonstrate C-TMLE for LASSO selection 

under mild model misspecification, we only considered the NSAID dataset, where the 

treatment mechanism could be estimated satisfactorily with main term linear models. Note 

that the methodology can be easily extended to highly non-linear data by adding more basis 

functions (e.g. high order interaction terms) in LASSO, or replacing vanilla LASSO with 

Highly Adaptive LASSO (HAL).29 This data set was first created by Brookhart et al.30 and 

further studied by the authors in literature.31,32
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5.1 Nonsteroidal anti-inflammatory drugs study

In this study, the observations were sampled from a population of patients aged 65 years and 

older who were enrolled in both Medicare and the Pennsylvania Pharmaceutical Assistance 

Contract for the Elderly (PACE) programs between 1995 and 2002. The treatment is a binary 

indicator taking on values of 1 for patients who received a selective COX-2 inhibitor and 0 

for patients who received a non-selective nonsteroidal antiinflammatory drug. The outcome 

is also a binary indicator taking on values of 1 for patients who are diagnosed with 

gastrointestinal (GI) complications during the follow-up periods, and 0 otherwise.

To adjust for potential confounders, some predefined baseline pre-treatment covariates were 

collected (e.g. age, gender, race). To further adjust for confounding we implemented a 

widely used variable selection algorithm for healthcare claims databases, known as the high-

dimensional propensity score (hdPS) (discussed further below).31 The dataset for this study 

included 9470 claims codes, which were clustered into eight categories, including 

ambulatory diagnoses, ambulatory procedures, hospital diagnoses, hospital procedures, 

nursing home diagnoses, physician diagnoses, physician procedures and prescription drugs. 

The value for each claims code denotes the number of times the respective patient received 

the healthcare procedure corresponding to the code during a 12-month baseline period prior 

to treatment initiation. Thus all of the claims data are non-negative integers. Table 1 shows 

some summary statistics for the NSAID study databases.

5.2 The high-dimensional propensity score (hdPS) to learn from health insurance data

Claims data are usually high-dimensional (pc = 9470 in this study) due to large amounts of 

healthcare diagnoses and procedures. Further, claims data are often highly sparse as each 

patient often receives only a few diagnoses. To address these issues, the hdPS variable 

selection algorithm was introduced by Schneeweiss et al.31 to generate hundreds of baseline 

variables from claims codes, and then rank them by their potential confounding impact. Its 

core part is outlined in the following steps:

1. Cluster the codes according to their sourcec: this is determined manually based 

on the origin and quality of data feeds and is unique to the database being used. 

In this study, the codes come from eight sources.

2. Identify candidate codes in each cluster: for each code count c, compute its 

empirical prevalence pn, c = 𝔼nI c > 0 , rank all covariates by max(pn,c, 1 − pn,c), 

and select the top k1 codes within each cluster. In the NSAID study, we have 8k1 

claims covariates left after this step.

3. Generate hdPS covariates: For each claims covariates, ci, for each individual, i, 

construct three indicator variables where: ci
1  is equal to one if and only if (iff) ci 

is positive, ci
2  is equal to one iff ci is larger than the median of { ci : 1 ≤ i < n}, 

and ci
3  is equal to one iff ci is larger than the 75%-quantile of { ci : 1 ≤ i < n}. 

c.We replace the term ‘‘data dimension’’ in Schneeweiss et al.31 with ‘‘source’’ to avoid ambiguity.
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We denote these new covariates as ‘‘hdPS covariates”. For the empirical example 

in this study, this step results in 24k1 generated hdPS covariates.

4. Select hdPS covariates for confounding adjustment: Use the Bross formula31,33 

to rank each hdPS covariate, c, by its potential for confounding bias:

Bias c =
𝔼n c = 1 A = 1 rrn c − 1 + 1

𝔼n c = 1 A = 0 rrn c − 1 + 1

with

rrn c =
𝔼n Y = 1 c = 1
𝔼n Y = 1 c = 0

where 𝔼n denotes the empirical distribution of data.

Covariates are then ranked by descending order of log(Bias(c))|. We then select the first k2 

ordered hdPS covariates among the total 24k1 hdPS (generated) covariates from step 3.

The hdPS algorithm has been used in studies evaluating the effectiveness of prescription 

drugs and medical procedures using healthcare claims data in the USA,34–37 Canada,38–40 

Europe,41–43 and electronic health records.44,45 Schneeweiss et al.46 evaluated a range of 

algorithms to improve covariate ranking based on the empirical covariate outcome 

relationship without any meaningful improvement over the ranking using the Bross formula. 

Ju et al.20 evaluated various choices for the parameters k1 and k2 within the hdPS algorithm, 

and found that the performance of the hdPS was not sensitive to choices for k1 and k2 as 

long as the hyperparameter pair were within a reasonable range. For this study, we let k1 = 

100 and k2 = 200. For simplicity, we denote the combined set of predefined baseline 

covariates and selected hdPS covariates as W.

6 Quasi-experiment

6.1 Simulation setting

In this simulation, we generated partially synthetic data based on the NSAID data set. We 

designed our own conditional distribution of the outcome, Y, given treatment, A, and 

baseline covariates, W, while keeping the structure of the treatment mechanism g0(A|W) so 

that the relationships between covariates with treatment assignment were preserved.47 In our 

study, the conditional distribution of the outcome was defined as

Y i = 2 + βW i + Ai + ϵi (7)

Where ϵi is drawn independently from the standard normal distribution. We then selected 40 

covariates that had the highest Pearson correlation with treatment A. The coefficient of β in 

equation (7) was set to zero for all the non-selected covariates. The coefficient for the 

selected covariates was sampled from separate and independent standard normal 
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distributions and were fixed across all simulations. We define the marginal distribution of W 
as the empirical distribution of Wi for i ∈ 1... n. The parameter of interest is the ATE, thus it 

is identifiable if we know the distribution of the conditional response Y| A, W and marginal 

distribution of W.

In our simulation, we considered two settings. In the first setting, only the first 10 out of 40 

confounders were used to estimate Q0. In the second setting, Q0 was estimated using the first 

20 out of 40 confounders.

By the description above, we have the following:

• There are only 40 confounders in total.

• The true value of the parameter of interest (ATE) is 1.

• The treatment mechanism g0(A| W) comes from a real world data generating 

distribution, which is usually non-linear. Ju et al.20 showed that the PS in this 

example can be estimated well by linear models. Therefore, in this example the 

PS model is only mildly misspecified.

• Both Q0 and g0 are estimated with a misspecified model: Q0 is estimated with an 

incomplete predictor set; g0 is estimated with linear model, while there is no 

reason to believe it is truly linear.

The results are computed across 500 replications, each with sample sizes of 1000.

6.2 Competing estimators

In this study, we focused on PS-based estimators, including inverse probability of treatment 

weight (IPW) estimator, Hajek type IPW estimator, double robust (augmented) inverse 

probability of treatment weight (DR-IPW, or A-IPW) estimator, Hajek type Bias-correction 

(HBC) Estimator, weighted regression (WR) estimator, targeted maximum likelihood 

estimator (TMLE), and the proposed two collaborative-TMLE estimators.

For all PS-based estimators, we consider two variations. For the first variation, we first used 

the cross-validated LASSO (CV-LASSO) algorithm to find the regularization parameter λCV 

of LASSO for PS estimation, and then plugged it into the final estimators. In the second 

variation, we first applied C-TMLE1, and use LASSO with the regularization parameter 

λC–TMLE selected by C-TMLE1 to estimate the PS, and then plug it into the estimator. 

Taking IPW as example, we used ‘‘IPW’’ to denote the first variation, and ‘‘IPW*’’ for the 

second variation.

It is important to note that in this case, ‘‘TMLE*’’ is actually a variation of collaborative 

TMLE, as the PS model is selected collaboratively.24,25 However, it is different from the 

proposed C-TMLE algorithms, as it does not solve the critical equation (5).

It is also important to note that both C-TMLE and CV-LASSO use cross-validation. For 

simplicity, and to avoid ambiguity, we use the term ‘‘CV’’ to denote the non-collaborative 

model selection procedure which relies on the cross-validation w.r.t. the prediction 
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performance for the treatment mechanism itself (e.g. the model selection step in CV-

LASSO).

In addition, we also compute an ‘‘oracle estimator’’ for comparison, which is given by a 

TMLE estimator with the PS estimated by a logistic regression with only confounders.

6.3 Point estimation

We first compared the variance, bias, and mean square error (MSE) for the point estimation 

from all the competing estimators in two settings.

Table 2 and figure 1 show the point estimation performance of all the competing estimators. 

It is not surprising that the oracle TMLE estimator has the best performance for both bias 

and variance. However, it is not achievable in practice as it is usually unknown which 

covariates are confounders. IPW has very large variance and bias, which might due to the 

practical violations of the positivity assumption. We can see that TMLE*, C-TMLE1, 

CTMLE0, and CTMLE0* outperformed other estimators, with each having similar 

performance. In addition, C-TMLE0* did not show any improvement compared to C-

TMLE0. This is consistent with previous results.5,6

We also evaluated the relative performance of other PS-based estimators with gn selected by 

C-TMLE, compared with gn selected by CV. For IPW, the performance was still poor. 

However, for all of the other estimators that rely on the estimated PS, the performance 

improved considerably. Taking the first setting as an example, the relative empirical 

efficiency of DR-IPW* compared to DR-IPW was MSE DR−IPW
MSE DR−IPW * = 1.52, while for TMLE it 

was MSE TMLE
MSE TMLE* = 1.66. The relative empirical efficiency for both of these estimators is 

improved with a reduction in bias and slight increase in variance. These empirical results are 

consistent with previous theory5,6 showing that the model selected by external CV is usually 

under-fitted. These results illustrate the weakness of using ‘‘external’’ CV for PS model 

selection.

6.4  Confidence interval

In this section, we evaluate the coverage and the length of the confidence intervals (CIs) for 

all the double robust estimators.

Table 3 shows that the CIs of the oracle TMLE estimator are too conservative, as they 

achieved 100% coverage. In both settings, TMLE* and C-TMLE1 had the best coverage. We 

can see that for other estimators, the length of the CIs were usually smaller/under-estimated. 

This resulted in a less satisfactory coverage even though the point estimation had similar 

performance (e.g. compare C-TMLE0 to C-TMLE1). With collaboratively selected gn, the 

coverage of TMLE and DR-IPW improved significantly. These empirical results illustrate 

that a more targeted propensity score model selection can improve both causal estimation 

and inference.
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6.5 Variable selection from LASSO

Table 4 shows the average number of covariates selected by LASSO, with λ determined by 

CV and C-TMLE1. Recall that there are 222 covariates in total (22 baseline covaraites and 

200 covariates generated by the hdPS algorithm), including 40 confounders. CV was too 

conservative: on average it only selected 36.6 covariates, and only included 13.2 

confounders. C-TMLE1 selected much less regularization, which leads to a larger model: it 

successfully picked up more confounders than CV in both experiments.

6.6 Pairwise comparison of efficient estimators

In this section, we studied the pairwise comparisons for several pairs of the efficient 

estimators, TMLE, C-TMLE, and DR-IPW, with different PS estimators. The purpose of 

these pairwise comparisons is to help in understanding the contribution of the collaborative 

estimation of the PS. We used the shape and color of the points to represent the coverage 

information of the CIs for each estimates.

6.6.1 Impact of collaborative propensity score model selection—We first 

compared the two pairs. Within the pair, both of the estimators were identical except each 

had a different PS estimator. The first pair compared TMLE to TMLE*, and the second pair 

compared C-TMLE0 to CTMLE0*.

From Figure 2(a) and (b), we can see that a more targeted PS model contributes substantially 

to the estimation. The vanilla TMLE underestimated the ATE, while TMLE* is close to 

unbiased. The variance of the two estimators is similar.

From Figure 3(a) and (b) we can see that the improvement for the CTMLE0 pair is not as 

significant as the improvement for the TMLE pair. Interestingly, most of the poor 

performance in the CIs for CTMLE0 is from the over-estimated point estimate, while for 

CTMLE0* is mainly from under-estimation of the point estimate.

As discussed in literature,5,6 such ignorable improvement with collaboratively selecting gn 

for the CTMLE0 pair might be due to the redundant collaborative estimation step. Thus, it is 

not necessary to both select the PS model using C-TMLE and solve for the extra clever 

covariate.

6.6.2 Contribution of solving extra critical equation—We compared TMLE with 

C-TMLE0. The only difference between these two estimators is that C-TMLE0 solves for 

the extra clever covariate, which guarantees that the critical equation is solved.

Figure 4 shows the improvement of solving an additional clever covariate. C-TMLE0 is less 

biased compared with TMLE. It is interesting to see that the performance of the estimator 

can improve substantially with such small change. In addition, this additional change almost 

requires no additional computation, which makes it more favorable among proposed C-

TMLEs when the computation resources are limited.
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6.6.3 Comparison of variations of C-TMLE—We compared the two pairs of 

variations of C-TMLEs. We used C-TMLE1 as the benchmark, as it gave the best 

performance for both point estimation and confidence interval coverage.

Figure 5(a) and (b) shows the pairwise performance of C-TMLE1 and C-TMLE0. Both 

estimators performed well with respect to the MSE. Although the distribution of points 

looks similar and have variances that appear similar, there were more CIs from C-TMLE0 

that failed to cover the truth. In addition, the failures from C-TMLE1 mainly resulted from 

the under-estimation of the estimates. In comparison, the failures from C-TMLE0 primarily 

came from both under/over-estimated estimates. This suggests that the relatively poor CI 

coverage of C-TMLE0 might be due to its under-estimated standard error.

7 Real data analysis

In this section, we applied the methods described previously to the NSAID study. As 

discussed previously, the goal of this study is to compare the effectiveness of two treatments 

on improving the risk (probability) of being diagnosed with severe gastrointestinal 

complications during the follow-up period. The treatment group was prescribed a selective 

COX-2 inhibitor, while the control group was prescribed a non-selective nonsteroidal anti-

inflammatory drug. To compare the safety of the two treatments, we used the average 

treatment effect (ATE) as our target parameter.

7.1 Method

We followed the hdPS procedure in section 5.2, where we generated the hdPS covariates 

with k1 = 100 and k2 = 200.

We investigated three kinds of initial estimate Qn
0 for TMLE and C-TMLE:

• The initial estimate was given by the group means of the treatment and control 

group.

• The initial estimate was estimated by Super Learner with only baseline 

covariates.

• The initial estimate was estimated by Super Learner with both baseline 

covariates and hdPS covariates.

For Super Learners,17,18 we used library with LASSO,48 Gradient Boosting Machine,49 and 

Extreme Gradient Boosting.50

7.2 Results

Figure 6 shows the point estimates and 95% CIs for all TMLE and C-TMLE estimators. We 

use the blue line to denote the null hypothesis (H0 : Ψ0 = 0), the green line denotes the 

initial estimate, and use red line to denote the results from the naive difference in means 

estimator (Ψn
native = 0.0949%).
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Figure 6(c) shows that, after adjusting for selection bias using the TMLE/C-TMLE 

algorithms, all the estimators have similar results, with the estimated ATE being in the 

negative direction. Similar to the results in simulation, the CIs for TMLE* and C-TMLE0* 

were wider with PS estimator selected by C-TMLE1, than with PS estimator selected by CV. 

The details of the point estimates and confidence intervals are reported in Table 5. We 

computed the analytic influence curve-based confidence interval. None of these intervals, 

except C-TMLE0*, covered the naive estimate. However, all of them covered the null 

hypothesis.

In addition, we also compared the results from different initial estimator. Figure 6 shows the 

results for all estimators, with group means (6a), Super Learner with baseline covariates 

(6b), and Super Learner with both baseline and hdPS covariates (6c). The CV.LASSO PS 

estimator selected 137 covariates, with regularization parameter λ = 0.001159. The C-

TMLE estimator with naive initial estimate selected 164 covariates, with λ = 0.000266. The 

C-TMLE estimator uses the initial estimate provided by SL with only baseline covariate 

have similar results: it selected 166 covariates with λ = 0.000238. For the C-TMLE with 

initial estimate provided by SL with all covariates, it selected the same model as 

CV.LASSO. It shows when the initial estimate is biased, C-TMLE selected model with less 

regularization, thus adjusted more potential confounders. In addition, all the covariates that 

are selected by LASSO-C-TMLE but not by C-TMLE but not by CV.LASSO are hdPS 

covariates. This suggests such additional hdPS covariates can be confounder. However, as 

they have relatively weaker predictive performance for treatment mechanism, they would be 

mistakenly removed by CV.LASSO.

Figure 7 shows the details of the CV loss for each selected PS estimator. The blue line is the 

λ selected by C-TMLE1 with naive estimator. Its CV binomial deviance (twice the binomial 

negative log-likelihood) is 1.199632. The purple line is the λ selected by C-TMLE1 with 

initial estimator provided by SL with only baseline covariates. Its CV binomial deviance is 

1.199668. The red line is the λ selected by CV.LASSO, and C-TMLE1 with initial estimator 

provided by SL with both baseline and hdPS covariates. Its CV binomial deviance is 

1.199288.

The estimates and confidence intervals were similar even with different initial estimators. 

This may be due to the signals in all the initial estimates are too weak: all the initial 

estimates of ATE are very close to 0. In addition, all the confidence intervals covered null 

hypothesis. The additive treatment effect in this study is not statistically significant.

7.3 Conclusions from the empirical study

Patients who received selective COX-2 inhibitors were less likely to get severe 

gastrointestinal complications during the follow-up period, compared to the patients who 

received a non-selective nonsteroidal anti-inflammatory drug. The average additive 

treatment effect was approximately −0.249%, which was estimated using TMLE* and C-

TMLE1 (the two estimators achieved the best performance in simulations). The point 

estimates for other estimators were similar.
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Based on the results, the additive treatment effect was not statistically significant. However, 

this does not necessary imply that there is no difference between the two treatments. More 

observations or better designed studies are necessary for further comparison of these 

treatments.

8 Conclusion

In this study, we described two variations of C-TMLE, and assessed their performance on 

quasi-experiments based on real empirical data. We assessed the performance of several 

well-studied PS-based estimators in settings where estimated models for both the conditional 

response 𝔼 Y A, W  and the propensity score 𝔼 A, W  were misspecified. In particular, we 

focused on using the LASSO estimator for the PS model. In comparison to our previous 

work, this study provides a more detailed evaluation of all the estimators by not only 

assessing their point estimation, but also the confidence intervals for each of the estimators. 

Results showed that the C-TMLE1 and C-TMLE0 estimators had the best performance in 

terms of both point estimation and CI. We also evaluated the impact of directly applying the 

model that was collaboratively selected by C-TMLE1 to other PS non-collaborative 

estimators. Results showed that all of the PS-based estimators, except the vanilla IPW 

estimator, improved substantially, in terms of the point estimation, when the collaboratively 

selected model was applied to these estimators. However, C-TMLE0* did not improve when 

compared to C-TMLE0 for point estimation. Finally, pairwise comparisons of estimators 

were also evaluated to help in understanding the contribution of the collaborative model 

selection.

In comparison to previous work, this study is the first to thoroughly investigate and compare 

the confidence intervals coverage and length for the novel C-TMLE algorithms, as well as 

some commonly used competitors. Further, it offers detailed pair-wise comparisons with 

other competing estimators using different PS model selection procedures. Finally, this study 

utilizes the quasi-experiments based on a real electronic healthcare dataset and then makes 

inference on the same database. This makes the conclusions from the real data analysis more 

convincing.

In conclusion, this study introduces a new direction for PS model selection. It shows the 

insufficiency of using “external” cross-validation for the LASSO estimator. Thus, we 

conclude that the ensemble PS estimators, which rely on “external” cross-validation, are not 

optimal (w.r.t. the causal parameter) for maximizing confounding control. Ensemble 

learning that is based on C-TMLE is a potential solution to address this issue. We leave this 

for the future work.
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Appendix 1

A C-TMLE 1

C-TMLE1 is a straightforward instantiation of the general C-TMLE template, which 

generates a sequence of PS estimators, with corresponding TMLE estimators. Then it selects 

the TMLE estimator with the smallest crossvalidated loss w.r.t. the causal parameter. Finally 

it takes one more targeting step to make sure the critical equation (5) is solved.5,6 Algorithm 

1 shows the details of the C-TMLE1 algorithm.

Algorithm 1: Collaborative Targeted Maximum Likelihood Estimation Algorithm I

1. Construct an initial estimate Qn
0

 for Q0 = 𝔼0 Y A, W .

2. Construct a sequence of propensity score model gn,λ indexed by λ, where a larger λ implies a smoother/simpler 
estimator (e.g. larger regularization for LASSO, or larger bandwidth for kernel estimator). We further set λ within 
the set Λ = [λmin, λcv].

3. Bound the estimated propensity score gn,λ = max{0.025, min{gn,λ, 0.975}}

4. Set k = 0

5. while Λ is not empty do

6. Apply targeting step for each gn,λ, with λ ∈ Λ, with initial estimate Qn
k

 and clever covariate 

Hgn, λ
A, W = 1 − A

1 − gn, λ W − A
gn, λ W

7.
Select Qn, λk

*  with the smallest empirical risk L Qn, λk
* A, W

8. For λ ∈ [λk , λk−1], compute the corresponding TMLE using initial estimate Qn
k − 1

 and propensity score 

estimate gn,λ. We denote such estimate with Qn, λ*  and record them.

9. Set a new initial estimate Qn
k = Qn, λk

* .

10. Set Λ = [λmin, λk].

11. Set k = k + 1.

12. end while

13. Select the best candidate Qn, λctmle
*  among Qn, λ* , with the smallest cross-validated loss, using the same loss 

function as in the TMLE targeting step.

14. Pick up the corresponding initial estimate Qn, λctmle
 for Qn, λctmle

*

15. Apply targeting step to Qn, λctmle
 from the last step, with each gn,λ, λ ∈ [λmin, λctmle), yielding a new sequence 

of estimate Qn, λ* .

16. Select Qn* = argminQn, λ* L Qn, λ* , λ ∈ [λmin, λctmle) with the smallest empirical loss from the sequence in 

last step as the final estimate.
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B C-TMLE 0

In the C-TMLE0 algorithm, we only fluctuate the initial estimate using two clever 

covariates, Hgn, λ
(A, W) and Hgn, λ

(A, W), with propensity score estimate gn,λ = gn,λcv pre-

selected by external cross-validation.

One of the main strength of this method is its computational efficiency: without generating 

sequence of TMLE estimators and applying cross-validation for model selection, it is much 

faster compared to C-TMLE1. Algorithm 2 shows the detail of the C-TMLE0 algorithm.

Algorithm 2. Collaborative Targeted Maximum Likelihood Estimation 0

 1. Construct an initial estimate Qn
0

 for Q0 = 𝔼0 Y A, W .

 2. Estimate the propensity score and select the hyper-parameter using external cross-validation: gn, λ = gn, λcv
.

 3. Apply targeting step in (4) with initial estimate Qn
0

 and two clever covariates

Hgn, λ
A, W = 1 − A

1 − gn, λ W + A
gn, λ W

and

Hgn, λ
= − 1 − A

1 − gn, λ W 2 gn, λ + δ − gn, λ + A
gn, λ W gn, λ + δ − gn, λ

which gives a new estimate Qn, λcv
*

 4. Return the TMLE: Qn* = Qn, λcv
*
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Figure 1. 
Boxplot of the estimated ATE for each estimator across 500 replications, when the initial 

estimate is fit on 10/20 out of 40 confounders.
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Figure 2. 
Comparison of TMLE wand TMLE*. The only difference within the pair the how the 

estimator gn is selected. (a) Comparison of TMLE and TMLE*, with the initial estimate Qn
0

adjusting for 10 out of 40 confounders. (b) Comparison of TMLE and TMLE*, with the 

initial estimate Qn
0 adjusting for 20 out of 40 confounders.

Ju et al. Page 24

Stat Methods Med Res. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Comparison of CTMLE0 and CTMLE0*. The only difference within the pair the how the 

estimator gn is selected. (a) Comparison of C-TMLE0 and C-TMLE0*, with the initial 

estimate Qn
0 adjusting for 10 out of 40 confounders. (b) Comparison of C-TMLE0 and C-

TMLE0*, with the initial estimate Qn
0 adjusting for 20 out of 40 confounders.
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Figure 4. 
We compared TMLE with C-TMLE0, where the only difference between the two estimators 

is that C-TMLE0 solves the extra critical equation with additional clever covariates. (a) 

Comparison of TMLE and C-TMLE0, with the initial estimate Qn
0 adjusting for 10 out of 40 

confounders. (b) Comparison of TMLE and C-TMLE0, with the initial estimate Qn
0 adjusting 

for 20 out of 40 confounders.
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Figure 5. 
We compared C-TMLEI with C-TMLE0. (a) Comparison of C-TMLEI and C-TMLE0, with 

the initial estimate Qn
0 adjusting for 10 out of 40 confounders. (b) Comparison of C-TMLE1 

and C-TMLE0, with the initial estimate Qn
0 adjusting for 20 out of 40 confounders.
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Figure 6. 
Confidence intervals for TMLE based estimators for the NSAID study. (a) Influence curve 

based confidence interval for all TMLE based estimators for NSAID study, with the group 

means as initial estimate. (b) Influence curve based confidence interval for all TMLE based 

estimators for NSAID study, with initial estimate provided by Super Learner with baseline 

covariates. (c) Influence curve based confidence interval for all TMLE based estimators for 

NSAID study, with the initial estimate provided by Super Learner with baseline covariates 

and hdPS covariates.
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Figure 7. 
Binomial deviance for λ selected by CV.LASSO and C-TMLE with different initial 

estimators.
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Table 1.

Brief summary of the NSAID study databases.

Sample size 49,653

No. of baseline covariates 22

No. of code resource 8

No. of claims code 9470
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Table 2.

Performance of Point Estimation for Estimators when the initial estimate Qn of Q0 is estimated on 10 and 20 

out of 40 confounders.

 Initial Fit unadj G-comp  WR  WR* Hajek-BC Hajek-BC*

10/40 Bias −59.29 −9.69 −5.68 −3.11 −15.54 −12.29

SE 8.43 3.36 2.66 2.75 5.80 6.63

MSE 35.87 1.05 0.39 0.17 2.75 1.95

20/40 Bias −59.91 −4.72 −2.77 −2.12 −7.56 −5.47

SE 8.36 2.73 2.27 1.92 4.10 4.54

MSE 36.59 0.30 0.13 0.08 0.74 0.51

Initial Fit IPW IPW* Hajek-IPW Hajek-IPW* DR-IPW DR-IPW*

SE 36.55 91.38 4.85 8.21 2.63 3.02

MSE 104.40 249.69 6.92 2.53 0.44 0.19

20/40 Bias 97.11 125.85 −25.60 −13.70 −2.92 −1.95

SE 35.98 90.85 4.77 8.56 2.26 2.17

MSE 107.23 240.75 6.78 2.61 0.14 0.09

Initial Fit TMLE TMLE* CTMLE1 CTMLE0 CTMLE0* orcale

10/40 Bias −5.49 −1.23 −1.40 0.70 −0.64 0.36

SE 2.57 3.46 3.56 3.38 4.40 1.83

MSE 0.37 0.13 0.15 0.12 0.20 0.03

20/40 Bias −2.68 −1.28 −1.38 0.08 −0.95 0.04

SE 2.19 2.53 2.53 2.85 3.07 1.35

MSE 0.12 0.08 0.08 0.08 0.10 0.02

Note: The results are computed based on simulations across 500 replications, each with a sample size of 1000 based on the NSAID study. All of the 

numeric values are on a scale of 10−2.
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Table 3.

Coverage of the 95% confidence intervals for semi-parametric efficient estimators when the initial estimate Qn

of Q0 is estimated on 10 and 20 out of 40 confounders.

 CTMLE1  CTMLE0  CTMLE0*  DR-IPW  DR-IPW*  TMLE  TMLE*  oracle

10/40 Coverage 0.926 0.920 0.910 0.458 0.914 0.526 0.942 1.000

Average Length 0.142 0.115 0.142 0.120 0.159 0.119 0.144 0.153

20/40 Coverage 0.934 0.872 0.898 0.748 0.928 0.790 0.946 1.000

Average Length 0.105 0.087 0.103 0.088 0.112 0.087 0.106 0.111

Note: The results are computed across 500 replications, each with sample sizes of 1000 based on the NSAID study. All of the numerical values are 
multiplied by 100.
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Table 4.

Average number of covariates selected from CV and C-TMLE.

Initial Fit CV C-TMLE1

10/40 36.6 (13.2) 149.1 (35.1)

20/40 36.6 (13.2) 148.9 (31.4)

Note: The number in the parentheses is the average number of selected confounders among the selected covariates.
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Table 5.

The point estimates and confidence intervals for all TMLE/C-TMLE estimators.

names TMLE TMLE* CTMLE1 CTMLE0 CTMLE0*

Point Estimate −0.2381 −0.2491 −0.2491 −0.2208 −0.2093

Analytic SE 0.1414 0.1487 0.1486 0.1417 0.1502

Note: All the values are on a scale of 10−2.
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