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ARTICLE INFO ABSTRACT

Keywords: For over 50 years, metronidazole and other nitro compounds such as nitazoxanide have been used as a therapy of
Adaptation choice against giardiasis and more and more frequently, resistance formation has been observed. Model systems
Anaerobiosis allowing studies on biochemical aspects of resistance formation to nitro drugs are, however, scarce since re-
Diplomonads

sistant strains are often unstable in culture. In order to fill this gap, we have generated a stable metronidazole-
and nitazoxanide-resistant Giardia lamblia WBC6 clone, the strain C4.

Previous studies on strain C4 and the corresponding wild-type strain WBC6 revealed marked differences in
the transcriptomes of both strains. Here, we present a physiological comparison between trophozoites of both
strains with respect to their ultrastructure, whole cell activities such as oxygen consumption and resazurin
reduction assays, key enzyme activities, and several metabolic key parameters such as NAD(P) " /NAD(P)H and
ADP/ATP ratios and FAD contents. We show that nitro compound-resistant C4 trophozoites exhibit lower ni-
troreductase activities, lower oxygen consumption and resazurin reduction rates, lower ornithine-carbamyl-
transferase activity, reduced FAD and NADP(H) pool sizes and higher ADP/ATP ratios than wildtype tropho-
zoites. The present results suggest that resistance formation against nitro compounds is correlated with meta-

Oxidoreduction

bolic adaptations resulting in a reduction of the activities of FAD-dependent oxidoreductases.

1. Introduction

Giardia lamblia (syn. G. duodenalis; G. intestinalis), a flagellated,
amitochondrial, binucleated protozoan, is the most common causative
agent of persistent diarrhea worldwide (Ankarklev et al., 2010;
Carranza and Lujan, 2010; Einarsson et al., 2016; Miiller and Miiller,
2016). Giardiasis is commonly treated with metronidazole (MET), other
5-nitroimidazole compounds (Minenoa and Avery, 2003), nitazoxanide
(NTZ) or albendazole (ALB) as an alternative in the case of resistance to
nitro drugs (Nash, 2001; Solaymani-Mohammadi et al., 2010; Hemphill
et al., 2013). Moreover, G. lamblia is susceptible to a variety of anti-
biotics because of its prokaryote-like transcription and translation
machineries (Miiller and Hemphill, 2013). According to a commonly
accepted model, nitro compounds are activated by reduction yielding
toxic intermediates, the electrons being provided by pyruvate oxidor-
eductase (POR). The reduced nitro compound then binds covalently to
DNA and results in DNA breakage and cell death (Brown et al., 1998).
Resistance formation to nitro compounds is, however, eagerly detected
both in vitro and in vitro. Studies with metronidazole-resistant strains
have revealed, however, that resistance is not always correlated with
reduced POR activity thus mechanisms of action independent of POR
activity may exist (Upcroft et al., 1990; Upcroft and Upcroft, 1993;
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Ansell et al., 2015; Leitsch, 2015).

In accordance to the prevailing model for the mode of action of nitro
drugs, one would hypothesize that resistant trophozoites have de-
creased activities of nitroreductases, and that this decrease is due to
lower expression levels of the corresponding genes. To verify this hy-
pothesis, freshly obtained, resistant patient isolates would be optimal,
but they are difficult to maintain in axenic culture. Therefore, most of
the studies compare resistant “model” strains generated in vitro with
isogenic wildtype strains (Upcroft, 1998). These studies have revealed
genome rearrangements (Upcroft et al., 1990, 1992) and profound
transcriptional changes evidenced by differential analyses using mi-
croarrays followed by quantitative RT-PCR on selected transcripts
(Miiller et al., 2008) and strand-specific RNA sequencing (Ansell et al.,
2017). In both studies, expression profiles of genes coding for variant
surface proteins and for genes involved in oxido-reductions — amongst
others - are altered the latter allegedly confirming this hypothesis.

These studies on transcriptional changes do not reveal, however, the
alterations that occur with respect to the cellular physiology of the
resistant lines. Questions such as whether these lines have reduced re-
ductase activities only with nitro drugs or also with other compounds as
electron acceptors, and whether they have different pool sizes or ratios
of electron and energy providing cofactors, need to be addressed. In this
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study, we document the physiological changes during resistance for-
mation to nitro drugs in G. lamblia, comparing a nitro drug-resistant
strain, namely the previously introduced strain C4 (Miiller et al., 2007,
2008) and its corresponding wild-type (WBC6) with respect to their
ultrastructure, whole cell activities such as oxygen consumption and
resazurin reduction assays, functional assays, and pool sizes and ratios
of cofactors involved in reductive processes.

2. Materials and methods
2.1. Culture media, biochemicals and drugs

If not otherwise stated, all biochemical reagents were from Sigma
(St Louis, MO, USA). Nitazoxanide (NTZ) was synthesized at the
Department of Chemistry and Biochemistry, University of Bern,
Switzerland (Ch. Leumann). 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)
hexanol (NBDHEX) was synthesized at the Department of Sciences and
Chemical Technologies, University of Rome and kindly provided by M.
Lalle (Department of Infectious, Parasitic and Immune-mediated
Diseases, Rome, Italy). Albendazole (ALB), NTZ, metronidazole (MET),
and NBDHEX were kept as 100 mM stock solutions in DMSO at —20 °C.

2.2. Axenic culture of G. lamblia trophozoites

Trophozoites from G. lamblia WB clone C6 wild-type and of the
NTZ/MET resistant clone C4 were grown under anaerobic conditions in
10ml culture tubes (Nunc, Roskilde, Denmark) containing modified
TYI-S-33 medium as previously described (Clark and Diamond, 2002).
C4 was routinely cultured in the presence of 50 uM NTZ. Subcultures
were performed by inoculating 20 ul (wild-type) or 100 pl (C4) of cells
from a confluent culture detached by cooling (Miiller et al., 2006) to a
new tube containing the appropriate medium.

2.3. Harvest and storage of G. lamblia trophozoites

For all experiments comparing wild-type to C4 trophozoites, the
medium from confluent cultures was removed one day before the
harvest and replaced with fresh medium without NTZ.

Trophozoites were detached by incubation on ice for 15min fol-
lowed by centrifugation (300 X g, 10 min, 4 °C). Pellets were washed
twice with PBS and either stored at —20 °C (for functional assays) or
used directly (determination of dinucleotides and ADP/ATP-ratio,
whole-cell assays and RT-PCR).

2.4. Growth curves, determination of minimal inhibitory concentrations,
stability of resistance

For all growth studies, G. lamblia WBC6 wild-type (WT) and the
MET- and NTZ-resistant strain C4 were inoculated into culture tubes
(10* trophozoites per tube). To determine the respective growth curves,
WT and C4 trophozoites were grown with 50 uM NTZ or with equal
amounts of DMSO as a solvent control. At various time points, adhering
cells were counted in a Neubauer chamber (Miiller et al., 2006). To
determine minimal inhibitory concentrations (MIC), WT and C4 tro-
phozoites were inoculated in the presence of increasing amounts (di-
lution series by a factor 2) of the nitro compounds MET, NTZ or
NBDHEZX, and of ALB as a control. The tubes were incubated at 37 °C for
4 days. The MIC was determined by observing the wells under the
microscope starting from higher to lower concentrations. The con-
centration at which the first living trophozoites were visible is given as
the MIC.

2.5. Scanning and transmission electron microscopy

For scanning (SEM) or transmission (TEM) electron microscopy,
trophozoites were harvested as described above and processed as

IJP: Drugs and Drug Resistance 8 (2018) 271-277

Table 1

Primers used in this study. Gene annotations and accession numbers were re-
trieved from GiardiaDB (giardiadb.org). The genes marked with an asterisk are
lateral transfer candidates.

Name Sequence GiadiiaDB accession number

ACTF ACATATGAGCTGCCAGATGG Actin related protein

ACTR TCGGGGAGGCCTGCAAAC (GL50803_40817)

FDP_F TGGGTGGAGCAACAGGGC A-type flavoprotein;

FDP_R TTACTGCTTAGGGGCGTTCT flavodiiron* protein
(GL50803_10358)

FlaHB_F GGACAGAGAGGGCGAGGA Flavohemoprotein*

FlaHB_R CTAATGGGAGGCCTTGAAG (GL50803_15009)

NO_F GCACGACACGCATCATCC NADH oxidase

NOR TTACAGTTTCATCAGCGTGG (GL50803.9719)

NOLT_F ACACGGACAGGCCTGGGT NADH oxidase lateral transfer

NOLT_R TCAGTCCTTCTTGTTTATCGCAC candidate* (GL50803_33769)

GINR1_F CCTGCTGACAAGGCCGCA Nitroreductase Fd-NR2*

GINR1_R AACACCAATTACTTAAATGTAATG (GL50803_22677)

GINR2_F CTGCAGCTTCACTCAGAGA Nitroreductase Fd-NR1*

GINR2_R TTATTCCACAAACGTTACGTC (GL50803_6175)

NRfam_F GGGAATACAAAATGACGGGG Nitroreductase family protein*

NRfam R GTACTCTTCTGTTTGGCGAG (GL50803_15307)

POR1_F ATCCAACGCGACCCAGAAG Pyruvate-flavodoxin-oxido-

POR1 R GTTCACTGCTTACTCCGCC reductase (GL50803_17063)

POR2F CTCGCACATGGTCCAGGG Pyruvate-flavodoxin-oxido-

POR2 R AGAGCCGCAGCCATCTCC reductase (GL50803_114609)

TrxR_F CGTTGGCCACGATCCCC Thioredoxinreductase

TrxR R TACTCCTGCATGGCAAGCC (GL50803_9827)

described earlier (Miiller et al., 2006), with the sole exception that
UranyLess EM Stain (Electron Microscopy Sciences, Hatfield, PA) was
used instead of uranyl acetate.

2.6. RNA analysis and quantification of expression by real-time PCR

For quantification of expression of characterized proteins by real-
time PCR after reverse transcription (RT-PCR), trophozoites were
grown and harvested as described above. RNA was extracted using the
QIAgen RNeasy kit digestion (QIAgen, Hilden, Germany) according to
the instructions by the manufacturer. RNA was eluted with RNase-free
water and stored at —80 °C. First-strand cDNA was synthesized using
the QIAgen OmniscriptRT kit (QIAgen, Hilden, Germany). After quan-
titative RT-PCR, expression levels were given as relative values in ar-
bitrary units relative to the amount of actin. Quantitative RT-PCR was
performed as described (Miiller et al., 2008) using the primers listed in
Table 1.

2.7. Whole-cell-assays

Oxygen consumption (OCR) and extracellular acidification rates
(ECAR) were simultaneously determined (Divakaruni et al., 2014) using
a Seahorse XFp device (Agilent, Santa Clara, CA). For each assay, WT or
C4 trophozoites were harvested as described and suspended in PBS
(2 x 107 cells/ml), and the suspension was added to XFp cell culture
miniplates (50 pl per well) containing 150 pl of a sterile NaCl 0.9% (w/
v) solution. Plates were centrifuged (400 X g, 2 min, 20 °C) in order to
ensure adhesion of the trophozoites. Then, the measurements were
performed according to the instructions provided by the manufacturer.
During the internal calibration of the XFp extracellular flux cartridge
(ca. 20 min), the miniplates containing the trophozoites were incubated
at 37 °C and then transferred into the device. OCR and ECAR rates were
determined by averaging the rates obtained between 6 and 30 min after
the start of the analysis and normalized to the protein contents of the
cells.

To determine initial resazurin reduction rates, WT or C4 tropho-
zoites were suspended in PBS or PBS containing 0.2% (w/v) glucose
(10° trophozoites per ml). 0.1 ml of this suspension were added to 96-
well-plates. The assay was started by adding 0.1 ml of resazurin
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(20 mg/1) in PBS and the reduction of resazurin was quantified at 37 °C
by fluorimetry with excitation at 530 nm and emission at 590 nm using
a 96-well-multimode plate reader (Enspire; Perkin-Elmer, Waltham,
MA).

2.8. Functional assays

Extracts were prepared from frozen pellets suspended in assay
buffer containing 0.5% (v/v) Triton-X-100 and 1 mM phenyl-methyl-
sulfonyl-fluoride. Nitroreductase activity was determined by measuring
the formation of 7-amino-coumarin (Miiller et al., 2015). The assay
buffer (Tris/Cl~ 50 mM, pH 7) contained 7-nitrocoumarin (0.1 mM) as
a substrate and NADH or NADPH (0.5 mM) as electron donors. The
reaction was started by addition of the electron donor.

Pyruvate oxidoreductase assays were performed in potassium
phosphate (100 mM, pH 7) containing sodium pyruvate (10 mM),
coenzyme A (0.2mM), MgCl, (1 mM), and thiaminpyrophosphate
(5uM) as described (Hoffman et al., 2007) with the sole exception that
thiazolyl blue tetrazolium chloride was used as final electron acceptor
instead of benzyl viologen.

Ornithine-carbamyl-transferase was assayed in the direction of ci-
trulline formation and citrulline was quantified as described (Schofield
et al., 1992). This assay was slightly modified for the determination of
citrulline by adding convenient amounts of cell-free extracts directly to
the stop and colour development solution.

2.9. Determination of cofactor pool sizes and ratios

NAD(H) and NADP(H) contents were determined using commercial
kits (NAD " /NADH-Glo™ and NADP " /NADPH-Glo™) according to the
instructions provided by the manufacturer (Promega, Madison, WI).
FAD was determined using a commercial kit (FAD colorimetric/
fluorometric assay kit) according to the instructions provided by the
manufacturer (Biovision, Milpitas, CA). The ADP/ATP-ratio was de-
termined using a commercial kit (Biovision ADP/ATP Bioluminescence
assay kit) according to the instructions provided by the manufacturer.
For all assays, trophozoites were harvested as described, counted and
freshly processed using the respective extraction buffers provided in the
kits. The extraction buffers of all kits contained detergents and ensured
an instaneous and > 95% lysis of the trophozoites. The assays were run
in quadruplicates in 96-well-plates containing the equivalent of
10*cells per well. The mean values and standard errors of three in-
dependent assays normalized to the protein contents of the cells are
shown.

2.10. Protein contents

Protein contents of cell-free extracts were determined by the
Bradford method (Bradford, 1976) using a commercial kit (Biorad La-
boratories, Miinchen, Germany). For the normalization of whole-cell-
assays, the trophozoites were lysed in PBS containing 0.05% (v/v)
Triton-X-100.

2.11. Statistics

Student's t-tests were performed using the software package R (R
Core Team, 2012). Differences of the mean values with p < 0.01 were
regarded as statistically significant.
3. Results
3.1. Growth and maintenance of resistance

In order to illustrate the resistance of the G. lamblia strain C4 de-

rived from the wild-type WBC6, we determined the minimal inhibitory
concentrations of three nitro compounds, namely MET, NTZ and
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Table 2

Determination of minimal inhibitory concentrations (MICs) of serial dilutions
of the nitro compounds MET, NTZ and NBDHEX and of ALB on WBC6 wild-
type (WT) and C4 trophozoites. MICs were determined as described in
Materials & Methods and are given in pM.

Compound WBC6 C4
MET 12.5 > 100
NTZ 3.1 > 100
NBDHEX 12.5 > 100
ALB 0.2 0.2

NBDHEX on both strains. Whereas all three compounds inhibited the
wild-type clone at MICs in the 10-uM-range, none of the compounds
inhibited strain C4, and were ineffective even at 100 uM, the highest
concentration used in this test. Conversely, the MIC for the benzimi-
dazole ALB - thus a non-nitro drug — was similar in both strains
(Table 2). In the absence of drugs, C4 trophozoites proliferated almost
as rapidly as the WT trophozoites, reaching confluence after 4 d post
inoculation. In the presence of 50 yM NTZ, thus in the medium used to
maintain strain C4, the proliferation of resistant trophozoites was
slower, and confluence was reached after approximately one week post
inoculation (Fig. 1). Upon subsequent passages on drug-free medium,
the resistance slowly declined, but was nevertheless maintained, as
already published (Miiller et al., 2008).

3.2. Ultrastructure

Both wild-type and strain C4 were fixed and processed for SEM, and
inspection of specimens did not reveal morphological differences, nei-
ther on the ventral disc nor on the dorsal surface of the trophozoites
(Fig. 2), nor did the sizes of the trophozoites differ. The sizes, as mea-
sured from SEM micrographs as shown in Fig. 2 were for WT tropho-
zoites 13.2 = 0.5 um for the long axis and 7.9 = 0.2 um for the small
axis. The values of the same parameters of C4 trophozoites were
12.9 * 0.4pum and 8.6 * 0.5pum, respectively (n = 5). TEM did also
not indicate dramatic differences between the two stains. All char-
acteristic features of trophozoites including the ventral disc and the
axonemes located between the two nuclei appeared structurally un-
altered (Fig. 3). However, in approximately 10% of the trophozoites of
strain C4, cytoplasmic vacuolization could be observed, often in com-
bination with a less electron-dense cytoplasm. This feature was vir-
tually absent in WT trophozoites.
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Fig. 1. Growth of the nitro drug-resistant G. lamblia strain C4. At day 0, 10*
WBC6 (WT; white symbols) or C4 (black symbols) trophozoites were inoculated
to normal culture medium (circles) or to medium containing 50 uM NTZ (+N;
triangles). Mean values (+SE) from quadruplicate determinations are given.
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Fig. 2. SEM of trophozoites of the G. lamblia strain C4 (A, C, E) and corre-
sponding wild-type strain WBC6 (B, D E). Low magnification views in A and B,
ventral side in C and D, dorsal side in E and F. ds = dorsal surface, vd = ventral
disc. Bars in A and B = 9.3 um; bars in C - F = 2.8 um.

3.3. Oxygen consumption and resazurin reduction rates

In order to see whether the results obtained on nitro reduction can
be extended to metabolic processes involving other electron acceptors,
we investigated oxygen consumption and resazurin reduction, both
methods using intact cells. Oxygen consumption rates were sig-
nificantly lower in C4 trophozoites reaching ca. 50% of the wild-type
levels. Conversely, extracellular acidification rates were similar in both
strains (Fig. 4 A, see Fig. S1 for a typical experiment). Similar
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Fig. 4. Whole cell assays with WBC6 (WT; white symbols) and nitro drug re-
sistant (C4; black symbols) trophozoites. A, oxygen consumption (OCR) and
extracellular acidification (ECAR) rates determined in a Seahorse XFp device.
Mean values ( = ) SE for three independent assays are given (*, p < 0.01). B,
resazurin reduction. Mean values (+SE) from quintuplicate determinations in
96-well-plates (10* trophozoites per well) are given. For both strains, the rates
were determined in absence (circles) and presence (triangles) of glucose. Both
assays were performed as described in Materials and Methods.

Fig. 3. TEM of trophozoites of the G. lamblia wild-type WBC6 (A) and resistant strain C4 (B-D); ax = axonemes, mt = microtubules, nu = nucleus, vac = cytoplasmic
vacuole, vd = ventral disc. Note in D a dividing trophozoite with two ventral discs. Bars in A and B = 2.8 um; bars in C and D = 3.2 um.
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Table 3

Expression of G. lamblia enzymes involved in reduction of nitro compounds in
the MET/NTZ resistant strain C4 as compared to the wild-type (WT) WBC6.
Trophozoites were grown to confluence and harvested as described. To de-
termine mRNA levels, RNA was extracted and reverse transcribed into cDNA.
Transcripts were quantified in relation to actin. Mean values + SE are given
for four independent samples. Values marked by asterisks are significantly
different to the control (paired t-test, two-sided; *, P < 0.001). The full names
of the genes, the accession numbers and the primers are given in Table 1 n.d.,
not detected.

+

Gene mRNA levels

WT Cc4
FDP 1.9 = 0.0 1.8 £ 0.1
FlaHb 1.1 = 0.01 0.1 = 0.01
NR1 0.18 = 0.03 0.03 + 0.01*
NR2 0.13 = 0.01 0.16 = 0.02
NRfam 0.05 = 0.01 0.07 = 0.003
POR1 1.5 = 0.2 21 * 0.2
POR2 3.1 = 04 5.7 = 0.01
TrxR 4.4 = 0.01 4.6 = 0.3
NO 84 = 05 83 = 0.5
NOLT 8.8 = 0.7 14.7 = 0.6

observations could be made by offering resazurin as an electron ac-
ceptor. C4 trophozoites had lower resazurin reduction rates (61 RFU/
min) than WT trophozoites (92 RFU/min). For both strains, the rates
were increased in the presence of glucose (76 vs. 114 RFU/min; Fig. 4
B).

3.4. Messenger RNA levels of enzymes involved in nitro reduction

In a next step, we investigated the mRNA levels of a panel of se-
lected genes, including the gene coding for nitroreductase GINR1. No
differences in transcription levels could be detected between strain C4
and WT trophozoites, with the exception of GINR1 mRNA, whose levels
were significantly lower in C4 trophozoites than in WT trophozoites,
thus confirming previous results (Miiller et al., 2008, 2013; Nillius
et al., 2011). The mRNA levels of other genes involved in nitro reduc-
tion including both POR isoforms were the same in both strains
(Table 3).

3.5. Nitroreductase activity and pool sizes of cofactors of nitro-reducing
enzymes

According to the current knowledge on the mode of action of nitro
drugs, reduction of nitro groups to more toxic intermediates should be
impaired in resistant strains as compared to wildtype strains. To verify
this hypothesis, we measured 7-nitrocoumarin reductase activity in
total cell extracts of WT and C4 trophozoites using either NADH or
NADPH as electron donors. As controls, we determined pyruvate-oxi-
doreductase (POR) activity and — as a not-oxidoreductase control - or-
nithine carbamyl transferase (OCT). POR activity did not significantly
differ in extracts from both lines (Table 4). In contrast, nitroreductase
activity was markedly reduced in extracts of C4 trophozoites, reaching
only ca. 20% of the activity level in WT extracts, regardless which
electron donor had been offered (Fig. 5 A). Interestingly, the second
enzyme activity that we included as a control, namely OCT, was sig-
nificantly lower in C4 extracts compared to extracts of WT trophozoites
(Table 4). This observation prompted us to investigate the levels of
citrulline, the product or educt of OCT. C4 trophozoites, contained less
citrulline, namely 2.7 * 0.3nmol/mg protein, compared to
8.3 = 1.0 nmol/mg protein in WT trophozoites.

Since - except for GINR1 - the expression levels for other known or
alleged nitro-reducing enzymes were similar in both strains (cf.
Table 2), it was of interest to determine whether the pool size of the
prosthetic group responsible for electron transfer to nitro groups, to
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Table 4

Specific enzyme activities in crude extracts of trophozoites of the MET/NTZ
resistant strain C4 and of the wild-type (WT) WBC6. Pyruvate-oxido-reductase
and ornithine-carbamyl-transferase activities were determined as described in
Materials and Methods. Mean values + SE are given for three independent
extracts. Values marked by asterisks are significantly different to the control
(paired t-test, two-sided; *, p < 0.01).

Activity Unit WT C4

Pyruvate-oxido-reductase AmA590/min/mg 343 = 6.0 46.6 = 6.6
protein

Ornithine-carbamyl- nkat/mg protein 945 + 0.7 37.1 * 6.5%

transferase

oxygen and to xenobiotics with a similar redox potential, FAD, was
altered in the resistant strain. In-terestingly, the FAD level in C4 tro-
phozoites amounted to only about 50% of the level found in WT tro-
phozoites (Fig. 5 B).

In a next step, we investigated the pool sizes and ratios of the ni-
cotinamide-dinucleotide co-factors involved in electron transfer, and of
the ADP/ATP-ratio as a marker for the energy status. NAD(H) was by
far more abundant in trophozoites than NADP(H) and exhibited a
higher degree of variation between independent preparations (Fig. 5C
and D). The levels of NAD and NADH did not significantly differ be-
tween WT and C4 trophozoites (Fig. 5 C), the NADP and NADPH levels
were, however, significantly reduced in C4 trophozoites (Fig. 5 D).

The ratios of NAD versus NADH in trophozoites of both strains ba-
lanced strongly in favour of NAD, and were slightly, but not sig-
nificantly, higher in WT than in C4 trophozoites (p < 0.1). In contrast,
the NADPH/NADP ratios were, however, closer to one and significantly
increased in C4 trophozoites. In WT trophozoites, the ADP/ATP-ratio
was close to one and significantly increased in C4 trophozoites
(Table 5). The absolute ATP contents were 24.1 * 3.1 nmol/mg pro-
tein in WT versus 21.8 + 1.9 nmol/mg protein in C4 trophozoites. The
absolute ADP contents were 25.0 = 5.7 nmol/mg protein in WT vs
29.8 *+ 4.2nmol/mg protein in C4 trophozoites. The differences were
not significantly different.

4. Discussion

In the present study, we have investigated physiological aspects of
resistance formation in G. lamblia using the nitro drug-resistant strain
C4 and its isogenic wild-type WBC6 as a “model system”. Trophozoites
of the two strains did not differ markedly with respect to cell shape and
ultrastructural characteristics, thus physiological parameters such as
enzyme activities and metabolite content could be compared.

C4 trophozoites exhibit similar mRNA expression levels of genes
coding for enzymes invoved in nitro and/or O,-reduction, including
GINR2 (Miiller et al., 2013) and a homologous protein without N-
terminal ferredoxin domain (NRfam), other flavoproteins like flavo-
diiron protein and flavohemoglobin (Di Matteo et al., 2008; Vicente
et al.,, 2009; Mastronicola et al., 2010; Rafferty et al., 2010), thior-
edoxin reductase (Brown et al., 1996b; Leitsch et al., 2016; Camerini
et al., 2017), NADH oxidase (Brown et al., 1996a; Li and Wang, 2006;
Castillo-Villanueva et al., 2016) or the two POR isoforms (Leitsch et al.,
2011). The only enzyme shown to exhibit significantly decreased
mRNA levels in C4 trophozoites is GINR1. This result is in good
agreement with data obtained with three other MET-resistant strains
(Ansell et al., 2017). The significant decrease of nitroreductase activity
in cell-free extracts of C4 trophozoites, thus has other origins, namely
either post-transcriptional downregulation or lack of essential cofac-
tors. Since the electron donors NAD(P)H are provided in excess in the
functional assay, and since the most relevant nitro-reducing enzymes
are flavoproteins, the incorporation of the prosthetic group FAD may be
critical. As previously suggested (Leitsch et al., 2011; Ansell et al.,
2015), the reduction of FAD levels may thus constitute an important
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Fig. 5. Nitroreductase (NR) activities and cofactor contents in WBC6 (WT;
white bars) and nitro drug-resistant (C4; black bars) trophozoites. A, NR ac-
tivity determined with NADH or NADPH as cofactors. B; FAD contents; C, NAD
(H) contents; D, NADP(H) contents. All assays were performed as described in
Materials and Methods. Mean values ( = ) SE for three independent assays are
given (*, p < 0.01).

physiological mechanism to avoid the formation of toxic nitro inter-
mediates and/or radicals. Since NADH oxidases also contain FAD
(Brown et al., 1996a), it is not surprising that the oxygen consumption
of C4 trophozoites is reduced, as well. This differs from results of a
former study where no differences in oxygen consumption between
MET-sensitive or - resistant clinical isolates could be observed (Ellis
et al., 1993). It is unclear, however, to which extent these results can be

IJP: Drugs and Drug Resistance 8 (2018) 271-277

Table 5

Ratios of nicotinamide dinucleotides and of ADP/ATP. All assays were per-
formed as described in Materials and Methods. The assays were run in quad-
ruplicates in 96-well-plates containing the equivalent of 10* cells per well. The
mean values and standard errors of three independent assays normalized by the
protein contents of the cells are shown. Values marked by asterisks are sig-
nificantly different to the control (paired t-test, two-sided; *, p < 0.01).

Ratio WT C4

ADP/ATP 1.04 = 0.03 1.4 = 0.1*
NAD/NADH 323 £ 6.3 12.6 = 2.0
NADPH/NADP 1.31 = 0.03 1.77 = 0.02*

extrapolated since the cells have been grown under different conditions.
Furthermore, we have to consider the possibility that FMN and not FAD
is the cofactor of some enzymes that may be involved in nitroreduction
(Ansell et al., 2015).

The surprising observations concerning OCT activity and citrulline
contents indicate, however, that besides redox processes also other
metabolic mechanisms are affected in resistant strains. OCT plays a
critical role in giardial energy metabolism (Schofield et al., 1990, 1992;
Edwards et al., 1992) and is up-regulated on mRNA and protein levels
in ALB-resistant trophozoites (Paz-Maldonado et al., 2013). The fact
that C4 trophozoites have a lower OCT activity may be an indication for
a diminution of energy production and of intermediate metabolism.
Lower citrulline pool size (Knodler et al., 1994), higher ADP/ATP and
NADPH/NADP* ratios and lower growth rates indicate the same.

Taken together, the metabolic parameters that we have investigated
support the thesis that resistance formation to nitro drugs in C4 is due
to a reduction of nitro drug activation rather than to a detoxification of
nitro radicals. Expression studies have revealed a downregulation of the
nitroreductase NR1, a potential activator of nitro compounds (Nillius
et al., 2011; Miiller et al., 2015) whereas enzymes involved in nitro
radical detoxification such as the nitroreductase NR2 (Miiller et al.,
2013, 2015), flavohemoglobin (Mastronicola et al., 2010), and flavo-
diiron protein (Vicente et al., 2009) are not affected. Conversely, other
resistant strains show expression patterns suggesting that both me-
chanisms are involved in resistance formation (Ansell et al., 2017).
Aerobic resistance, thus quenching of nitro radicals by O, as observed
in the microaerophilic Trichomonas sp. (Tachezy et al., 1993) can be
excluded for Giardia growing under strictly anaerobic conditions.

To sum up, resistance formation exhibits striking similarities to
metabolic adaptation processes to environmental distress, and, in this
case, is less likely caused by mutations of single intracellular targets.
This may be anchored in the evolutionary history of this protozoan
parasite, which must face dietary shifts of its omnivorous hosts ranging
from a carbohydrate-rich to a red meat-rich diet, resulting in an accu-
mulation of nitrosamines and other reactive nitrogen species (Hughes
et al., 2001; Kuhnle et al., 2007; Joosen et al., 2009). These compounds
may be generated at biologic heme centers mediating e.g. the nitration
of phenol and tryptophan (Casella et al., 2002; Lunn et al., 2007). When
using nitro drugs, the treatment success would then be only guaranteed
by an immediate increase from zero to a concentration above the MIC
until complete parasite clearance. A step-wise increase of sublethal drug
concentrations would result in adaptation as has been easily observed
in the generation of the resistant lab strains by us and by other groups.
The biochemical trigger of this adaptation is unknown. Since “re-
sistance” formation has been shown to correlate with antigenic varia-
tion (Miiller et al., 2008; Ansell et al., 2017) and since antigenic var-
iation is due to epigenetic changes (Kulakova et al., 2006) at the post-
transcriptional level (Prucca and Lujan, 2009), we may assume that the
metabolic changes observed in this study may be — at least in part - the
result of epigenetic changes, as well. This would explain the reversi-
bility of “resistance” upon subcultures in the absence of drugs (Miiller
et al., 2008). Thus, nitro drug resistance shares some, but not all fea-
tures (like e.g. elevated MICs) with the concept of “tolerance” as
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defined with respect to antibiotic treatment of bacteria (Brauner et al.,
2016). As a consequence, we suggest replacing the term “resistance” by
“tolerance” to nitro drugs as a special case of physiological plasticity
towards environmental distress and suggest reserving the term “re-
sistance” to genotypical changes such as point mutations of targets or
acquisition of drug degrading enzymes by lateral transfer.
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