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Key Points

• EMCN is a novel marker
of human HSCs.

• EMCN is a more spe-
cific marker of HSCs
than CD34 as it can
discriminate HSCs
from lineage-committed
HPCs.

Introduction

Hematopoietic stem cells (HSCs) promote the lifelong production of all mature blood cell lineages
through their unique capabilities of durable self-renewal and multilineage differentiation.1 Given the
extensive regenerative property of HSCs, various types of stem-cell products have been successfully
used in the clinic for cellular and genetic therapies for.4 decades.2 These include donor-derived bone
marrow (BM), cord blood (CB), and mobilized peripheral blood stem-cell products for allogeneic stem-
cell transplantation (SCT) in patients with hematological malignancies and monogenic diseases.
Moreover, patient-derived peripheral blood stem-cell products are extensively used for autologous SCT
supporting hematopoietic rescue after high-dose chemotherapy for various types of hematological
malignancies, solid tumors, and autoimmune diseases.3 Significantly, the development of improved viral
gene transduction protocols targeting HSCs has led to successful outcomes of gene therapies for
monogenic diseases of the hematopoietic system, such as severe combined immunodeficiency,
b-thalassemia, Wiskott-Aldrich syndrome, and leukodystrophy.4

Despite the outstanding clinical success of cellular and genetic HSC therapies, much of our knowledge
of human adult HSC biology derives from mouse studies and studies of CB HSCs, because HSCs can
only be identified and quantified operationally by functional transplantation assays, raising an obvious
obstacle for studies of human adult HSCs, which, compared with murine HSCs and human CB HSCs,
engraft relatively poorly in syngenic or xenotransplantation assays, respectively.5

As evidenced by clinical and xenotransplantation studies, all human HSCs as well as lineage-committed
hematopoietic progenitor cells (HPCs) express CD34, although they lack expression of mature blood-
cell lineage markers (L-341).6 Significantly, L-341 cells can be further subdivided by a series of surface
markers into L-341381 populations enriched in HPCs committed to the myeloid and lymphoid lineages,
as well as L-341382 populations enriched in progenitors with mixed lymphocyte and myeloid
(monocytic) potential (LMPPs; L-34138245RA1902), multipotent progenitors (MPPs; L-341382

45RA2902) with limited multilineage engraftment potential, and functional human HSCs (L-341382

45RA2901) with the capability of long-term multilineage engraftment.7,8 Given these premises,
identification of novel HSC markers allowing for further refinement of the immunophenotype and an
improved purification of adult HSCs is instrumental to gain new insights into human HSC biology and
improve both HSC quantification and HSC graft engineering in the clinical setting.

Methods

A detailed description of multicolor flow cytometric analyses and cell sorting, western blot analyses, and
NOG xenotransplantation experiments is given in the in the supplemental Materials and methods.
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Results and discussion

To identify novel human HSC surface markers, we conducted a
screen of microarray gene expression profiles (GEP) of BM
populations with the classic immunophenotypes of HSCs, MPPs,
committed HPCs, and mature blood cells purified by flow cytometry
from healthy adults as described previously by our group.9,10

Significantly, this screen identified endomucin (EMCN) as a
candidate HSC marker that is highly expressed by human
HSCs and progressively downregulated as HSCs differentiate via
MPPs toward lineage-committed common myeloid progenitors
(CMPs), granulocyte-monocyte progenitors (GMPs), megakaryocyte-
erythrocyte progenitors (MEPs), and mature monocytes and neutro-
phils (Figure 1A). Complementary flow cytometric analysis of adult BM
samples from healthy subjects combining EMCNwith current standard
markers for the identification of lineage-committed HPCs, LMPPs,
MPPs, and HSCs demonstrated that EMCN is highly expressed on the

surface of immunophenotypic HSCs (6 standard deviation;
65% 6 7%) and to some extent on MPPs (27% 6 9.5%),
but almost entirely absent on LMPPs (11% 6 8%) and lineage-
committed HPCs (0.7% 6 0.5%; Figure 1B-C).9,10 Consistently,
fractionation of lineage-negative adult BM cells into subpopulations
lacking expression of EMCN (L2E2) or expressing EMCN at low or
high levels (L2Elo and L2Ehi, respectively) demonstrated a.200-fold
enrichment of immunophenotypic HSCs in L2Ehi populations as
compared with L2E2 populations in BM (supplemental Figure 1).
Moreover, the L2E1 population was significantly enriched for
immunophenotypic HSCs and almost completely devoid of
lineage-committed HPCs when compared with the L2341 popula-
tion (6 standard deviation; HSCs: L2E1, 59% 6 16% vs L2341,
11% 6 5%; P 5 .0003; HPCs: L2E1, 7% 6 6% vs L2341, 56%
6 9%; P , .001; n 5 7; supplemental Figure 2). Significantly, the
latter indicates that EMCN is a more specific marker of HSCs than
CD34, which is currently used routinely in the clinic for the monitoring
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Figure 1. EMCN is highly expressed by HSCs in human adult BM. (A) Microarray GEPs of EMCN in highly purified human hematopoietic BM cell populations including

immunophenotypic HSCs (n 5 5), MPPs (n 5 3), CMPs (n 5 7), GMPs (n 5 9), MEPs (n 5 6), mature neutrophils (polymorphonuclear neutrophils [PMN]; n 5 3), and

monocytes (Mono; n 5 4). One-way analysis of variance (ANOVA) of EMCN expression in HSCs vs MPPs, CMPs, GMPs, MEPs, PMNs, and Monos: P # .0001. (B)

Representative gating strategy of viable (7AAD2) human BM populations including all lineage-committed HPCs (L2341381; black), HSCs (L234138245RA2901; green),

MPPs (L234138245RA2902; red), and LMPPs (L234138245RA1902; blue). (C) Average frequencies (6 standard deviation; n 5 7) of EMCN1 cells among HSCs (65.1%

6 6.8%), MPPs (26.8% 6 9.5%), LMPPs (11.1% 6 8.1%), HPCs (0.7% 6 0.5%). One-way ANOVA of EMCN1 cells in HSCs vs MPPs, LMPPs, and HPCs: P # .0001.
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of stem-cell mobilization in patients and healthy donors and quality
assessment of their stem-cell products.11

More recently, Notta et al8 elegantly demonstrated that in CB,
HSCs express CD49f (ITGA6) at intermediate levels, allowing for
the sorting of a L234138245RA290149f1 population containing
10% functional HSCs. We therefore investigated whether CD49f,
similar to EMCN, could be used to discriminate immunophenotypic
HSCs and HPCs in CB as well as adult BM. Microarray GEP
demonstrated a minor but still significant increase of CD49f
expression in CB but not adult BM HSCs compared with HPCs
(supplemental Figure 3). However, subsequent flow cytometric
analyses did not demonstrate significant differences in CD49f

surface expression, either on HSCs or HPCs from CB or adult BM
(supplemental Figure 4).10,12 Hence, in contrast to EMCN, CD49f
cannot discriminate between HSCs and HPCs, despite its
previously shown ability to enrich for functional HSCs in combina-
tion with other HSCs markers (L234138245RA290149f1).8

To rule out off-target binding, we tested 2 independent rat–
anti-human EMCN antibodies (SDBC0008N-G, L6H10) on human
BM cells and recombinant human EMCN.13 Significantly, both
monoclonal antibodies stained immunophenotypic HSCs and
recombinant human EMCN protein in flow cytometric (supplemen-
tal Figure 5) and western blot analyses (supplemental Figure 6),
respectively.
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Figure 2. All functional HSCs in adult BM express EMCN.

(A) Sorting strategy for the purification of 7AAD2L2EMCN1

(L2E1) and 7AAD2Lin-EMCN2 (L2E2) cells from human BM

and representative plot demonstrating a significant enrichment

of immunophenotypic HSCs in L2E1 as compared with L2E2

populations. (B) Transplantation of 50 000 L2E2 and 2000

L2E1 highly purified BM cells into sublethally irradiated NOG

mice and assessment of their capability for human long-term

multilineage engraftment in BM and spleen 20 weeks after

transplantation. (C-D) NOG mice transplanted with 2000 L2E1

(red squares) cells demonstrated marked human multilineage

engraftment after 20 weeks (2 independent experiments; 3-4

replicates each, error bars shown as standard error of the mean),

whereas mice transplanted with 50 000 L2E2 (blue squares)

cells demonstrated human engraftment at very low levels without

detection of multilineage engraftment. (E) Representative flow

cytometric analysis of human multilineage engraftment in the

BM of NOG mice including human CD451CD191 B cells and

human CD451CD331 myeloid cells. FACS, fluorescence-

activated cell sorting.
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Given these promising immunophenotypic analyses, we further
assessed whether EMCN actually marks functional HSCs without
additional use of CD34 or any other known HSC markers. For this,
we transplanted 50 000 L2E2 and 2000 L2E1 highly purified
BM cells into sublethally irradiated NOG mice (Figure 2A-B) and
assessed their capability for human long-term multilineage
engraftment 20 weeks after transplantation (Figure 2C-D; sup-
plemental Figure 7).14 Significantly, only NOG mice transplanted with
2000 L2E1 cells demonstrated significant human multilineage
engraftment in BM and spleen, including CD191 B cells and
CD331 myeloid cells, after 20 weeks (Figure 2C-E). In contrast,
mice transplanted with 50 000 L2E2 cells demonstrated no human
engraftment (Figure 2C-E). These findings establish EMCN as a
marker expressed by a majority, if not all, bona fide functional human
adult HSCs.

During development, HSCs are generated from hemogenic endo-
thelium before they seed and expand in the fetal liver (FL) and
ultimately migrate to their lifelong niches in the BM. Notably, this
origin of HSCs is reflected by expression of common surface
markers on endothelial cells and adult HSCs, such as CD34 and
CD90.15 In a previous study, Matsubara et al16 demonstrated that
the endothelial marker EMCN is expressed on murine HSCs but not
erythroid HPCs during embryonic development. Consistent with
this murine study, analysis of a series of publicly available microarray
GEPs of sorted human CB and FL HSCs (L234138245RA2901)
and HPCs (L2341381), which were conducted on the same
microarray platform as our own GEPs of sorted BM HSCs (L2341

38245RA2901) and HPCs (L2341381), demonstrated high expres-
sion of EMCN transcripts in HSCs compared with their respective
lineage-committed HPCs (supplemental Figure 3).10,12,17 Comple-
mentary flow cytometric analyses of immunophenotypic CB HSCs
(L234138245RA2901), CB MPPs (L234138245RA2902), CB
LMPPs (L234138245RA1902), and CB HPCs (L2341381)
demonstrated that EMCN is expressed on immunophenotypic
CB-derived HSCs and is progressively downregulated as HSCs
differentiate into lineage-committed HPCs (supplemental Figures 4
and 8). Hence, our study extends the previous report by Matsubara
et al on EMCN expression during murine embryonic development
and substantiates a common developmental origin of endothelial
cells and adult HSCs by demonstrating that EMCN is a novel
marker the expression of which is conserved on human HSCs
throughout development on FL, CB, and adult BM HSCs.

Our findings further highlight the use of EMCN in future studies in
combination with classic HSC markers for refinement of the current
human HSC immunophenotypes to gain new insights into human
HSC biology. Such studies might include single-cell RNA
sequencing and limiting-dilution transplantation experiments to
characterize EMCN-expressing HSCs and determine whether
addition of EMCN to standard HSC marker combinations such as
L2341382 or rather L234138245RA2901 can improve enrich-
ment of HSCs in prospectively FACS-purified BM and CB
populations.6-10,12

With respect to the clinical applications, EMCN may be used
complementarily with the current standard marker CD34 for
routine assessment of effective stem-cell mobilization and stem-
cell product quality, given that EMCN is a more specific marker of
functional human HSCs than CD34, which is not expressed by

lineage-committed HPCs. In this context, EMCN also represents
a potential marker for simplified HSC purification strategies,
including 2-color flow cytometry–based or 2-step immunomag-
netic cell sorting protocols. Significantly, such EMCN-based
sorting could easily be adapted in automated cell separation
protocols already applied in the clinical setting, allowing for
production of highly pure stem-cell products devoid of T cells or
CD34–expressing malignant cells, and thus have a profound
impact on patients undergoing allogeneic or autologous SCT,
respectively.18

In summary, our study identifies EMCN as a novel HSC marker,
which holds great potential to advance future studies on human
HSC biology and improve HSC-based therapies.
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